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Abstract

Background—Stargazin is the first transmembrane protein known to regulate synaptic targeting

of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors. Yet, it is unclear

whether regulation of the surface delivery of spinal AMPA receptor subunits by stargazin

contributes to postoperative pain development.

Methods—Western blot analysis was used to examine changes in the surface delivery of AMPA

receptor subunits GluR1 and GluR2 in rat dorsal horn. The interaction between stargazin and

GluR1 and GluR2 was examined by coimmunoprecipitation. Expression of stargazin was

suppressed by intrathecal administration of small interfering ribonucleic acid (siRNA)311.

Results—Membrane-bound GluR1, but not GluR2, in ipsilateral dorsal horn was increased at 3 h

(1.49±0.15-fold of β-tubulin, mean±SEM) and 1 day (1.03±0.25) after incision, as compared to

that in control rats (naïve, 0.63±0.23, P < 0.05, n=6/group). The amount of GluR1

coimmunoprecipitated with stargazin was greater at 3 h after incision (1.48±0.31-fold of input)

than in control animals (0.45±0.24, P < 0.05, n=6/group). Importantly, the increase in membrane

GluR1 at 3 h after incision was normalized to near control level (0.72±0.20-fold of β-tubulin) by

pretreatment with intrathecal stargazin siRNA311 (0.87±0.09), but not scrambled siRNA

(1.48±0.24) or vehicle (1.25±0.13, P < 0.05, n=6/group). Stargazin siRNA311 pretreatment
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prevented the increase in stargazin–GluR1 interaction and decreased postoperative pain after

incision.

Conclusions—This study suggests a critical role of stargazin-mediated surface delivery of

GluR1 subunit in the development of postoperative pain. A better therapeutic strategy for

postoperative pain may involve selectively downregulating spinal stargazin to inhibit synaptic

targeting of GluR1 subunit.

Introduction

Postoperative pain remains a significant medical problem.1 Opioids are commonly used for

pain management but are often associated with severe side effects such as nausea, vomiting,

and respiratory depression. Moreover, the etiology of postoperative pain is likely different

from that of other clinical pain conditions such as rheumatoid arthritis and fibromyalgia.2

Consequently, the treatment is likely to differ also. To date, developing safe and effective

analgesics remains a priority for improving postoperative pain management.

To mimic postsurgical pain manifestations in humans, Brennan et al.3 developed a rodent

model of postoperative pain that is induced by an incision in the plantar aspect of the hind

paw in rats. Several lines of evidence have shown that epidural or intrathecal administration

of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)/kainate receptor

antagonists produces analgesia in this model, suggesting an important role of spinal AMPA

receptors in postoperative pain.4;5 AMPA receptors are multimeric assemblies of four

subunits, GluR1–4. Receptor function can be regulated by the phosphorylation and

trafficking of these subunits.6;7 AMPA receptors that lack the edited GluR2 subunit are

permeable to Ca2+, as editing of this subunit after transcription into messenger RNA results

in the introduction of a positive charge in the pore-forming region.8–10 Under physiologic

conditions, most AMPA receptors are impermeable to Ca2+, owing to the presence of the

GluR2 subunit. Changes in GluR1 and GluR2 subunit trafficking, which lead to rapid

alterations in the composition of synaptic AMPA receptors, may play an important role in

pain hypersensitivity that develops after tissue or nerve injury.11–14 Our recent study showed

that plantar incision may selectively increase the surface delivery of GluR1, but not GluR2,

in the dorsal horn at 3 h after incision.15 This finding suggests that an increase in Ca2+-

permeable AMPA receptors may contribute to postoperative pain by strengthening the

excitatory synaptic transmission in dorsal horn.

Stargazin is an important member of the AMPA receptor regulatory protein family that

binds to GluR1, 2, and 4 at sites other than PDZ [Postsynaptic density (PSD)-95/SAP90,

Dlg, ZO-1] target motifs.16 Binding of stargazin’s C-terminal tail to PDZ domains of

synaptic scaffolding proteins, such as PSD-95, may mediate the proper targeting of AMPA

receptors to synaptic membrane.17 AMPA receptors fail to traffic to the plasma membrane

or synapse in stargazer mutant cerebellar cells, suggesting that stargazin is indispensable for

the plasma membrane expression of AMPA receptor subunits.18;19 Further, overexpression

of a dominant negative stargazin construct reduces synaptic AMPA receptor function in

hippocampal neurons.20 Accordingly, we hypothesize that stargazin may play an important

role in incision-induced membrane trafficking of AMPA receptors in dorsal horn neurons
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and hence contribute to postoperative pain. Conversely, disrupting the interaction between

stargazin and GluR1 in dorsal horn might decrease postoperative pain. We used intrathecal

delivery of small interfering RNAs (siRNAs), a selective and effective gene-silencing

method, to determine whether downregulation of spinal stargazin in vivo attenuates

postoperative pain in rats by inhibiting the membrane surface delivery of GluR1 and/or

GluR2 subunit in the dorsal horn.

Materials and Methods

Animals

Male Sprague-Dawley rats weighing 280–300 g were used for all studies. All animal

procedures were approved by the Ethical Committee of Beijing Chaoyang Hospital, Capital

Medical University (Beijing, China), and were performed in accordance with the Guidelines

for Animal Experimentation of the International Association for the Study of Pain. To avoid

selection bias, we assigned animals randomly to different experimental groups by a

computer-generated randomization list. We determined the sample size for each experiment

based on similar studies of our previous work.

Plantar incision

The plantar incision model was carried out as previously described.3 Briefly, a 1-cm

longitudinal incision was made through plantar skin and fascia of the right hind paw of rats

under isoflurane anesthesia (1.5–1.8%). The underlying flexor muscle was elevated with

forceps and incised longitudinally. The wounded skin was closed and covered with

antibiotic ointment. Sham-operated rats underwent all procedures but were not incised. Rats

were subjected to behavioral testing and then sacrificed at 3 h, 1 day, and 3 days after

plantar incision.

Behavioral testing

Behavioral tests were performed by an experimenter blind to surgery and drug treatment

conditions. The cumulative pain scores were evaluated based on guarding behavior, and

mechanical sensitivity was tested with calibrated von Frey filaments (North Coast Medical,

Inc., San Jose, CA). In brief, the animals were placed on an elevated mesh floor and

observed closely for a 1-min period every 5 min for 1 h. Based on the extent of weight-

bearing on the incised foot during the scoring period, the rat was given a score of 0, 1, or 2.

The sum of the 12 scores established the cumulative pain score.3;21 To measure the

mechanical withdrawal threshold, we applied a series of filaments vertically to an area

adjacent to the wound near the medial heel for 6 s or until the animal withdrew the paw. A

positive response included rapid lifting, shaking, or licking of the incised paw. The

mechanical withdrawal threshold was determined by an up-down method as described

previously.22;23

Western blot analysis, subcellular membrane fractionation, and detection of GluR1 and
GluR2 subunits

We used Western blot analysis to determine the expression of stargazin and to examine

cellular trafficking of GluR1 and GluR2 in dorsal horn during the period of postoperative
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pain. Subcellular membrane fractionation and protein detection were carried out as

described previously.13;24 The dorsal lumbar spinal cord (L3–L6) ipsilateral and

contralateral to the incised paw was separated and stored at −70°C. Tissues were

homogenized and centrifuged to separate cytosolic and membrane fractions. Protein

concentrations were measured with a bicinchoninic acid kit (Pierce Biotechnology Inc.,

Rockford, IL, USA). Proteins were loaded and separated by sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE). Pan-cadherin, a plasma membrane

marker, was used as a control for the membrane fractions. After electrophoresis, proteins

were transferred onto a polyvinylidene difluoride (PVDF) membrane at 4°C. The membrane

was blocked and incubated overnight with primary rabbit antibodies to N-cadherin, GluR1,

or GluR2 (1:1000, Millipore, Billerica, MA). Then, the membrane was incubated with

horseradish peroxidase-conjugated goat anti-rabbit IgG (1:5000; Amersham, Piscataway,

NJ). Finally, the membranes were exposed to reagents from the Enhanced

Chemiluminescence (ECL) Detection Kit (PerkinElmer Life Science, Waltham, MA) and x-

ray film for visualization of protein bands. Band intensity was quantified with imaging

software; β-tubulin was used as the loading control.

Whole-cell homogenates

The spinal cord tissues were homogenized and centrifuged at 14,000 rpm for 15 min at 4°C.

The protein concentration of the supernatant was determined with the bicinchoninic acid kit.

Protein (60 μg) was separated by SDS-PAGE and then transferred onto a PVDF membrane.

The membrane was blocked and then incubated with primary rabbit antibody to stargazin

(1:1000 dilution) at 4°C overnight. Then the membrane was incubated with horseradish

peroxidase-conjugated goat anti-rabbit IgG (1:5000) for 1 h. Bands were visualized by ECL

and exposure to x-ray film. Immunostaining of β-tubulin was used as a loading control.

Immunofluorescence

Rats were perfused transcardially with 10 mM phosphate-buffered saline followed by 4%

formaldehyde. L3–L6 spinal cord segments were mounted and frozen at −80°C and then

transversely cut to a 20-μm thickness. Spinal cord sections were blocked and dual stained for

stargazin and GluR1. The tissues were incubated overnight in monoclonal rabbit anti-

stargazin (1:50; Cell Signaling Technology, Danvers, MA) with mouse anti-GluR1 (1:50;

Novus, Littleton, CO). The sections were then incubated for 1 h in tetramethylrhodamine

isothiocyanate-conjugated goat anti-rabbit IgG and fluorescein isothiocyanate-conjugated

donkey anti-mouse IgG (1:200) and mounted in VectaShield medium (Vector Laboratories,

Burlingame, CA). Confocal microscopy was performed, and images were prepared with the

confocal software and Adobe Photoshop software (San Jose, CA). All images were taken

from the right dorsal horn of the normal rats.

Coimmunoprecipitation

Coimmunoprecipitation was carried out as described previously with some modification.25

The affinity-purified rabbit stargazin antibody (3 μg) was incubated with 30 μL of protein G-

sepharose slurry for 1 h. The complex was spun down at 2,000 rpm for 4 min. The total

protein from spinal cord homogenates (500 μg) was added to the sepharose beads and the

mixture incubated for 2 to 3 h at 4°C. After the mixture was washed, the proteins were
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separated by SDS-PAGE and transferred onto PVDF membrane. The membrane was

blocked and then incubated overnight with primary antibodies to stargazin, GluR1, or GluR2

(1:1000, Millipore). As a positive control (input), 50 μg of total protein was loaded onto the

gel. The proteins were detected with horseradish peroxidase-conjugated secondary antibody

and visualized by ECL and exposure to x-ray film. The intensity of the protein bands was

quantified with densitometry.

Intrathecal catheter implantation

An intrathecal catheter was placed into the lumbar spinal region as described in our previous

study.15 Briefly, a 20-gauge blunt guide cannula was advanced into the narrow space

between the L5 and L6 spinous processes until a tail flick or paw retraction was observed. A

sterile, polyethylene-10 catheter was threaded into the guide cannula. At 2–3 days after

catheter implantation, successful intrathecal drug delivery was confirmed by infusing

lidocaine (10 μl, 2%, Hospira, Lake Forest, IL) through the catheter. If the catheter is placed

properly, the lidocaine induces a temporary motor paralysis of the lower limbs.

Suppression of stargazin expression with siRNA

Purified siRNA duplexes targeting rat stargazin were chemically synthesized by Genechem

Inc. (Shanghai, China). We used three different siRNA sequence pairs as follows: pair 1, 5′-

CCCAUUCCGGAUUAUGGAGtt-3′ and 5′-CUCCAUAAUCCGGAAUGGGtt-3′; pair 2,

5′-CCGCAGAGUAUUUCCUCAGtt-3′ and 5′-CUGAGGAAAUACUCUGCGGtt-3′; and

pair 3, 5′-UCGGGAUCAUCGUGUAUAUtt-3′ and 5′-

AUAUACACGAUGAUCCCGAtt-3′. Clustal alignment indicates that the sequences are to

nucleotides 209 to 227, 311 to 329, and 485 to 503, respectively, of the rat stargazin

messenger RNA sequence (GenBank Accession number: NM_053351).

To identify the interference efficiency of the three siRNA duplexes and screen the optimal

siRNA duplexes for in vivo experiments, we first carried out co-transfection experiments in

vitro. Human embryonic kidney 293T cells were cultivated under standard conditions as

described previously.26 Co-transfection experiments were carried out with a pcDNA3.1/

stargazin-green fluorescent protein (GFP) plasmid (0.3 μg) and two concentrations of siRNA

(0.4 or 0.8 μg). Selective stargazin siRNA or scrambled siRNA was mixed in 200 μL of

OptiMEM I low-serum media with 6 μL of Lipofectamine reagent (Invitrogen, Grand Island,

NY). Complexes were allowed to form for 20 min before being added to cells. Cells were

incubated at 37°C with gentle rocking for 48 h and then harvested. Protein expression was

analyzed by Western blotting. The stargazin-GFP fusion protein was detected with anti-GFP

serum (Invitrogen).27

The rats were injected intrathecally with vehicle, stargazin siRNA, or scrambled siRNA

(negative control, 2.6 μg in 10 μL) in transfection reagent (at a ratio of 1:5, w:v) twice daily

for 3 consecutive days before plantar incision. All injections were followed by a 10 μL

saline flush to clear the catheter. The selected doses of siRNA were based on our

preliminary data.
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Statistical analysis

Quantitative analysis for immunoblotting was performed after scanning of the x-ray film

with the Gel Doc 2000 imaging system (Bio-Rad Laboratories Inc., Hercules, CA). The

relative optical density of each band was normalized against the corresponding β-tubulin or

glyceraldehyde-3-phosphate dehydrogenase. We analyzed expression time courses of

GluR1, GluR2, and stargazin by one-way analysis of variance (ANOVA) followed by all

pair-wise multiple comparison procedures using the Bonferroni test. In

coimmunoprecipitation experiments, comparisons of immunoprecipitated GluR1 and GluR2

between control and the 3 h time point were made with Student’s t-test for independent

samples. For comparisons of input and immunoprecipitation on immunoblots of GluR1,

GluR2, and stargazin among control, sham-operated, and incision groups, we used ANOVA

followed by Bonferroni multiple comparison tests. The data from cell culture and pain

behavioral tests, and the expression of GluR1 and GluR2 in cytosolic and membrane

fractions of control, sham-operated, and incision groups were also analyzed with ANOVA

followed by Bonferroni multiple comparison tests. Because we had open outcome

expectations for these experiments (i.e., possible changes in both directions), we used two-

tailed/two-sided tests. Data are expressed as mean ± SEM. P < 0.05 was regarded as

significant. SPSS 11.5 (SPSS Inc., Chicago, IL) was used for data analysis.

Results

Throughout all experiments, no data were excluded, missing, or lost to observation. Six rats

were used per group for each time point, except where noted otherwise.

Plantar incision increases the surface delivery of GluR1, but not GluR2, in ipsilateral
dorsal horn

At 3 h after plantar incision, GluR1 level in the plasma membrane fraction was significantly

increased in ipsilateral dorsal horn, as compared to that in the control group (P < 0.01; Fig.

1A). In contrast, cytosolic GluR1 was significantly decreased in ipsilateral dorsal horn (P <

0.01; Fig. 1B). The cytosolic GluR1 remained downregulated for 3 days after incision (P <

0.05). GluR2 expression did not change in the plasma membrane or cytosolic fraction after

incision (Fig. 1, A and B). Expression of neither GluR1 nor GluR2 changed in the

contralateral dorsal horn after incision in either the plasma membrane or cytosolic

compartment (data not shown). The integrin N-cadherin, a plasma membrane-specific

protein, was present only in the plasma membrane fraction, confirming the fractionation

procedure (Fig. 1A).

Plantar incision does not alter the expression of stargazin in ipsilateral dorsal horn

Stargazin is required for the trafficking of AMPA receptor GluR1 and GluR2 subunits.

However, we found no significant change in stargazin expression in the ipsilateral dorsal

horn at 3 h, 1 day, or 3 days after incision (Fig. 2, A and B). Expression of stargazin in

contralateral dorsal horn was also unchanged at these time points (data not shown).
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Stargazin colocalizes with GluR1 in dorsal horn neurons

A previous study showed that stargazin colocalizes with the GluR2 subunit in spinal cord

dorsal horn.25 Our double-labeling immunofluorescence study showed that stargazin and

GluR1 subunits are also highly colocalized in dorsal horn of naïve rats (Fig. 3, A–F).

Plantar incision enhances the interaction between stargazin and GluR1 subunits

To determine if stargazin differentially regulates the surface delivery of GluR1 and GluR2 in

the dorsal horn after plantar incision, we examined the interactions between stargazin and

each subunit by coimmunoprecipitation. Both GluR1 and GluR2 were

coimmunoprecipitated by stargazin antibody in naïve animals. At 3 h after plantar incision,

the amount of GluR1 subunit that was coimmunoprecipitated with stargazin in the ipsilateral

dorsal horn of rats was significantly increased compared to that of the control group (Fig. 4,

A and B). However, the amount of GluR2 coimmunoprecipitated remained unchanged.

Neither GluR1 nor GluR2 subunit was coimmunoprecipitated by IgG (Fig. 4A).

Identification of the optimal siRNA for knocking down stargazin expression in vitro

We screened three siRNAs in cultured human embryonic kidney 293T cells to identify the

one most effective for inhibiting stargazin expression. siRNA209, siRNA311, and siRNA485

all dose-dependently inhibited the expression of stargazin-GFP (Fig. 5A). siRNA311 induced

a greater inhibition than the other two constructs at the lower dose (0.4 μg) and completely

inhibited expression at the higher dose (0.8 μg, Fig. 5B). Therefore, we chose siRNA311 to

downregulate the expression of stargazin in the subsequent in vivo experiments. The

scrambled control siRNA did not influence stargazin-GFP protein expression in the dose

range investigated.

Pretreatment with intrathecal siRNA311 attenuates postoperative pain in rats

Twenty-seven of 30 rats that received intrathecal catheters were confirmed to have

successful drug delivery and showed no motor deficit from surgical complications. We

divided them equally into three experimental groups (n=9/group) that received intrathecal

vehicle, scrambled siRNA, or siRNA311. Plantar incision significantly increased cumulative

pain scores (P < 0.05; Fig. 6A) compared to those in naïve and sham-operated rats.

Likewise, plantar incision decreased the paw withdrawal threshold to mechanical

stimulation (P < 0.05; Fig. 6B). Intrathecal pretreatment with siRNA311 significantly

reduced the cumulative pain scores and increased the paw withdrawal threshold in rats at 3 h

post-incision, as compared to vehicle pretreatment (P < 0.05; Fig. 6). Pain inhibition was

only partial, as cumulative pain scores and paw withdrawal thresholds of rats pretreated with

siRNA311 remained significantly different from those of the control group (P < 0.05).

Pretreatment with scrambled siRNA did not attenuate incision pain, as compared to vehicle

pretreatment (P > 0.05; Fig. 6, A and B). No significant differences in the cumulative pain

scores or paw withdrawal thresholds were observed in the contralateral hind paw among the

different groups (data not shown).
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Intrathecal pretreatment with siRNA311 inhibits the increased interaction between
stargazin and GluR1 and the surface delivery of GluR1 after plantar incision

After completing the behavioral tests, we randomly selected 6 rats from each group and

harvested spinal cord tissue for Western blot analysis. At 3 h after plantar incision, stargazin

expression was significantly lower in the ipsilateral dorsal horn of rats pretreated with

siRNA311 than in that of control rats (P < 0.05; Fig. 7, A and B). Stargazin expression did

not differ significantly among the control group, sham-operated group, and incision groups

pretreated with vehicle and scrambled siRNA (Fig. 7C). Additionally, total GluR1 and

GluR2 protein levels did not differ between groups. Compared with that in the control

group, the amount of GluR1 protein coimmunoprecipitated by stargazin antibody in the

ipsilateral dorsal horn was significantly higher in incision groups pretreated with vehicle or

scrambled siRNA (P < 0.05; Fig. 7D), suggesting an increased interaction between stargazin

and GluR1 after incision. Pretreatment with siRNA311 prevented the increase in GluR1

coimmunoprecipitated by stargazin antibody (Fig. 7D). There was no significant difference

in the interaction between stargazin and GluR2 among groups (P > 0.05; Fig. 7D).

In the incision group pretreated with vehicle or scrambled siRNA, surface delivery of

GluR1, but not of GluR2, was significantly increased in the ipsilateral dorsal horn at 3 h

post-incision, as compared to control (P < 0.05; Fig. 8A). Pretreatment of incised rats with

siRNA311 inhibited the increase of GluR1 in the membrane fraction (Fig. 8A) and also

prevented the corresponding decrease of GluR1 in the cytosolic fraction in the ipsilateral

dorsal horn (Fig. 8B).

Discussion

The current study showed that surgical incision enhances the interaction between stargazin

and AMPA receptor subunit GluR1, but not GluR2, and increases the surface delivery of

GluR1 in dorsal horn neurons. Importantly, downregulation of stargazin with intrathecal

siRNA significantly inhibited incision-induced interaction between stargazin and GluR1,

and attenuated the surface delivery of GluR1 in dorsal horn. These actions of stargazin

siRNA may contribute to its ability to inhibit guarding pain behavior and mechanical

hypersensitivity produced by plantar incision in rats.

AMPA receptors present distinctive characteristics in trafficking from the cytosol to the

plasma membrane in hippocampus and dorsal horn neurons.6;28 Changes in the number and

composition of membrane AMPA receptors may affect synaptic strength and fast excitatory

synaptic transmission. Tissue injury and noxious stimulation may induce the insertion of

Ca2+-permeable AMPA receptors into plasma membranes in dorsal horn

neurons.11;13;14;24;29 Acute nociceptive stimuli induced by capsaicin, carrageenan, and

formalin injection increase membrane GluR1 level without affecting GluR2 trafficking in

the dorsal horn.13;24;29 In contrast, in a persistent inflammatory pain model induced by an

intraplantar injection of complete Freund’s adjuvant, in which the pain hypersensitivity may

take hours to days rather than minutes to develop, membrane GluR2 level decreases, but

membrane GluR1 level is unchanged.11;14;30;31 Thus, different pathological pain conditions

may be associated with different patterns of AMPA receptor trafficking. The current

findings suggest that plantar incision induces a time-dependent increase in membrane
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insertion of GluR1, but not GluR2, in dorsal horn neurons. Our previous studies showed that

the level of total GluR1 protein in dorsal horn does not change significantly after plantar

incision.15;32 Together, these findings suggest that painful incisional stimuli may enhance

the surface delivery of GluR1 without increasing total GluR1 expression in dorsal horn. This

compositional switch from Ca2+-impermeable to Ca2+-permeable AMPA receptor subunits

in the plasma membrane might strengthen excitatory synaptic transmission in dorsal horn.

Accordingly, our study supports the possibility that an increase in Ca2+-permeable AMPA

receptors in synaptic membrane may contribute to postoperative pain.

Stargazin acts as an auxiliary subunit of AMPA receptor and controls the number of AMPA

receptors at the synapse by regulating the surface delivery of different AMPA receptor

subunits to the plasma membrane.33;34 Stargazin initially interacts with AMPA receptor

subunits in the endoplasmic reticulum compartment and then assists in the surface delivery

of these subunits. Finally, stargazin/AMPA receptor complexes in the plasma membrane

move to the postsynaptic density (lateral diffusion) through interaction between the C

terminus of stargazin and PSD-95.6;35 Increasing evidence suggests that functional

regulation of AMPA receptors in the dorsal horn is important to the development and

maintenance of postoperative pain.15;32 Because stargazin is required for the surface

delivery of both GluR1- and GluR2-containing AMPA receptors, it plays a critical role in

the compositional switch of AMPA receptors in the plasma membrane. We provide novel

evidence that, by regulating AMPA receptor trafficking, stargazin may be implicated in

postoperative pain. Although the total stargazin protein level in the ipsilateral dorsal horn

was not significantly changed after plantar incision, coimmunoprecipitation experiments

indicated that surgical incision enhanced the interaction between stargazin and GluR1-

containing AMPA receptors in dorsal horn neurons. In contrast, the interaction between

stargazin and GluR2 was unchanged. Additionally, immunofluorescence showed that

stargazin and GluR1 were highly colocalized in the dorsal horn of naïve animals. This

morphological evidence suggests a physiological basis for the interaction between stargazin

and GluR1 in the same cell. In conjunction with findings from the stargazin siRNA

experiments, our study suggests that stargazin may contribute to the increased plasma

membrane delivery of GluR1-containing AMPA receptors in dorsal horn that leads to the

development of postoperative pain. Because membrane delivery of GluR1 peaked at 3 h

post-incision and pain hypersensitivity in rats also reaches a maximum at this time,32 we

chose 3 h post-incision as the representative time to investigate stargazin–AMPA receptor

interaction in coimmunoprecipitation and siRNA studies. As we have not examined later

post-incision time points, data interpretation is limited to the early postoperative period.

Differences in interaction between stargazin and GluR1 and GluR2 subunits after plantar

incision may ultimately increase the membrane GluR1/GluR2 ratio, which is indicative of

increased insertion of Ca2+-permeable AMPA receptors that enhance spinal nociceptive

transmission. Other anchoring proteins, such as A-kinase anchoring protein (AKAP), may

also regulate the trafficking of AMPA receptors and play a role in pain sensitization.36 By

recruiting cyclic adenosine monophosphate-dependent protein kinase (PKA) and protein

phosphatase 2B-calcineurin to membrane-associated and guanylate kinase-linked AMPA

receptors, AKAP may affect AMPA receptor phosphorylation and synaptic plasticity.

However, our previous study showed that protein levels of GluR1 phosphorylated at
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serine-845 (the primary phosphorylation site for PKA) did not change during the period of

postoperative pain. Accordingly, AKAP and PKA might not be important to the surface

delivery of GluR1 in the incisional pain model.32

We showed that suppression of stargazin with RNA interference produced an analgesic

effect, suggesting that stargazin is involved in the development of postoperative pain. In an

inflammatory pain model, intrathecal administration of stargazin antisense oligonucleotide

attenuated central sensitization.25 Compared to antisense oligonucleotide, however, RNA

interference with siRNA is thought to be more efficient. Interestingly, Nissenbaum et al.37

recently demonstrated that polymorphisms in the human stargazin gene, CACNG2, were

associated with chronic pain in a cohort of cancer patients who underwent breast surgery.

These data support the notion that CACNG2 is a pain susceptibility gene and that stargazin

is a critical player in pain modulation in humans.38

The switch in the composition of synaptic AMPA receptors may greatly affect the efficacy

of AMPA receptor-mediated fast excitatory synaptic transmission.35 Noxious stimuli may

induce rapid alterations in the composition of synaptic AMPA receptors in the spinal cord

dorsal horn. For example, Galan et al.24 showed that the expression ratio of synaptic GluR1

to GluR2 increases in a visceral pain model. Furthermore, GluR1-deficient mice exhibited

fewer Ca2+-permeable AMPA receptors and a decrease in AMPA current density in dorsal

horn neurons together with a loss of nociceptive plasticity and decreased inflammatory

hyperalgesia.39 Conversely, GluR2-deficient mice exhibited an increase in spinal Ca2+-

permeable AMPA receptors that augmented nociceptive plasticity and long-term

inflammatory hyperalgesia.39 Furthermore, the long-term potentiation of primary afferent

neurotransmission is also enhanced in GluR2-deficient mice.40 In line with these findings,

we showed that knockdown of stargazin protein with siRNA reversed the incision-induced

interaction between stargazin and GluR1 and inhibited GluR1 trafficking into plasma

membrane. In contrast, interaction between stargazin and GluR2 and membrane insertion of

GluR2 were unchanged. Thus, stargazin siRNA may cause a reduction in the number of

Ca2+-permeable AMPA receptors in the plasma membrane of dorsal horn neurons, which, in

turn, decreases synaptic efficacy and leads to analgesic action. Electrophysiological

investigations are warranted to help confirm the functional role of stargazin in the

development of postoperative pain.

In summary, our study suggests that surgical incision promotes the delivery of AMPA

receptor subunit GluR1, but not GluR2, to the plasma membrane through enhanced

interaction between stargazin and GluR1 in spinal cord dorsal horn. Our data also show that

knockdown of stargazin inhibits the development of incisional pain. These findings provide

evidence that targeting the transmembrane AMPA receptor regulatory protein in spinal cord

could have a potential role in the treatment of postoperative pain.
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Fig. 1. Plantar incision increases the surface delivery of AMPA receptor subunit GluR1, but not
GluR2, in the dorsal horn
(A) Representative Western blots and quantitative analysis of band density show GluR1 and

GluR2 protein levels in the plasma membrane fraction of ipsilateral dorsal horn in rats at 3

h, 1 day, and 3 days after plantar incision. β-tubulin was used as an internal reference. (B)

Representative Western blots and quantitative analysis of GluR1 and GluR2 protein levels in

the cytosolic fraction of different groups. Ctrl: Control group (naïve). *P < 0.05, **P < 0.01

compared to the control group. n = 6 rats/time point.
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Fig. 2. Plantar incision does not significantly change the expression of stargazin in dorsal horn
(A) Representative Western blot shows the expression of stargazin in the ipsilateral spinal

cord dorsal horn in rats at different time points after plantar incision. β-tubulin was used as

an internal reference. (B) Quantitative analysis shows that surgical incision did not

significantly alter the expression of stargazin in the ipsilateral spinal cord dorsal horn, as

compared to that in the control group (P > 0.05, n = 6 rats/time point). Ctrl, control.
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Fig. 3. Colocalization of stargazin and GluR1 in rat dorsal horn
Representative confocal images of GluR1 (A and D, red) and stargazin (B and E, green)

immunoreactivity in the dorsal horn of L5–L6 spinal segment. Colocalization (merge) is

shown in yellow/orange (C and F). Double-labeled neurons are indicated by arrows. A, B,

and C are shown in lower magnification. D, E, and F are shown in higher magnification.

Scale bars: 100 μm (A) and 20 μm (D).
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Fig. 4. Interaction between stargazin and GluR1 subunit in the ipsilateral dorsal horn is
enhanced at 3 h after plantar incision
(A) Ipsilateral dorsal horn tissue was collected from rats at 3 h after plantar incision of the

right hind paw and from control (naïve) rats. Representative immunoblots illustrate total

GluR1 and GluR2 protein (Input) and GluR1 and GluR2 coimmunoprecipitated by stargazin

antibody (IP: anti-stargazin) or IgG (negative control). (B) Quantitative analysis shows that

GluR1 and GluR2 were both coimmunoprecipitated by stargazin antibody in the control

group. The association between stargazin and GluR1 was significantly elevated at 3 h after

incision. Neither GluR1 nor GluR2 was coimmunoprecipitated with IgG. IP,

immunoprecipitation; IB, immunoblotting; Ctrl, control. *P < 0.05 compared to the control

group. n = 6 rats/group.
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Fig. 5. Identification of small interfering RNA (siRNA) for the knockdown of stargazin in cell
culture
(A) Representative immunoblots show the effects of three stargazin siRNA constructs on the

expression of stargazin-green fluorescent protein (GFP) fusion protein. Lane 3 shows the

effect of scrambled (Scr) siRNA. (B) Quantitative analysis shows that siRNA209 (lanes 4, 7),

siRNA311 (lanes 5, 8), and siRNA485 (lanes 6, 9) each dose-dependently inhibited the

expression of stargazin in cultured cells. siRNA311 completely silenced stargazin-GFP

expression at a dose of 0.8 μg. The scrambled control siRNA did not affect stargazin-GFP

expression. GAPDH, glyceraldehyde-3-phosphate dehydrogenase; *P < 0.05, **P < 0.01

compared to the control group (lane 1). n = 6/group.
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Fig. 6. Intrathecal pretreatment of rats with small interfering RNA (siRNA) targeting stargazin
decreases cumulative pain scores and mechanical hypersensitivity at 3 h after plantar incision
In rats pretreated with intrathecal vehicle, plantar incision significantly increased ipsilateral

cumulative pain scores (A) and decreased ipsilateral paw withdrawal threshold to

mechanical stimulation (B) as compared to values in the naïve control (Ctrl) group.

Pretreatment with intrathecal siRNA311, but not scrambled (Scr) siRNA, significantly

reduced the cumulative pain scores and increased the paw withdrawal threshold of rats at 3 h

post-incision as compared with vehicle pretreatment. *P < 0.05 compared to the control

group; #P < 0.05 compared to the vehicle-pretreated, incision group. n=9 rats per group.
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Fig. 7. Intrathecal pretreatment of rats with small interfering RNA (siRNA)311 prevents the
increase in stargazin–GluR1 interaction after plantar incision
Representative immunoblots illustrate (A) total GluR1 and GluR2 protein (Input) and (B)

GluR1 and GluR2 coimmunoprecipitated by stargazin antibody (IP: anti-stargazin) in the

ipsilateral dorsal horn tissue of different groups. (C) Quantitative analysis shows that

intrathecal pretreatment with siRNA311 significantly decreased stargazin expression in the

ipsilateral dorsal horn of rats at 3 h after plantar incision. The stargazin levels did not differ

significantly among the other groups. The total GluR1 and GluR2 protein (Input) levels

were not significantly different among the groups. (D) Coimmunoprecipitation results show

that plantar incision significantly increased the interaction between stargazin and GluR1 in

the dorsal horn compared to the level of interaction in the naïve control (Ctrl) and sham-

operated groups. However, pretreatment with siRNA311 reduced the level of stargazin-

GluR1 interaction such that it was no different from the level in the control and sham-

operated groups. Stargazin–GluR2 interaction was similar in all groups. IP:

immunoprecipitation; IB: immunoblotting; Scr siRNA, scrambled siRNA. *P < 0.05

compared to the control group. n = 6 rats per group.
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Fig. 8. Intrathecal pretreatment of rats with small interfering RNA (siRNA)311 inhibits the
enhanced surface delivery of GluR1 after plantar incision
(A) Representative Western blots and quantitative analysis of band density show GluR1 and

GluR2 protein levels in the plasma membrane fraction of ipsilateral dorsal horn tissue from

different groups. β-tubulin was used as an internal reference. Pretreatment of rats with

intrathecal siRNA311, but not scrambled (Scr) siRNA or vehicle, prevented the increase in

GluR1 expression in the plasma membrane fraction of ipsilateral dorsal horn at 3 h after

plantar incision. (B) Representative Western blots and quantitative analysis of band density

show GluR1 and GluR2 protein levels in the cytosolic fraction in different groups. Ctrl,

control (naïve) group. *P < 0.05 compared to the control group. n = 6 rats/group.
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