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Nucleophilic acylation of enones and enoates catalyzed by cyanide ions or heterazolium 

carbenes, commonly known as the Stetter reaction, is a useful method for the synthesis of 

1,4-dicarbonyl compounds.[1] The key feature of this reaction is the carbonyl-polarity 

reversal initiated by the addition of a cyanide ion or a heterazolium carbene to an aldehyde 

facilitating subsequent 1,4-addition to an α,β-unsaturated carbonyl compound. Although this 

reaction has proven fruitful with a variety of acceptors, its success has been largely limited 

to aryl or unsubstituted[2] substrates. Acceptors bearing a β-alkyl group normally give the 

1,4-addition product in 30–40% yield,[3] and achieving enantioselectivity in the 

intermolecular Stetter reaction has also proven to be difficult.[4] Herein, we provide a 

strategy to address both of these issues through metallophosphite-catalyzed acylations of 

α,β-unsaturated amides. These reactions are enabled by an unusual [1,2] Brook 

rearrangement/conjugate addition/retro [1,4] Brook rearrangement sequence that proceeds 

with good anti diastereoselectivity and allows access to a range of stable α-silyl-γ-

ketoamides (Scheme 1).

Acyl silanes are effective aldehyde surrogates that confer unique advantages in umpolung 

reactions. The acyl anion equivalent formed on nucleophilic addition and subsequent [1,2] 

Brook rearrangement[5,6] undergoes addition to a number of electrophiles. Degl'Innocenti et 

al. found that the 1,4-addition of benzoyl trimethylsilane to cyclohexenone can be catalyzed 

by cyanide ions,[7] whereas Scheidt and coworkers recently described the successful 

conjugate addition of acyl silanes to unsaturated esters and ketones by using thiazolium 
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carbene catalysis.[8,9] The substrate scope of the latter process mirrors the classic Stetter 

reaction, and conjugate acceptors bearing a β-alkyl substituent have not been reported. 

Metallophosphites[10,11] can be considered as an alternative to cyanide ions and thiazolium 

carbenes, and they have recently been described as carbonyl-umpolung catalysts in the 

context of a new enantioselective cross-benzoin reaction.[12] We projected that this catalysis 

concept might be applicable to alkene electrophiles as well.

The conjugate addition of acyl silanes (benzoyl trimethylsilane, benzoyl triethylsilane, and 

benzoyl dimethylphenylsilane) to Michael acceptors (ethyl crotonate, methyl cinnamate, and 

cyclohexenone) catalyzed by the Enders phosphite 5 was initially examined. Potassium 

hydride gave the best reactivity of the bases screened in these reactions; however, few 

reactions provided appreciable quantities of the desired acylation product. The 1H NMR 

spectra of the reactions typically revealed incorporation of the phosphite in the acyl silane/

acceptor adduct, thus indicating that the proposed cycle was initiated but not completed. 

Exposure of the reaction mixture to tetrabutylammonium fluoride (TBAF) afforded the 

desired γ-ketoester. Ethyl crotonate provided the best yields of the acceptors screened, but 

even under optimized conditions these were unacceptably low [≤ 37 % of 6, Eq. (1)].

(1)

The low turnover and aforementioned observations suggested that enolate 3 did not undergo 

efficient silyl transfer. We hoped that replacement of the unsaturated ester (X=OR) with an 

amide (X=NR2) would enhance the nucleophilicity of the derived enolate, promote the 

desired silyl transfer, and regenerate the metallophosphite catalyst.

Evaluation of this hypothesis revealed that amides did indeed facilitate catalyst turnover 

(Table 1). We had expected that O→O 1,6 transfer of the silyl group to form a silylketene 

aminal might be energetically feasible but were surprised to find that the O→C 1,4 silyl 

transfer was dominant to the exclusion of the former. Furthermore, the derived α-silyl- 

amide was unexpectedly delivered with good diastereoselectivity in a number of cases. 

Acceptors bearing a (β-alkyl substituent for these metallophosphite-catalyzed reactions[13] 

are now synthetically useful substrates that generate alkene acylation products in moderate 

to high yields (62–91 %, entries 1–3 and 7–10). A number of acyl silanes are competent in 

the addition and show only subtle changes in reactivity upon variation of the silyl group 
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(entries 1, 7, and 8) but exhibit more significant differences in reactivity between the 

electron-rich and electron-poor acyl silanes (entries 9 and 10).

The α-silyl-γ-ketoamides 4 were stable and could be easily isolated by column 

chromatography. We were naturally attracted to the stereospecific transformation of the 

functionalized silane to its derived secondary alcohol through the Tamao–Fleming 

oxidation,[14,15] but were aware of only two reported examples of such oxidations of α-

silylcarbonyl compounds.[16,17] Attempts to activate the C(sp2)—Si bond by a variety of 

protocols led to either desilylation, which yielded 7, or bromination through cleavage of the 

Ca—Si bond. The α-bromo-γ-ketoamides 8d and 8 f were obtained in 75 and 87 % yields, 

respectively, with a diastereomeric ratio of 3:1 in each case (Scheme 2). An X-ray 

diffraction study of 8d revealed that the major diastereomer exhibits syn stereochemistry.[18] 

Interestingly, the addition of bromine to 4d in the absence of AcOH/AcO2H induces 

elimination to give the (Z)-α,β-unsaturated ketoamide 9 exclusively in 96% yield (Scheme 

2). The olefin geometry was determined by NOESY analysis.

Finally, we found that this new catalyzed acylation provides an attractive platform for 

enantioselective catalysis. The enantiopure Enders phosphite (R,R)-5 was employed and the 

major anti diastereomer was delivered in 60 % ee, whereas the minor syn isomer was 

obtained in 74 % ee (Scheme 3). Desilylation gave γ-ketoamide (2R)-7d in 67% yield and 

50% ee.[19] Although the enantioselectivity is moderate, it already eclipses the highest 

enantioselectivity of which we are aware for intermolecular Stetter-type reactions (4% yield, 

39% ee).[20] We further note that the structure of 1,1,4,4-tetraphenyl-2,3-O-iso-propylidene-

L-threitol (TADDOL) phosphite is readily amenable to modifications that we project will 

deliver more highly enantioselective catalysts.

The proposed catalytic cycle is depicted in Scheme 4 and is initiated by phosphite addition 

and the [1,2] Brook rearrange- ment.[21] Catalyst release is apparently trig gered after 

conjugate addition by an unusual diastereoselective retro [1,4] Brook rearrangement 

(3→10).[22] The fact that the major enantiomer possesses the same C3 configuration in both 

the syn and anti diastereomers (Scheme 3) suggests that the chiral phosphite may be the 

dominant diastereocontrol element rather than a preferred transition-state topology.

A metallophosphite-catalyzed intermo-lecular alkene acylation has been achieved 

employing the Enders TADDOL phosphite, thus giving γ-ketoamides in generally good 

yields. These reactions allow access to synthetically interesting α-silyl-γ-ketoamides and 

provide an attractive platform for enantioselective variants. Ongoing work in our laboratory 

is directed toward the development of 1) those strategies that take advantage of the high 

diastereoselectivity of the retro [1,4] Brook rearrangement and 2) phosphite catalysts that 

deliver more highly enantioenriched products.

Experimental Section

7a (entry 1, representative procedure): The acyl silane (0.42 mmol) and amide (0.46 mmol, 

1.1 equiv) were added to a dry pear-shaped flask in the glovebox, while the TADDOL 

phosphite (0.084 mmol, 0.2 equiv) and lithium hexamethyldisilazide (LHMDS; 0.29 mmol, 
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0.7 equiv) were added to a dry round-bottom flask with a magnetic stirring bar. The flasks 

were removed from the glovebox and Et2O (3.0 mL) was added to the metallophosphite and 

stirred in an N2 atmosphere. The acyl silane/amide mixture was added to the 

metallophosphite by cannula and the delivery flask was rinsed with Et2O (7 mL). The 

resulting mixture was stirred in an N2 atmosphere at room temperature until the starting 

material was consumed (TLC analysis). The solvent was removed in vacuo and an aliquot 

was taken to determine the diastereoselectivity by 1H NMR spectroscopic analysis. The 

residue was redissolved in THF. The reaction mixture was treated with a solution of 

tetrabutylammonium fluoride in THF (TBAF; 1M, 0.84 mmol, 2.0 equiv) and immediately 

quenched with several milliliters of a saturated aqueous solution of NH4Cl. The product was 

then extracted with Et2O, washed with water (2×10 mL), and washed with a saturated 

aqueous solution of NaHCO3 (2 × 10 mL). The organic extracts were combined and dried 

over Na2SO4, filtered, and concentrated. The product then was purified by flash 

chromatography with ethyl acetate/hexanes (30:70) as the eluent to afford the pure 1,4-

dicarbonyl compound in 76% yield. Analytical data for 7a: IR (thin film): ṽ = 3061, 2933, 

2856, 1684, 1639, 1444, 1369, 1223, 1196, 1122, 1016, 978, 706 cm−1; 1H NMR (400 MHz, 

CDCl3): δ = 8.07–7.98 (m, 2H), 7.54–7.47 (m, 1H), 7.47–7.39 (m, 2H), 4.10–4.00 (m, 1H), 

3.53–3.36 (m, 4H), 3.02 (dd, J = 16.0, 8.8 Hz, 1H), 2.40 (dd, J = 16.4, 4.8 Hz, 1H), 1.66–

1.49 (m, 6H), 1.17 ppm (d, J = 7.2 Hz, 3H); 13CNMR (100 MHz, CDCl3): δ = 203.9, 169.3, 

136.1, 132.6, 128.41, 128.40, 46.4, 42.6, 37.0, 36.9, 26.2, 25.4, 24.4, 17.8 ppm; TLC (ethyl 

acetate/hexanes, 40:60) Rf = 0.32; elemental analysis (%) calcd for C16H21NO2: C 74.10, H 

8.16, N 5.40; found: C 74.21, H 8.27, N 5.29.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Scheme 1. 
Metallophosphite-catalyzed alkene acylation. X=OR, NR2.
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Scheme 2. 
Functionalization of α-silyl-γ-ketoamides.
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Scheme 3. 
Enantioselective metallophosphite-catalyzed alkene acylation.
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Scheme 4. 
Proposed catalytic cycle.
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