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Abstract

An unprecedented gold-catalyzed diastereoselective cycloisomerization of 1,6-diynes bearing an

alkylidene cyclopropane moiety has been developed. This methodology enables rapid access to a

variety of 1,2-trimethylenenorbornanes, important building blocks in the preparations of abiotic

and sesquiterpene core structures.
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Increasing pressure on our natural resources has made sustainability a key theme in many

research areas, which in turn has led to a premium being applied to methods able to generate

complex target molecules in a step- and atom-economical manner.[1] Since catalysis by its

nature, provides the wherewithal to improve efficiency, selectivity, complexity, and rate,[2]

it provides a powerful tool for the efficient construction of complex chemical architectures

that would be difficult to achieve using traditional reaction paradigms.[3]

Illustrative of this point is 1,2-trimethylenenorbornane 2, a structural motif that occurs in

numerous synthetic precursors to abiotic adamantanes[4] and [3.3.3]-propellanes,[5] in

addition to numerous classes of sesquiterpene natural products, including the cedrenes,[6]

and the pentalenene/isocomenes (Figure 1).[7] The traditional approaches to 2 have relied on

intramolecular [4+2] cycloaddition reactions,[4–7] but the laborious process for preparing the

needed starting materials has limited the applicability of 2 in complex molecule synthesis.

Efficient methods for the construction of the tricyclic ring system of 2 under catalyst control

are thus desirable and would enable their application in synthesis. To this end, we report a

gold catalyzed, remarkably complex cycloisomerization of readily synthesized 1,6-diynes 1
to a collection of products containing the 1,2-trimethylenenorbornane core (Figure 1).
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The inherently high ring strain of alkylidene cyclopropanes (ACPs) (~40 kcal/mol) make

them an especially useful and reactive class of synthetic intermediates.[8] When this strain

can be released under the careful guidance of a catalyst, it is possible for this potent

thermodynamic driving force to be harnessed for otherwise unfavourable reactions.[9]

Taking advantage of the ring strain relief strategy, our group recently reported the first

enantioselective Cope rearrangement (gold-catalyzed) from achiral 1,5-dienes (Figure

2A).[9b] This success led us to investigate ACP containing cyclic 1,5-dienes and the

discovery of a ring expanding cycloisomerization that yields tricyclic compounds

incorporating the bicyclo[4.2.0]oct-1-ene core (Figure 2B).[9c] Based on this result, we

reasoned that gold catalysis of ACP-bearing 1,5-enynes such as 1a, would yield

bicyclo[4.2.0] dienes (3) via a sequential 6-endo-dig-cyclization/ring expansion/net 1,2-

hydrogen shift process (Figure 2C).[10] However, when 1a (R2 = 1-propynyl) was treated

with 10 mol% PPh3AuNTf2 in 1,2-dichloroethane at 50 °C, the expected bicyclo product 3
was not formed. Instead, the tricyclic compound 2a was obtained as a single diastereomer in

70% yield (48 h, Figure 2C). DFT calculations indicated that the conversion of 1a to 2a was

exothermic by ~63 kcal/mol, making the high selectivity and yield even more

remarkable.[11] The structure of 2a was elucidated by a 2D-INADEQUATE experiment (see

SI).

In the first optimization round, a number of gold catalysts were evaluated for their ability to

accelerate the cycloisomerization of 1a (entries 1–9, Table 1). The simple Lewis acid AuCl3
and a common cationic gold precursor PPh3AuCl showed almost no catalytic activity for

this rearrangement (entries 1–2, Table 1). In addition, the data indicate that ligand has a

significant impact on the catalytic activity, with triaryl phosphines (entries 3 and 6–7, Table

1) exhibiting better catalytic efficiency than trialkyl (entry 4, Table 1) and mixed aryl-alkyl

phosphine ligands (entry 5, Table 1). Other ligands, including dialkyl sulfide (entry 8), and a

N-heterocyclic carbene (entry 9) showed no improvements. Electron rich triaryl phosphine

ligands (entry 7) were superior to electron poor variants (entry 6). The catalyst (p-

Tol)3PAuNTf2 4, derived from the activation of (p-Tol)3PAuCl with AgNTf2 provided the

highest yield (entry 7, Table 1). A subsequent screen of silver salts (entries 7 and 10–12)

confirmed that AgNTf2 and AgSbF6 provided optimal yields (entries 7 and 11). Since 4 is an

air-stable white solid, this catalyst was chosen for additional optimization.

A solvent optimization study using 10 mol% 4 showed a preference for halogenated solvents

(see SI). The need for slightly elevated temperatures led to 1,2-dichloroethane (DCE) being

chosen (entry 7). A screen of catalyst loadings showed that 10 mol% was preferable (entries

7 and 13–14). Increasing the concentration of the reaction mixture had little impact on the

reaction yield (entries 7 and 15). Finally, a control run in the absence of 4 led to no product

formation (entry 8).

With these optimized conditions (10 mol% 4 in DCE at 50 °C), the scope of substrates was

explored. As shown in Table 2, a variety of aryl substitutions at R1 were tolerated, with

electron rich through electron poor substituents (entries 1–5, Table 2) successfully

generating the expected tricyclic compounds 2a–2e in good yield. Worth noting is the

tolerance of the cyano group in 1f (entry 6), which has the potential for side reactions

through nitrile activation.[12] The use of an aliphatic substituent in place of the aryl moiety
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at R1 afforded the desired tricyclic compound, 2g, but in a slightly lower yield (entries 1–5

vs entry 7). While a substrate bearing a terminal alkynyl group successfully rearranged to the

tricyclic compound, the product was too volatile to isolate from the reaction mixture. The

introduction of a benzyl group at R3 led to the desired product, 2h, and enabled its isolation

in synthetically useful yield (entry 8). 1,6-Diynes with sterically hindered substituents at the

R2 position were also suitable provided a longer reaction time was employed (entries 9–10).

In all cases, the desired tricyclic products were obtained as a single diastereomer (Table 2).

The mechanism of this cycloisomerization is undoubtedly complex, but some preliminary

observations are included here.[13] When 1h, which bears a terminal alkyne, was subjected

to the optimal reaction conditions, it afforded 2h together with the bicyclo compound 3h
(Scheme 1A). As discussed above, 3h is reasonably generated via a sequential 6-endo-dig

cyclization/ring expansion/net 1,2-hydrogen shift sequence from 1h (Figure 2C).[10] When

3h was treated with 20 mol% 4 in DCE at 50 °C, it slowly converted into 2h (Scheme

1A),[14] suggesting that 3h might be an intermediate in the conversion of 1h to 2h. The

cycloisomerization of isotopically labelled substrates, 5 and 8, also provided beneficial

mechanistic information.[15] As shown in Scheme 1B, when 13C-labeled substrate 5 was

treated with 10 mol% 4 in 1,2-dichloroethane at 50 °C, two isotopomers were obtained, 6
and 7, in a 3:1 ratio. Resubjecting these purified products to reaction conditions (10 mol% 4,

DCE, 50 °C) converged the mixture to a 1:1 ratio of 6 and 7. Those experiments suggest that

gold catalysis of 5 initially affords 6 as the kinetic product, but that a secondary process acts

to interconvert these two positions in the product. Although the mechanism for

interconversion of 6 and 7 is not known, this 13C-labeling experiment together with the

conversion of 8 to 9 (Scheme 1C) suggests a mechanism for the kinetically controlled phase

of the cycloisomerization (Scheme 2).[13]

As mentioned in Figure 2C, the bicyclic diene 3 is reasonably generated via a sequential 6-

endo-dig cyclization/ring expansion/net 1,2-hydrogen shift sequence from 1.[10] Alkyne

activation of 3 by the gold complex triggers the cyclogeneration of allylic carbocation 10,

which then succumbs to a 1,2-alkyl shift to afford a second allylic carbocation 11, followed

by elimination to 12. Reactivation of 12 by H+ generates yet another allyl cation 13, which

experiences a 1,2-alkyl shift to furnish the final product. Although alternative sequences are

possible,[14] this mechanism correctly predicts the kinetic preference for 6 and the

conversion of 8 to 9.

In summary, we have developed a novel gold-catalyzed high yielding, highly

diastereoselective cycloisomerization of ACP-containing 1,6-diynes leading to tricyclic

compounds containing the 1,2-trimethylenenorbornane core. The reaction is highly

exothermic, and yet the catalyst exercises near perfect control over the product identity and

selectivity. The now straightforward synthesis of the useful 1,2-trimethylenenorbornane core

should enable its applicability in complex molecule synthesis.

Experimental Section

Typical procedure for the gold-catalyzed formation of 7-methylene-4-phenyl-2,3,6,7-

tetrahydro-3a,6-methanoindene (2a, Table 3): To a solution of 1a (22 mg, 0.1 mmol) in

Zheng et al. Page 3

Angew Chem Int Ed Engl. Author manuscript; available in PMC 2015 July 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



DCE (1.0 mL) at RT was added (p-Tol)3PAuNTf2 4 (7.8 mg, 0.01 mmol). The resulting

solution was stirred at 50 °C for 48 hours. Upon evaporation of the solvent under reduced

pressure, the residue was purified by silica gel column chromatography (100% hexanes) to

afford 2a (16.5 mg, 75% yield) in pure form. 1H NMR (600 MHz, CD2Cl2): δ = 7.36 (t, J =

7.6 Hz, 2H), 7.28 (t, J = 7.4 Hz, 1H), 7.22 (d, J = 7.7 Hz, 2H), 6.02 (d, J = 3.2 Hz, 1H), 5.70

(t, J = 2.4 Hz, 1H), 5.22 (s, 1H), 5.08 (s, 1H), 3.52–3.48 (m, 1H), 3.10–3.00 (m, 1H), 2.97–

2.90 (m, 1H), 2.37 (ddd, J = 14.1, 8.5, 1.9 Hz, 1H), 2.12 (d, J = 7.4 Hz, 1H), 1.98–1.90 (m,

1H), 1.65 ppm (d, J = 7.7 Hz, 1H). 13C NMR (150 MHz, CD2Cl2): δ = 153.2, 150.8, 146.1,

137.2, 132.2, 128.2, 126.8, 126.2, 114.9, 103.9, 70.1, 58.8, 54.3, 38.4, 24.3 ppm. HRMS

(EI) for C17H16: calcd. 220.1252 found 220.1253. 2a–2j were similarly prepared and fully

characterized (see SI).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
1,2-Trimethylenenorbornane 2 as synthetic intermediates.
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Figure 2.
Gold-catalyzed: A: enantioselective Cope rearrangement of achiral 1,5-dienes. B: ring

expanding cycloisomerization of 1,5-dienes. C: cycloisomerization of cyclopropylidene

bearing 1,6-diyne 1a.
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Scheme 1.
Mechanistic investigation of cycloisomerization of alkylidene cyclopropane bearing 1,6-

diynes using isotopic labelling experiments.
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Scheme 2.
Proposed mechanism; the black dot denotes the movement of the 13C label in 5.
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Table 1

Optimization of reaction conditions for the Au-catalyzed cycloisomerization of 1a.[a]

Entry LAuCl AgX Loading (mol%) Yield (%)[b]

1 AuCl3 – 10 trace

2 Ph3PAuCl – 10 0

3 Ph3PAuCl AgNTf2 10 70

4 Me3PAuCl AgNTf2 10 17

5 (tBuXPhos)AuCl AgNTf2 10 52

6 (F5C6)3PAuCl AgNTf2 10 36

7 (p-Tol)3PAuCl AgNTf2 10 75

8 Me2SAuCl AgNTf2 10 complex mixture

9 (IPr)AuCl AgNTf2 10 trace

10 (p-Tol)3PAuCl AgBF4 10 65

11 (p-Tol)3PAuCl AgSbF6 10 71

12 (p-Tol)3PAuCl AgPF6 10 61

13 (p-Tol)3PAuNTf2 4 20 74

14 (p-Tol)3PAuNTf2 4 5 32[c]

15[d] (p-Tol)3PAuNTf2 4 10 72

16[e] – – 0

[a]
Reaction conditions: LAuCl (0.01 mmol) was added to a solution of AgX (0.01 mmol) in DCE (1.0 mL) at RT. The solution was stirred at RT

for 15 min and the precipitate was filtered over celite. To the filtrate was added 1a (22 mg, 0.1 mmol) and the resulting mixture was warmed to 50
°C and stirred for 48 h.

[b]
Yields of 2a purified by column chromatography.

[c]
The yield was not increased even if a prolonged reaction time (96 h) was employed.

[d]
A more concentrated reaction mixture (0.4 M) was employed.

[e]
Control: no gold catalyst added.

IPr = 1,3-bis(2,6diisopropylphenyl)-imidazolidene, Tf = trifluoromethane-sulfonyl, p-Tol = para-toluenyl. XPhos = 2-dicyclohexyl-phosphino-2′,
4′,6′-triisopropylbiphenyl.
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Table 2

Gold-catalyzed cycloisomerizations of 1,6-diynes 1.[a,b]

[a]
See experimental section for typical procedure.

[b]
Yields of isolated 2 purified by column chromatography on silica gel.

[c]
28% of bicyclo[4.2.0]diene 3h was isolated (see Scheme 1).
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