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Abstract
The aim of this study was to characterize the maturational changes of the three eigenvalues (λ1 ≥
λ2 ≥ λ3) of diffusion tensor imaging (DTI) during early postnatal life for more insights into early
brain development. In order to overcome the limitations of using presumed growth trajectories for
regression analysis, we employed Multivariate Adaptive Regression Splines (MARS) to derive
data-driven growth trajectories for the three eigenvalues. We further employed Generalized
Estimating Equations (GEE) to carry out statistical inferences on the growth trajectories obtained
with MARS. With a total of 71 longitudinal datasets acquired from 29 healthy, full-term pediatric
subjects, we found that the growth velocities of the three eigenvalues were highly correlated, but
significantly different from each other. This paradox suggested the existence of mechanisms
coordinating the maturations of the three eigenvalues even though different physiological origins
may be responsible for their temporal evolutions. Furthermore, our results revealed the limitations
of using the average of λ2 and λ3 as the radial diffusivity in interpreting DTI findings during early
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brain development because these two eigenvalues had significantly different growth velocities
even in central white matter. In addition, based upon the three eigenvalues, we have documented
the growth trajectory differences between central and peripheral white matter, between anterior
and posterior limbs of internal capsule, and between inferior and superior longitudinal fasciculus.
Taken together, we have demonstrated that more insights into early brain maturation can be gained
through analyzing eigen-structural elements of DTI.

Keywords
DTI longitudinal analysis; DTI regression analysis; Early brain development; GEE; Multivariate
adaptive regression splines

Introduction
Population-based growth statistics derived from pediatric subjects enable us to gain more
understandings into the complex process of early brain development with an augmented
statistical power. The versatility of diffusion tensor imaging (DTI) (Basser and Pierpaoli
1996; Le Bihan et al. 1986) sheds light on brain maturation through the apparent changes of
several water diffusion-related observations such as fractional anisotropy (FA) map, mean
diffusivity (MD) map, and white matter tractography. Even though it is well documented
that FA increases and MD decreases in early brain development (Neil et al. 1998; Zhai et al.
2003), the maturational changes of individual eigen-structural elements have not been
investigated systematically.

FA and MD are composite DTI indices derived from all three eigenvalues of a diffusion
tensor matrix (λ1 ≥ λ2 ≥ λ3), and these three eigenvalues represent water diffusivities along
the three perpendicular principal directions, respectively (Fig. 1). As demonstrated in Fig. 1,
multiple combinations of the three eigenvalues may result in the same FA or MD value.
Thus, FA- and MD-based studies were concerned with their less physiological specificity in
discerning the different effects on water diffusion brought by changes from white matter
axon and myelin sheath. In light of this limitation, a hypothesis assuming λ1 and (λ2 + λ3)/2
as the water diffusivities along (axonal diffusivity, AD) and perpendicular (radial diffusivity,
RD) to the white matter tracts emerged. This hypothesis originated from an observation that
AD and RD might distinguish axonal injury and myelin dysfunction in animal models (Song
et al. 2003). The AD/RD hypothesis has been adopted in interpreting DTI changes
associated with early brain myelination process in ROI-based (Gao et al. 2008) and white
matter tract-based (Geng et al. 2012) studies. Given the significantly more complex white
matter structures in human than in rodent brain, it remains unclear as to what extent is this
assumption applicable to human early brain development. In a previous study, we examined
the growth trajectories of geometrical diffusion attributes, Cl [(λ1 – λ2)/ (λ1 + λ2 + λ3)] and
Cp [2 × (λ2 – λ3)/(λ1 + λ2 + λ3)] and found that Cp increased significantly in peripheral but
not in central white matter. This finding suggested the difference in the growth velocities
between the secondary and tertiary eigenvalues in the peripheral white matter, and thus, the
applicability of the AD/RD hypothesis may depend upon local white matter structures (Chen
et al. 2011). But similar to FA or MD, Cl and Cp remain to be composite DTI indices, and
multiple combinations of the three eigenvalues can lead to indiscernible temporal changes.
Cl and Cp reflect the relative ratios between the differences of the eigenvalues and MD, and
they cannot directly reveal whether two eigenvalues have similar growth velocities. It is
only after determining whether λ2 and λ3 have a similar growth velocity that we are able to
reveal the applicability of the RD hypothesis in modeling early brain development, which is
one objective of this proposed study. To the best of our knowledge, a systematic exploration
along this direction remains lacking.
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Multiple studies have demonstrated that the white matter maturational process is highly
nonlinear throughout different stages of life. In preterm infants, Mckinstry et al. (McKinstry
et al. 2002), and Gupta et al. (2005) have observed an initial increase followed by a gradual
decrease in FA with a peak at 26–28 weeks of gestational age. In an early postnatal brain
study, which overlaps with the age span of this study, Hermoye et al. (2006) reported that
the temporal evolution of FA and MD can be represented as a rapid change within the first
12 months, a slow maturation from 12 to 24 months, and a steady state beyond 24 months. It
has also been shown that the three eigenvalues follow a nonlinear growth trajectory in
selected ROIs (Mukherjee et al. 2001, 2002; Schneider et al. 2004). A nonlinear
development was also found in a later developmental stage from 5 to 30 years of age (Lebel
et al. 2008). Some recent regression analyses utilized linear fitting with the logarithm of age
to model early brain development (Chen et al. 2011; Faria et al. 2010).

This nonlinearity poses great challenges for quantitative studies. Thus far, the choices of the
regression model in previous DTI studies were not based upon a thorough interrogation of
the data to be analyzed. An empirical choice of a parametric model neglecting the features
presented in the data may impose an incorrect prior constraint on the growth trajectory and
result in spurious growth patterns with misleading physiological interpretations. In this
study, our regression analyses on the eigenvalues will be carried out using a data-driven
approach to overcome this major limitation.

It is well documented that myelination progresses from inferior to superior, from posterior to
anterior, and from central to peripheral location within brain (Barkovich et al. 1988, 2000).
We will utilize the proposed approach to compare posterior (PLIC) to anterior limbs of
internal capsule (ALIC) (posterior vs. anterior), inferior (ILF) to superior longitudinal
fasciculus (SLF) (inferior vs. superior), and central to peripheral white matter (central vs.
peripheral). One previous T1-based study demonstrated that PLIC exhibited high signal
intensity at birth, while ALIC did not develop until 2–3 months of age (Barkovich et al.
1988). Previous DTI studies also suggested a late development of SLF (Hermoye et al.
2006; Zhang et al. 2007). The central/peripheral white matter developmental differences
have been reported previously in composite DTI indices (Chen et al. 2011; Provenzale 2007;
Zhai et al. 2003). Zhai et al. (2003) demonstrated that neonates had higher FA and lower
MD in central than in peripheral white matter, and such a difference became smaller in
adults. We recently found that geometrical diffusion measures, Cl and Cp had different
temporal behaviors between central and peripheral white matter. Significant increases in Cl
and Cp were found in central and peripheral white matter, respectively (Chen et al. 2011).

In this study, we will adopt a Multivariate Adaptive Regression Splines (MARS) method to
characterize the nonlinear growth trajectories of the three eigenvalues. MARS can
automatically locate the transitional time points (knots) marking the beginnings and endings
of the spline segments consisting the whole growth trajectory. The effect of the detected
knots on brain growth will be tested using generalized estimating equations (GEE) derived
Wald statistics. After adjusting for multiple comparisons through controlling the false
discovery rate (FDR), the final regression model will assume the form after removing all the
knots contributing insignificantly to the fitting. With this MARS/GEE framework, we will
be able to explore the similarities and dissimilarities between growth trajectories of the three
eigenvalues from different white matter regions and shed light on whether the secondary and
tertiary eigenvalues should be averaged as the radial diffusivity during early brain
development.
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Materials and methods
Image acquisition and preprocessing

This institutional review board approved study included 29 healthy full-term subjects (17 M
and 12 F). Written consents were obtained from each subject’s parent before image
acquisition. A total of 71 datasets were acquired a few weeks (25 neonates, age 0.07 ± 0.07
years, 14 M and 11 F), 1 year (16 1-year-olds, age 1.05 ± 0.05 years, 9 M and 7 F), 2 years
(23 2-year-olds, age 2.03 ± 0.07 years, 14 M and 9 F), and 4 years (7 4-year-olds, age 4.15 ±
0.16 years, 4 M and 3 F) after birth (Fig. 2). At least two longitudinal scans were obtained
from each subject in this study. All subjects were fed and calmed to sleep before scanning
and ensured to wear ear protections during image acquisition.

Images were acquired with a single-shot double-refocused echo-planar DTI sequence (TR/
TE = 5,400/73 ms) with eddy current compensation using a Siemens 3T Allegra head only
MR scanner (Siemens, Erlangen, Germany). Diffusion gradients with a b-value of 1,000 s/
mm2 were applied in six non-collinear directions with a maximal gradient strength of 40
mT/m and a maximal slew rate of 400 mT/(m msec). An isotropic 2 mm voxel resolution
was achieved with contiguous imaging slices covering the whole brain without gap. The in-
plane field of view was 256 × 256 mm2. Multiple acquisitions were averaged to improve the
signal-of-noise ratio (SNR) of DTI images. Tensor fitting was performed using the diffusion
tensor processing pipelines publicly available from the Oxford University FSL website
(http://www.fmrib.ox.ac.uk/fsl/). We followed the pre-processing steps as recommended in
(Smith et al. 2007). The FA images obtained from all subjects were co-registered towards a
2-year-old subject (not included in the analysis) using features derived from FA images
instead of directly using the FA intensity (Shen 2007).

Multivariate adaptive regression splines (MARS)
In previous DTI analyses on early brain development, a linear fitting with logarithm of age
(Eq. 1) was widely used as in (Chen et al. 2011; Faria 2010; Löbel 2009),

(1)

where yi,j is the jth measurement from subject i, acquired at age ti,j. In addition, another
well-utilized model was the 2nd order polynomial regression as demonstrated in Eq. 2,

(2)

These two fitting schemes imposed a “shape constraint” on the growth trajectory, and
unrealistic growth trajectories would be obtained if this constraint does not agree with the
data. On the contrary, MARS was developed as a data-driven approach to approximate
complex patterns in regression analysis without imposing any prior constraint on the growth
trajectory (Friedman 1993). This statistical method can be considered as a special case for
tree-based regression and classification method. Basically, it performed partition of the
feature space with a set of linear functions in the format of (x–t)+ and (t–x)

(3)
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These two functions are reflected pairs and also called hinge functions. The end point, t in
Eq. 3 is also called a knot, indicating the end of one segment of the growth trajectory and the
beginning of another. An unknown function f(x) can be approximated as an addictive
function with the basis functions obtained from these reflection pairs at a series of knots as
in Eq. 4:

(4)

in which hm(x) is the basis function formed by the multiplication of several hinge functions,
and the coefficients (β0, β1,…βM) can be easily solved by minimizing the least square errors
of fitting.

The model building process of MARS consisted of forward and backward steps. The
forward step started with fitting the data using a constant β0 (locating the baseline of the
data). At each forward step, among all the possible knots (usually taken as the time points
when data were acquired), the one produced the largest decrease in the residual sum of
squared error was added to the model. MARS continued to search for all possible knot
locations until a maximal number of knots was reached. Usually, a large collection of basis
functions were produced after the forward step and the generated model might overfit the
data. The backward step pruned the model by removing the basis functions with
insignificant contribution to the model. In each pruning step, the term causing the smallest
reduction in the residual sum of the squared error was deleted, resulting in a model with a
smaller size, and the best model was chosen as the one minimizing the generalized cross-
validation criteria as in Eq. 5:

(5)

where N is the total number of data to be fitted, and C(M) is the cost complexity measure of
a model containing M basis functions. The numerator is the sum of squared residuals, and
the denominator acts as a penalty for model complexity (Friedman 1993).

GEE method for longitudinal analysis
In this work, the piecewise linear model with the m knots (k1, k2, …, km) identified with
MARS was analyzed first,

(6)

The coefficients, (β0, β1,…βM) in Eq. 6 were solved as least square solutions assuming a
Markov working correlation structure with a weaker correlation between the repeated
measurements from the same subject with a longer time separation. The details of the
mathematical calculation can be found in (Li et al. 2011; Liang and Zeger1986). The null
hypothesis in the format of H0: Rβ = b0 was tested to determine whether these knots make
significant contribution to the growth trajectory. R is an r × (m + 2) matrix with r linear
hypotheses to be tested, and b0 is an r × 1 vector, and m is the number of knots. Wald
statistic (Eq. 7) was compared against a Chi square distribution for hypothesis testing.
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(7)

where V(β) is the robust estimation of the covariance of β. If the null hypothesis is rejected at
a prefixed significance level, this evaluated term has a significant association with response.
FDR was controlled at the level of 0.05 to adjust for multiple comparisons.

Growth trajectories from selected ROIs
Previous findings indicate that white matter myelination follows an order from central to
peripheral, from posterior to anterior, and from inferior to superior part of brain (Barkovich
et al. 1988; Brody et al. 1987; Paus et al. 2001).

Central white matter such as corpus callosum and posterior limb of internal capsules
consisted of long and compact fibers (Provenzale 2007). In contrast, peripheral white matter
is more complex and rich in crossings (Wedeen et al. 2012; Wiegell et al. 2000).
Representatives for central white matter included genu (GENU in Fig. 3), splenium (SPLE
in Fig. 3), and posterior limb of internal capsule (PLIC in Fig. 3), and the peripheral white
matter included a fiber crossing region between corpus callosum and corona radiata (CROS
in Fig. 3) (Wiegell et al. 2000; Zhang et al. 2006), a white matter region in the anterior
corona radiata close to the fiber crossing (CR in Fig. 3), and the superior longitudinal
fasciculus (SLF in Fig. 3) (Wiegell et al. 2000; Zhang et al. 2006). ROIs of various sizes
were employed to ensure the robustness of the finding. The ROIs were initially chosen as
0.6 × 0.6 × 0.6 cm3 (3 × 3 × 3 voxels), 1 × 1 × 1 cm3 (5 × 5 × 5 voxels) and 1.4 × 1.4 × 1.4
cm3 (7 × 7 × 7 voxels) cubes centered at each of the above-mentioned locations (two ROIs
were included in both hemispheres for symmetric structures). A white matter mask from the
joint segmentation of the mean MD and FA images from the seven 4-year-olds were then
used to exclude those voxels not located within white matter (Chen et al. 2011). The total
remaining volume of the ROIs in central and peripheral regions were, respectively, 0.864,
3.568, 8.624 and 1.296, 5.152, 11.200 cm3. The three eigenvalues and their differences were
compared between the central and peripheral white matter with these three sized ROIs
(referred as ROI1, ROI2 and ROI3, respectively) for consistent and robust findings.

In projection white matter pathway, the trajectories from the ROIs within ALIC and PLIC
were compared (Fig. 3). In association white matter pathway, the comparison was performed
using the ROIs in ILF and SLF (Fig. 3). The ROIs in ILF were selected bilaterally according
to a previous work in (Hermoye et al. 2006). Likewise, we have also varied ROI sizes for
robust and consistent findings (0.432, 1.872, 4.856 cm3 for PLIC; 0.376, 1.216, 2.800 cm3

for ALIC; 0.432, 1.704, 3.344 cm3 for ILF; 0.432, 1.480, 3.216 cm3 for SLF). These three
different sized ROIs were also referred as ROI1, ROI2, and ROI3.

Results
In this section, we will (1) demonstrate the utility of the MARS/GEE framework for
selecting the regression model, (2) present the findings on the similarities and dissimilarities
of the growths of the three eigenvalues, and (3) compare the growth trajectories of the three
eigenvalues between central and peripheral white matter, between ALIC and PLIC, and
between ILF and SLF.

Data-driven growth trajectory in early brain development
Growth trajectories for FA and MD from the genu ROI obtained with three fitting schemes
(linear logarithm with time, quadratic and the proposed) were given in Figs. 4 and 5,
respectively. The linear logarithm fitting rendered a false rapid ascending and descending
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trajectories for FA and MD, respectively, during the early stage, leading to an unrealistic
estimation of the initial DTI value at birth (intercept). For instance, the estimated genu FA at
birth was lower (Fig. 4B) and the estimated genu MD was higher (Fig. 5B) than peripheral
white matter, which contradicted previous findings that central white matter had higher FA
and lower MD at birth (Zhai et al. 2003). For quadratic fitting, a peak (or valley) followed
by a descending (or ascending) trend was observed for the growth trajectory of FA (or MD).
It is apparent that both linear logarithm of time and quadratic fittings resulted in spurious
growth trajectories. In contrast, our data-driven approach generated a more realistic growth
trajectory with better predictions at both ends, highlighting the necessity for this MARS/
GEE framework in modeling DTI changes in early brain development.

Similar knot distributions in the three eigenvalues
As discussed previously, the knots obtained with MARS marked the ending of one segment
and the beginning of another along the growth trajectory. The transition of the growth
signaled by these knots may potentially correspond to the onset of certain physiological
events shaping brain maturation, and such timing information of white matter maturation
may be imbedded in the distribution of these knots. The histograms of the knots identified
for the three eigenvalues were given in Fig. 6. We found that with the given data, the three
eigenvalues had almost identical histograms in the knots identified using MARS (corr(λ1,
λ2) = 0.994, p < 10−6; corr(λ1, λ3) = 0.989, p < 10−6; and corr(λ2, λ3) = 0.997, p < 10−6) and
these knots heavily distributed around the year marks. Data with a dense temporal sampling
are needed to discern whether this finding indeed reflects underlying physiology or arises
from the experimental design (the sampling scheme).

Highly correlated growth velocities of the three eigenvalues
As in Fig. 6, the distribution of the knots of the three eigenvalues formed three clusters with
medians at 24 days (0.066 years), 377 days (1.033 years), and 739 days (2.025 years),
respectively. The initial model for the growth trajectory was formed with the piecewise
linear segments transitioned at the medians of these three clusters (Eq. 8).

(8)

Through the testing procedures outlined previously, the knots located at 0.066 and 2.025
years were removed from the growth trajectories of all the three eigenvalues due to their
insignificant contributions to the fitting after adjusting for multiple comparisons. The final
selected model for further regression analysis was given as

(9)

As a result, it was justified to approximate the nonlinear growth trajectories of the three
eigenvalues with two linear segments (stage PI and PII) with a transition around 1 year after
birth. β0 (in a unit of 10−3 mm2/s) is the intercept, an estimate of an eigenvalue at birth, β1
[in a unit of 10−3 mm2/(s × year)] is the growth velocity in stage PI, and β2 (with the same
unit as β1) is the transition in velocity from PI to PII (the growth velocity is β1 + β2 in PII).
The intercepts and growth velocities in the two stages were given in Figs. 7, 8, 9. It was
apparent that in all three eigenvalues, the most rapid reduction occurs within PI.

The growth velocities of the three eigenvalues within white matter were highly correlated
with each other (PI: corr(λ1, λ2) = 0.748, p < 10−10; corr(λ1, λ3) = 0.742, p < 10−10; and
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corr(λ2, λ3) = 0.942, p < 10−10; PII: corr(λ1, λ2) = 0.666, p < 10−10; corr(λ1, λ3) = 0662, p <
10−10; and corr(λ2, λ3) = 0.885, p < 10−10). After we subtracted the velocity of MD from the
three eigenvalues, we found that the λ1 and λ2 or λ3 remained highly correlated in both PI
(corr(λ1-MD, λ2-MD) = −0.789, p < 10−10; corr(λ1-MD, λ3-MD) = −0.815, p < 10−10) and
PII (corr(λ1-MD, λ2-MD) = −0.728, p < 10−10; corr(λ1-MD, λ3-MD) = −0.713, p < 10−10),
while the correlation between λ2 and λ3 became weaker (PI: corr(λ2-MD, λ3-MD) = 0.309,
p < 10−10; PII: corr(λ2-MD, λ3-MD) = 0.124, p < 10−10). Thus, the high correlation between
the growth velocities of λ2 and λ3 may be attributable to an overall diffusion reduction
process indicated through decrease in MD, after removal of which, λ2 and λ3 are less
correlated with each other.

Differences between the three eigenvalues in both central and peripheral white matter
The estimated β0, the growth velocities during PI and PII obtained with the three different
sized ROIs (ROI1–ROI3) are given in Table 1 for central and peripheral white matter. The
growth trajectories are given in Figs. 10 and 11 for central and peripheral white matter,
respectively. In all three ROIs and in both central and peripheral white matter, three
eigenvalues demonstrated an initial rapid reduction during PI followed by a slower
reduction during PII.

In both central and peripheral white matter, with paired t-tests and after adjusting for
multiple comparisons through controlling FDR, growth velocities between λ1 and λ2 or λ3
were significantly different in both PI and PII (p < 10−6 for ROI1–ROI3), while the growth
velocities of λ2 and λ3 were significantly different from each other only during PI (p < 10−6

for ROI1–ROI3).

To further confirm the significant differences among the growth velocities of the three
eigenvalues, we applied the proposed analysis to λ1–λ2 (D1) and λ2–λ3 (D2, which is a
within-plane rotational invariant for the assumed cylindrical structure of diffusion profile in
major white matter). For D1, in central, significant increase was found in PI (p ~ 3.020 ×
10−8 for ROI1, p ~ 1.259 × 10−9 for ROI2, p ~ 4.467 × 10−11 for ROI3), but PII only
demonstrated such a trend (p ~ 0.062 for ROI1, p ~ 0.006 for ROI2, p ~ 0.005 for ROI3). In
peripheral, D1 increased significantly both in PI (p ~ 0.002 for ROI1, p ~ 2.548 × 10−5 for
ROI2, p ~ 2.7542 × 10−8 for ROI3) and PII (p ~ 0.0209 for ROI1, p ~ 0.0039 for ROI2, p ~
0.0048 for ROI3). For D2, consistently significant temporal change was found only during
PI for both central (p ~ 6.166 × 10−6 for ROI1, p ~ 4.68 × 10−5 for ROI2, p ~ 2.754 × 10−4

for ROI3) and peripheral (p ~ 2.399 × 10−6 for ROI1, p ~ 1.479 × 10−6 for ROI2, p ~ 2.884
× 10−6 for ROI3) white matter. In summary, we have demonstrated consistently significant
differences between the growth velocities of the three eigenvalues independent of ROI sizes,
suggesting the robustness of these findings.

Central and peripheral white matter differences revealed by regression analysis
The growth trajectories of the three eigenvalues and their differences in central and
peripheral white matter were given in Figs. 10 and 11, and statistical comparisons between
central and peripheral white matter were summarized in Table 1. Compared with peripheral
white matter, the central had a significantly higher λ1 (p < 10−6 for ROI1–ROI3), lower λ2
(p < 10−6 for ROI1–ROI3), lower λ3 (p < 10−6 for ROI1–ROI3), higher D1 (p < 10−6 for
ROI1–ROI3), and lower D2 (p < 10−6 for ROI1–ROI3) at birth.

During PI, the decreasing velocities were smaller in central than in peripheral white matter
in λ1 (p < 10−6 for ROI1–ROI3), λ2 (p ~ 0.023051 for ROI1, p < 10−6 for ROI2, p < 10−6 for
ROI3), and λ3 (p ~ 10−6 for ROI1–ROI3). During PII, λ1 remained decreasing less rapidly
in central than in peripheral white matter (p ~ 0.154 for ROI1, p ~ 2 × 106 for ROI2, p ~
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10−6 for ROI3), while λ2 and λ3 decreased more rapidly in central than in peripheral (λ2: p ~
0.007 for ROI1, p ~ 0.008 for ROI2, p ~ 0.687 for ROI3; λ3: p ~ 0.004 for ROI1, p ~ 0.002
for ROI2, p ~ 0.052 for ROI3).

In PI, D1 increased more rapidly in central than in peripheral white matter (p < 10−6 for
ROI1–ROI3). The growth velocities of D2 were opposite in directions between central and
peripheral white matter (decreasing in central while increasing in peripheral, p < 10−6 for
ROI1–ROI3).

During PII, the increase in D1 remained consistently more rapid in central than in peripheral
white matter (p ~ 10−6 for ROI1–ROI3), while the growth velocity of D2 was similar
between central and peripheral white matter. As shown in Figs. 10 and 11, in both central
and peripheral white matter, the temporal increase in D1 was apparent during both PI and
PII, while the temporal increase in D2 was only apparent during PI. Interestingly, the
separation between the growth trajectories of D1 and D2 became increasingly widened in
central than peripheral white matter regions.

Inhomogeneity within projection white matter pathway: difference between ALIC and PLIC
The growth trajectories of the three eigenvalues and their differences in ALIC and PLIC
were given in Figs. 12 and 13, and the statistical comparisons between ALIC and PLIC were
summarized in Table 2. At birth, PLIC had a significantly lower λ2 (p < 10−6 for ROI1–
ROI3), λ3 (p < 10−6 for ROI1–ROI3), higher D1 (p < 10−6 for ROI1–ROI3), and higher D2
(p < 10−6 for ROI1–ROI3) than ALIC.

During PI, comparing with ALIC, PLIC decreased slower in all three eigenvalues (p < 10−6

for ROI1–ROI3), while the comparisons of D1 and D2 were not consistent through ROIs
(only significantly different in ROI3).

During PII, λ1 remained decreasing slower in PLIC than ALIC (p < 10−6 for ROI1–ROI3).
The comparisons of the growth velocities of λ2 were not consistent through ROIs (p = 0.429
for ROI1, p = 0.093 for ROI2, p < 10−5 for ROI3) and the velocities within ALIC and PLIC
were comparable in all three ROIs. λ3 decreased more rapidly in ALIC than in PLIC (p =
0.004 for ROI1, p < 10−6 for ROI2 and ROI3). D1 continued to increase in PLIC while
remaining almost steady in ALIC (p < 10−6 for ROI1–ROI3). Contrary to D1, the growth
velocities in D2 demonstrated opposite trends in PLIC and ALIC (slight decrease in PLIC
while increase in ALIC; p < 10−3 for ROI1; p < 10−6 for ROI2; p < 10−5 for ROI3).

Inhomogeneity in association white matter pathway: difference between ILF and SLF
The growth trajectories of the three eigenvalues and their differences in ILF and SLF are
given in Figs. 14 and 15, and the statistical comparisons between ILF and SLF
aresummarized in Table 3. Comparing with SLF, ILF had significantly higher values in all
three eigenvalues and their differences (λ1–λ3: p < 10−6 for all ROIs; D1: p < 10−6 for all
ROIs; D2: p < 10−3 for ROI1; p < 10−4 for ROI2; p < 10−6 for ROI3) at birth.

During PI, all three eigenvalues decreased more rapidly in ILF than in SLF (λ1: p < 10−4 for
ROI1, p < 10−6 for ROI2, p < 10−6 for ROI3; λ2: p < 10−6 for all ROIs; λ3: p = 0.006 for
ROI1; p < 10−3 for ROI2; p < 10−6 for ROI3). Comparisons of the growth velocities of D1
were not consistent across ROIs (ILF [ SLF, p = 0.019 for ROI1; ILF < SLF, p = 0.0359 for
ROI2; ILF < SLF, p = 0.307 for ROI3). The growth velocities of D2 were significantly
different between ILF and SLF (p < 10−6 for all ROIs) and demonstrated opposite trends
(decreasing for ILF while increasing for SLF).
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During PII, similar to PI, λ1 and λ3 continued to decrease more rapidly in ILF than in SLF
(λ1: p < 10−5 for ROI1, p < 10−5 for ROI2, p < 10−2 for ROI3; λ2: p < 0.001 for ROI1; p <
10−4 for ROI2; p < 0.001 for ROI3), while λ2 only demonstrated such a trend (p < 10−4 for
ROI1, p = 0.003 for ROI2, p = 0.443 for ROI3). The growth velocities were comparable in
D1 (p = 0.872 for ROI1; p = 0.704 for ROI2; p = 0.341 for ROI3) and D2 remained steady in
both ILF and SLF.

Discussion
Advantages of data-driven regression analysis

An appropriate regression analysis is the first necessary step towards a physiologically
meaningful inference on the DTI findings in early brain development. For the first time, we
introduced MARS to modeling early brain development with DTI regression analysis. In
general, the identified nonlinear growth trajectories of the three eigenvalues are consistent
with previous DTI studies in early brain development. The automatically detected initially
rapid change within the first year followed by a slower maturation afterwards agreed well
with the observations by Hermoye et al. (2006). More importantly, our approach achieved a
better fitting performance and meaningful physiological inference. The inherently enforced
“velocity-acceleration” assumption by quadratic fitting on brain growth was apparently
problematic due to the spurious peak (or valley) and the reversed growth trend at the end of
trajectory. For the linear regression with the logarithm of time, besides the spuriously rapid
ascending/descending trajectories observed close to birth, it is also difficult to make
physiological inference on the velocity (β1 in Eq. 1). In contrast, our data-driven approach
does not impose a subjective assumption in the interpretation of the regression results and
attributes the nonlinearity of the growth trajectory to changes in velocity. In addition, the
knots identified with MARS may carry specific physiological meanings indicating the
discontinuities in growth velocity caused by the onsets of certain biological processes. For
instance, Provenzale et al. (2007) reported that the brain growth in the first year can be
divided into two linear segments with the transition around 100 days, which may be caused
by the onset of myelination. To the best of our knowledge, our proposed study is the first
one to automatically detect discontinuities in DTI evolution. The proposed method can be
adopted to analyze any non-linear changes in brain developments or disease progressions.
Interestingly, with the given data, we found an almost identical distribution of knots in the
three eigenvalues even though they represent water diffusivities along three orthogonal
directions. But this finding may depend on the temporal sampling of the growth curve
around year marks in our data. Future studies using data with finer temporal sampling are
required to determine whether a common timing mechanism exists in the progression of
water diffusion along different directions. If given the densely enough temporal coverage as
in (Provenzale 2007), we expect our work to be able to detect the discontinuity around 100
days, which has a steeper slope in velocity transition than the one reported in this study at
year 1.

Utilities of our method in modeling white matter development
Brain growth proceeds in a highly ordered and dynamic fashion. Formations of brain
gyration were usually before term and proceeded myelination deposition in most white
matter regions (Larroche 1977). During normal white matter maturation, axonal
development preceds myelination. Within parietal white matter, GAP-43 staining
demonstrated a high level of expression in 21–64 post-conceptual weeks and reached adult-
like level in 17 post-natal months, while myelin basic protein expression indicated
myelination starting around 54 postnatal weeks and progressed to adult-like staining in 72–
92 postnatal weeks (Haynes et al. 2005). A more detailed autopsy study revealed that
different sites within white matter began myelination at different times and progressed to
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maturation over different time intervals. Interestingly, early onset of myelination may not
always be followed by early myelin maturation (Kinney et al. 1988). The proposed MARS/
GEE based framework is especially suited for exploring the ordered growth in brain,
because MARS is able to model both the onset time and the different growth velocities
during different developmental stages.

Another potential powerful application of this MARS/GEE framework is to identify the
delay in white matter maturation through DTI. White matter myelination was highly
correlated with the functional maturation of brain and delayed myelination was found to
correlate to the decreased neuro developmental performance (Paus et al. 2001). Children
with a developmental delay had a wide-spread increase in MD and decrease in diffusion
anisotropy in white matter (Filippi et al. 2003). With our approach, the identified knot
sequences between control and patient populations can be used to quantify the delay time in
patients. Furthermore, growth velocities at different developmental stages can be compared
across groups to delineate abnormality in myelination velocity.

Highly correlated but significantly different growth velocities of the eigenvalues
One interesting finding of this study is that the growth velocities of the three eigenvalues
were highly correlated during both PI and PII, which suggests a concordance among the
maturations of the three eigenvalues. The overall diffusion reduction represented by the
reduction in MD may lead to the high correlation between λ2 and λ3 in both PI and PII, and
the removal of which resulted in much weaker correlations between them. Conversely, after
removal of MD, the correlations between λ1 and λ2 or λ3 became slightly stronger in both PI
and PII. Thus, the high correlation between λ1 and λ2 or λ3 was independent of the overall
diffusion reduction. In summary, the overall diffusivity reduction represented by reduction
in MD may result in the concordance between λ2 and λ3, while another mechanism may
contribute to the high coordination between the growth velocities of λ1 and λ2 or λ3.

We have also found the growth velocities of the three eigenvalues were significantly
different from each other in both central and peripheral white matter, and the significantly
different growth trajectories of λ2 and λ3 implicated the limitations of the RD hypothesis in
modeling early brain development as adopted in (Gao et al. 2008; Geng et al. 2012). Genu,
splenium, and posterior limb of internal capsule are the regions most likely consisting of
long cylindrical white matter structures with a high likelihood for the application of AD/RD
hypothesis. Based on the AD/RD hypothesis, D2 should be a trivial rotational invariant
within the plane perpendicular to the white matter axon in these cylinder-like central white
matter tracts. However, significant differences between the growth velocities of λ2 and λ3 in
central white matter during PI (further confirmed by the significant temporal reduction in
D2) demonstrated that the water diffusion within the radial plane became homogeneous
gradually during the first year. Taken together, these results suggested that different
physiological mechanisms may contribute to the changes of the three eigenvalues at least
during the first postnatal year, which cannot be explained by the AD/RD hypothesis.

Central/peripheral white matter differences in maturation
At birth, the significantly higher λ1 and lower λ2 and λ3 in central than in peripheral white
matter agrees with the previous finding that central white matter has higher FA values than
peripheral regions at birth (Provenzale 2007; Zhai et al. 2003) and this finding is also in line
with the more compact nature of the central white matter (Provenzale 2007). The
significantly lower D2 in central than in peripheral white matter also agrees with the more
cylinder-like structure in central than in peripheral white matter as reported in our previous
study based upon Cp (Chen et al. 2011). During PI, the central white matter had a lower
velocity in λ1 reduction than peripheral, which may indicate the axons are more mature in
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central than in peripheral white matter. The difference in growth velocities of λ2 and λ3 were
more complex. During PI, the peripheral white matter had significantly higher reduction in
λ2 and λ3 than central white matter, suggesting that λ2 and λ3 may have different
physiological underpinnings between central and peripheral white matter, especially given
the more complex fiber structures in peripheral white matter. It is well known that the white
matter myelination occurs depending on a g-ratio, and white matter myelination started
earlier in central white matter such as corpus callosum and posterior limb of internal
capsules (Sherman and Brophy 2005). Thus, if AD/RD hypothesis holds, it is expected that
the decreasing of λ2 and λ3 are more rapid within central than peripheral white matter, which
contradicts our observation. Given the complex peripheral white matter structures rich in
crossing fiber groups, it is natural to speculate that the temporal changes in λ2 and λ3 may
also reflect the changes in diffusivity along the fiber axons in these different fiber groups.
Interestingly, in contrast to PI, λ2 and λ3 decreased more rapidly in central than in peripheral
white matter during PII, but with similar velocities (~–0.04X). Thus, the velocities of λ2 and
λ3 may be more related to myelination process in PII than PI.

When we examined the growth trajectories of D2, this difference decreased in central but
increased in peripheral white matter (Figs. 10 and 11), and this clear distinction indicated
that different factors, depending on the geometrical locations, may shape their temporal
evolutions. In central white matter, the reduction of D2 may reflect that the water diffusion
within the radial plane becomes increasingly more homogeneous during development. But
in peripheral white matter, with the recently emerged evidence that crossing white matter
tracts assumes a local perpendicular curvilinear structure (Wedeen et al. 2012), the reduced
water diffusivity along radial direction may be affected by both myelination and axonal
development in several perpendicular fiber groups.

Growth inhomogeneity in projection and association fiber pathways
It is well documented that myelination progresses from an inferior to superior and from a
posterior to anterior location (Barkovich 2000; Barkovich et al. 1988). Accordingly,
myelination in PLIC and ILF occur earlier than in ALIC and SLF, respectively, even though
they belong to the same white matter pathways. Given the previous MR based findings as in
(Barkovich et al. 1988; Hermoye et al. 2006; Zhang et al. 2007), we are able to search for
DTI features in modeling white matter maturation.

At birth, PLIC had a significantly lower λ2 and λ3 compared with ALIC and this finding
agreed with previous reports that PLIC had myelin deposition at birth, but not ALIC
(Kinney et al. 1988). In PI, all three eigenvalues decreased slower in PLIC than ALIC,
which may be attributed to the earlier maturation of PLIC. In contrast, even though ILF
developed earlier than SLF, ILF had significantly higher values in all three eigenvalues than
SLF at birth. In PI, all three eigenvalues decreased more rapidly in ILF than SLF and the
same trend continued in PII. We speculate that slower changes in DTI eigenvalues can only
be considered as an indicator of earlier myelination in central but not in peripheral white
matter tracts, where complex structures complicate temporal evolutions of different
eigenvalues. In contrast, we found that the difference between the growth trajectories of D1
and D2 may be more consistent in reflecting difference in myelination progression. For
instance, the difference between the growth trajectories of D1 and D2 was apparently greater
in PLIC than ALIC (Figs. 12 and 13). The same observation also held true in the comparison
between ILF and SLF (Figs. 14 and 15). In ILF the separation between the growth
trajectories of D1 and D2 became widened with time, while their trajectories intertwined in
SLF. We have also observed this same feature presented in the comparison between central
and peripheral white matter. Thus, the difference between the growth trajectories of D1 and
D2 seemingly agrees with the previously documented order of white matter maturation.
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Limitations
Sparse temporal coverage especially within the first postnatal year is one major limitation of
our study. As a result, the piecewise linear growth trajectory obtained by MARS should not
be considered as an accurate representation of the growth during this period. Instead, the
presented results are estimates of the end-to-end growth velocities. Even though we have
shown that the growth trajectories of the three eigenvalues were divided into two phases
with a transition around 1 year, the clustered temporal sampling forbids us to make further
physiological inference upon this transition. In terms of the capability of modeling
nonlinearity, the quadratic or linear logarithm models may have the advantage if their
inherent assumption is a reasonable approximation to the ground truth.

Second, as a DTI single modality based early brain developmental study, we cannot discern
the DTI changes in early brain development caused by myelination and other numerous non-
myelin related factors such as axonal diameter change, axon membrane composition change,
concentration of microtubules and microfilaments, the activity of Na+/K+ pump, and
reduction in extracellular space (Prayer et al. 2001). But the timing information obtained
with MARS provides us a new means to establish the link between DTI and histological
studies. We may be able to disentangle the DTI changes brought by some of these
physiological factors if they affect water diffusivities along different directions differently or
their onsets are separated in time.

Last, the presented results may be subject to the confound brought by different partial
volume effects using the same voxel size across the age span. Newborns have a significantly
smaller intracranial volume compared with old children [neonates: 547.43 ± 91.99, 1-year-
olds: 1,096.92 ± 100.30, 2-year-olds: 1,193.48 ± 131.03, 4-year-olds: 1,314.93 ±
118.72(cm3)]. High-resolution DTI pulse sequence producing a smaller voxel size in
neonates can overcome this caveat, but with a hefty cost in SNR and imaging time. When
reducing the voxel length by half (eight times reduction in volume), SNR becomes eight
times lower. To maintain the same SNR, total scan time has to be lengthened 64 times,
which is impractical and makes image acquisition prone to motion artifacts. In this study, we
have evaluated this confound with an alternative down-sampling approach in images
obtained from older children according to the brain volume ratio with respect to neonates.
For instance, in 2-year-olds, the average brain volume was 1,193/547 ~ 2.18 times of the
average in neonates, and we increased voxel length in 2-year-olds by 1.30 times (~2.180.333)
through down-sampling diffusion weighted images, with which we recomputed the three
eigenvalues. After co-registering the down-sampled eigenvalue maps towards their original
counterparts, we have found high correlations between them within whole brain (correlation
coefficients: 0.990 ± 0.002 for λ1, 0.987 ± 0.002 for λ2, 0.986 ± 0.002 for λ3), which
partially validates our findings under different partial volume effects across different age
groups.

Conclusion
In this study, with the MARS/GEE combined framework, we found that the growth
velocities of the three eigenvalues were highly correlated, which may attribute to the
mechanisms orchestrating brain development. Moreover, the growth velocities of the three
eigenvalues were significantly different between central and peripheral, between anterior
and posterior, and between inferior and superior white matter, suggesting our approach is
able to model the progressive white matter maturation in space. Furthermore, our results
demonstrated the limitations of the AD/RD hypothesis in interpreting DTI findings during
early brain development. In conclusion, more insights into early brain development were
gained through analyzing the eigen-structural elements of DTI.
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Fig. 1.
Demonstration of the geometrical shape of a diffusion tensor matrix with three eigenvalues
representing the water diffusivities (λ1 = 1, λ2 = 0.5, and λ3 = 0.3) along three perpendicular
principal directions (A). Different shapes of the diffusion tensor matrix can have the same
fractional anisotropy (B) and mean diffusivity (C) as the tensor in (A)
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Fig. 2.
The age distribution of the 71 datasets included in this study
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Fig. 3.
The center locations of ROIs in genu (GENU in red), splenium (SPLE in green), PLIC
(blue), the fiber crossing area between corona radiata and genu (CROS in yellow), anterior
corona radiata (CR in mangneta), superior longitudinal fasciculus (SLF in cyan), anterior
limb of internal capsules (ALIC in dark red) and inferior longitudinal fasciculus (ILF in
purple) superimposed on the mean FA (1st column), λ1 (2nd column), λ2 (3rd column), and
λ3 (last column) images from the 4-year-olds
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Fig. 4.
The growth trajectories of FA obtained with the three fitting schemes: linear logarithm of
time, quadratic, and the proposed MARS/GEE approach. The mean FA images and the
intercept and velocity coefficient maps from the linear logarithm of time fitting were given
in panels A–C, respectively. The intercept, velocity and acceleration coefficient maps from
quadratic fitting were given in panels D–F, respectively. The coefficient maps for intercept,
velocity within PI and the velocity transition from PI to PII obtained with MARS were
given in panels G–I, respectively. As apparent in panel B, the intercept from the linear
logarithm fitting generated unrealistically low FA at genu
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Fig. 5.
The growth trajectories of MD obtained with the three fitting schemes: linear logarithm of
time, quadratic, and the proposed MARS/GEE approach. Panels A–I represent the same
coefficient maps as their counterparts in Fig. 4 but for MD. As shown in panel B, the
intercept from the linear logarithm fitting generated unrealistically high MD at genu
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Fig. 6.
Histograms of the knots identified with MARS for λ1, λ2 and λ3 (a–c) had almost identical
distributions (r = 0.994 between λ1 and λ2; r = 0.989 between λ1 and λ3; r = 0.998 between
λ2 and λ3). The three apparent clusters were observed with the medians at 24 days (0.066
years), 377 days (1.033 years), and 739 days (2.025 years) for all three eigenvalues
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Fig. 7.
The estimated coefficient maps for β0 (10−3 mm2/s, the intercept term in Eq. 9) with MARS/
GEE fitting, which are the estimated maps for the three eigenvalues at birth (a–c for λ1–λ3).
It was apparent that λ1 had higher values in central than peripheral white matter, while λ2
and λ3 assumed a reversed spatial distribution pattern. The minima and maxima used for
color bar were chosen as 5 and 95 % of the β0 values from the three eigenvalues,
respectively
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Fig. 8.
The estimated coefficient maps for β1 (10−3 mm2/(s × year), the velocity in PI from Eq. 9)
with MARS/GEE fitting for the three eigenvalues (a–c for λ1–λ3). All three eigenvalues
demonstrated reduction in the initial phase. The minima and maxima used for color bar
were chosen as 5 and 95 % of the β1 values from the three eigenvalues, respectively
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Fig. 9.
The estimated coefficient maps for β1 + β2 (the velocity in PII from Eq. 9) with MARS/GEE
fitting for the three eigenvalues (a–c for λ1–λ3). All three eigenvalues still remained
decreasing during PII but with slower magnitudes than during PI. The minima and maxima
used for color bar were chosen as 5 and 95 % of the β1 + β2 values from the three
eigenvalues, respectively
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Fig. 10.
The growth trajectories of λ1, λ2, and λ3 (a–c for ROI1–ROI3) and their differences (d–f for
ROI1–ROI3) in central white matter obtained with three different sized ROIs
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Fig. 11.
The growth trajectories of λ1, λ2, and λ3 (a–c for ROI1–ROI3) and their differences (d–f for
ROI1–ROI3) in peripheral white matter obtained with three different sized ROIs
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Fig. 12.
The growth trajectories of λ1, λ2, and λ3 (a–c for ROI1–ROI3) and their differences (d–f for
ROI1–ROI3) in ALIC obtained with three different sized ROIs
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Fig. 13.
The growth trajectories of λ1, λ2, and λ3 (a–c for ROI1–ROI3) and their differences (d–f for
ROI1–ROI3) in PLIC obtained with three different sized ROIs
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Fig. 14.
The growth trajectories of λ1, λ2, and λ3 (a–c for ROI1–ROI3) and their differences (d–f for
ROI1–ROI3) in ILF obtained with three different sized ROIs
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Fig. 15.
The growth trajectories of λ1, λ2, and λ3 (a–c for ROI1–ROI3) and their differences (d–f for
ROI1–ROI3) in SLF obtained with three different sized ROIs
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Table 1

The comparisons of the estimated DTI parameters at birth (β0), the growth velocities during PI (V1) and PII
(V2) for three eigenvalues (λ1, λ2, and λ3), and their differences D1 (λ1–λ2) and D2 (λ2–λ3) within three ROIs
of different sizes (ROI1, ROI2, and ROI3) between central and peripheral white matter

β0 (central/peripheral) V1 (central/peripheral) V2 (central/peripheral)

ROI1

  λ 1 1.777 ± 0.358/1.530 ± 0.088$$$ −0.181 ± 0.089/−0.343 ± 0.080$$$ −0.023 ± 0.038/−0.028 ± 0.011

λ 2 1.081 ± 0.174/1.248 ± 0.061$$$ −0.349 ± 0.192/−0.385 ± 0.052* −0.048 ± 0.042/−0.039 ± 0.009**

  λ 3 0.918 ± 0.187/1.049 ± 0.056$$$ −0.317 ± 0.187/−0.431 ± 0.066$$$ −0.047 ± 0.039/−0.038 ± 0.010**

D1 0.694 ± 0.230/0.281 ± 0.106$$$ 0.170 ± 0.163/0.041 ± 0.103$$$ 0.025 ± 0.029/0.012 ± 0.014$$$

 D2 0.164 ± 0.052/0.199 ± 0.075$ −0.034 ± 0.031/0.047 ± 0.040$$$ 0.000 ± 0.011/−0.002 ± 0.010

ROI2

  λ 1 1.702 ± 0.358/1.536 ± 0.091$$$ −0.175 ± 0.149/−0.343 ± 0.083$$$ −0.022 ± 0.037/−0.030 ± 0.014$$

  λ 2 1.107 ± 0.222/1.25 ± 0.074$$$ −0.306 ± 0.206/−0.384 ± 0.066$$$ −0.045 ± 0.042/−0.040 ± 0.011**

  λ 3 0.944 ± 0.217/1.067 ± 0.074$$$ −0.282 ± 0.202/−0.416 ± 0.085$$$ −0.044 ± 0.039/−0.039 ± 0.011**

 D1 0.593 ± 0.226/0.278 ± 0.100$$$ 0.132 ± 0.164/0.040 ± 0.100$$$ 0.023 ± 0.031/0.011 ± 0.016$$$

 D2 0.164 ± 0.050/0.190 ± 0.065$$$ −0.026 ± 0.039/0.034 ± 0.049$$$ 0.000 ± 0.013/−0.002 ± 0.011***

ROI3

  λ 1 1.620 ± 0.345/1.534 ± 0.092$$$ −0.171 ± 0.169/0.340 ± 0.082$$$ −0.021 ± 0.034/−0.030 ± 0.014$$$

  λ 2 1.116 ± 0.231/1.262 ± 0.090$$$ −0.278 ± 0.192/−0.387 ± 0.076$$$ −0.039 ± 0.040/−0.039 ± 0.013

  λ 3 0.954 ± 0.221/1.075 ± 0.088$$$ −0.263 ± 0.188/−0.412 ± 0.094$$$ −0.040 ± 0.038/−0.038 ± 0.012

 D1 0.503 ± 0.224/0.273 ± 0.098$$$ 0.108 ± 0.159/0.047 ± 0.098$$$ 0.018 ± 0.029/0.009 ± 0.017$$$

 D2 0.163 ± 0.047/0.186 ± 0.059$$$ −0.017 ± 0.044/0.026 ± 0.0526$$$ 0.002 ± 0.012/−0.001 ± 0.011$$$

*
(p<0.05,

**
p<0.01,

***
p<10−3,

$
p<10−4,

$$
p<10−5,

$$$
p<10−6)
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Table 2

The comparisons between PLIC and ALIC

β0 (PLIC/ALIC) V1 (PLIC/ALIC) V2 (PLIC/ALIC)

ROI1

  λ 1 1.442 ± 0.089/1.402 ± 0.042** −0.170 ± 0.054/−0.261 ± 0.063$$$ 0.008 ± 0.011/−0.029 ± 0.011$$$

  λ 2 0.930 ± 0.067/1.072 ± 0.029$$$ −0.260 ± 0.047/−0.342 ± 0.042$$$ −0.026 ± 0.009/−0.025 ± 0.007

  λ 3 0.746 ± 0.049/0.941 ± 0.031$$$ −0.229 ± 0.030/−0.312 ± 0.035$$$ −0.022 ± 0.009/−0.028 ± 0.009**

 D1 0.512 ± 0.136/0.330 ± 0.068$$$ 0.091 ± 0.089/0.082 ± 0.050 0.034 ± 0.013/−0.005 ± 0.012$$$

 D2 0.185 ± 0.061/0.131 ± 0.020$$$ −0.031 ± 0.035/−0.030 ± 0.031 −0.003 ± 0.011/0.003 ± 0.004***

ROI2

  λ 1 1.396 ± 0.114/1.397 ± 0.042 −0.180 ± 0.058/−0.270 ± 0.061$$$ 0.005 ± 0.012/−0.028 ± 0.011$$$

  λ 2 0.938 ± 0.075/1.079 ± 0.035$$$ −0.240 ± 0.046/−0.340 ± 0.039$$$ −0.024 ± 0.010/−0.022 ± 0.008

  λ 3 0.768 ± 0.055/0.948 ± 0.038$$$ −0.221 ± 0.035/−0.317 ± 0.038$$$ −0.022 ± 0.009/−0.027 ± 0.009$$$

 D1 0.459 ± 0.160/0.318 ± 0.072$$$ 0.061 ± 0.086/0.069 ± 0.058 0.028 ± 0.016/−0.006 ± 0.013$$$

 D2 0.169 ± 0.052/0.132 ± 0.024$$$ −0.018 ± 0.040/−0.023 ± 0.034 −0.002 ± 0.012/0.005 ± 0.005$$$

ROI3

  λ 1 1.363 ± 0.126/1.403 ± 0.093$$$ −0.180 ± 0.065/−0.254 ± 0.100$$$ 0.001 ± 0.014/−0.028 ± 0.015$$$

  λ 2 0.957 ± 0.079/1.113 ± 0.101$$$ −0.227 ± 0.046/−0.334 ± 0.062$$$ −0.022 ± 0.012/−0.027 ± 0.020$$

  λ 3 0.797 ± 0.065/0.972 ± 0.094$$$ −0.221 ± 0.043/−0.315 ± 0.061$$$ −0.021 ± 0.009/−0.030 ± 0.018$$$

 D1 0.406 ± 0.171/0.290 ± 0.084$$$ 0.047 ± 0.082/0.080 ± 0.083$$$ 0.022 ± 0.017/−0.001 ± 0.018$$$

 D2 0.160 ± 0.046/0.141 ± 0.034$$$ −0.006 ± 0.042/−0.019 ± 0.032$$$ −0.000 ± 0.012/0.003 ± 0.010$$

*
(p<0.05,

**
p<0.01,

***
p<10−3,

$
p<10−4,

$$
p<10−5,

$$$
p<10−6)
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Table 3

The comparisons between ILF and SLF

β0 (ILF/SLF) V1 (ILF/SLF) V2 (ILF/SLF)

ROI1

λ 1 1.811 ± 0.122/1.443 ± 0.061$$$ −0.373 ± 0.138/−0.287 ± 0.041$$$ −0.041 ± 0.031/−0.019 ± 0.012$$

λ 2 1.469 ± 0.093/1.289 ± 0.040$$$ −0.497 ± 0.096/−0.377 ± 0.036$$$ −0.058 ± 0.039/−0.036 ± 0.011$

λ 3 1.192 ± 0.108/1.050 ± 0.044$$$ −0.477 ± 0.105/−0.430 ± 0.068** −0.053 ± 0.034/−0.035 ± 0.010***

D1 0.343 ± 0.068/0.155 ± 0.035$$$ 0.121 ± 0.087/0.090 ± 0.040* 0.018 ± 0.030/0.017 ± 0.017

D2 0.278 ± 0.039/0.238 ± 0.067*** −0.024 ± 0.026/0.053 ± 0.051$$$ −0.004 ± 0.011/−0.001 ± 0.012

ROI2

λ 1 1.746 ± 0.138/1.460 ± 0.062$$$ −0.406 ± 0.146/−0.288 ± 0.056$$$ −0.028 ± 0.025/−0.018 ± 0.013$$

λ 2 1.456 ± 0.102/1.288 ± 0.051$$$ −0.473 ± 0.100/−0.369 ± 0.058$$$ −0.046 ± 0.033/−0.038 ± 0.012**

λ 3 1.201 ± 0.108/1.057 ± 0.048$$$ −0.448 ± 0.109/−0.409 ± 0.099*** −0.045 ± 0.030/−0.035 ± 0.010$

D1 0.291 ± 0.078/0.172 ± 0.044$$$ 0.064 ± 0.103/0.082 ± 0.054* 0.019 ± 0.024/0.020 ± 0.018

D2 0.256 ± 0.058/0.230 ± 0.056$ −0.028 ± 0.027/0.041 ± 0.063$$ −0.001 ± 0.012/−0.004 ± 0.013*

ROI3

λ 1 1.734 ± 0.143/1.470 ± 0.062$$$ −0.409 ± 0.143/−0.300 ± 0.059$$$ −0.025 ± 0.025/−0.020 ± 0.013**

λ 2 1.458 ± 0.108/1.277 ± 0.065$$$ −0.475 ± 0.100/−0.367 ± 0.063$$$ −0.041 ± 0.035/−0.039 ± 0.013

λ 3 1.207 ± 0.113/1.066 ± 0.051$$$ −0.451 ± 0.108/−0.402 ± 0.097$$ −0.040 ± 0.033/−0.034 ± 0.011***

D1 0.277 ± 0.078/0.193 ± 0.064$$$ 0.062 ± 0.101/0.068 ± 0.068 0.017 ± 0.023/0.018 ± 0.017

D2 0.253 ± 0.060/0.211 ± 0.057$$$ −0.026 ± 0.030/0.035 ± 0.062$$$ 0.000 ± 0.011/−0.005 ± 0.012$$$

*
(p<0.05,

**
p<0.01,

***
p<10−3,

$
p<10−4,

$$
p<10−5,

$$$
p<10−6)
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