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Abstract

Sphingosine kinase (SK) is a promising therapeutic target in a number of cancers, including

leukemia. Traditionally, SK has been measured in bulk cell lysates, but this technique obscures the

cellular heterogeneity present in this pathway. For this reason, SK activity was measured in single

cells loaded with a fluorescent sphingosine reporter. An automated capillary electrophoresis (CE)

system enabled rapid separation and quantification of the phosphorylated and nonphosphorylated

sphingosine reporter in single cells. SK activity was measured in tissue-cultured cells derived from

chronic myelogenous leukemia (K562), primary peripheral blood mononuclear cells (PBMCs)

from three patients with different forms of leukemia, and enriched leukemic blasts from a patient

with acute myeloid leukemia (AML). Significant intercellular heterogeneity existed in terms of the

degree of reporter phosphorylation (as much as an order of magnitude difference), the amount of

reporter uptake, and the metabolites formed. In K562 cells, the average amount of reporter

converted to the phosphorylated form was 39 ± 26% per cell. Of the primary PBMCs analyzed,

the average amount of phosphorylated reporter was 16 ± 25%, 11 ± 26%, and 13 ± 23% in a

chronic myelogenous leukemia (CML) patient, an acute myeloid leukemia (AML) patient, and a

B-cell acute lymphocytic leukemia (B-ALL) patient, respectively. These experiments

demonstrated the challenge of studying samples comprised of multiple cell types, with tumor

blasts present at 5 to 87% of the cell population. When the leukemic blasts from a fourth patient

with AML were enriched to 99% of the cell population, 19 ± 36% of the loaded sphingosine was

phosphorylated. Thus the diversity in SK activity remained even in a nearly pure tumor sample.

These enriched AML blasts loaded significantly less reporter (0.12 ± 0.2 amol) relative to that

loaded into the PBMCs in the other samples (≥1 amol). The variability in SK signaling may have

important implications for SK inhibitors as therapeutics for leukemia and demonstrates the value

of single-cell analysis in characterizing the nature of oncogenic signaling in cancer.
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Introduction

Sphingosine kinase (SK) is an important regulator of cell fate that converts sphingosine, a

lipid signaling molecule, which induces apoptosis, to sphingosine-1-phosphate (S1P), which

promotes cell survival, proliferation, and migration [1–3]. Because of its central role in

regulating cell survival, S1P overexpression has been implicated in a number of cancers,

including leukemia, prostate, breast, colon, pancreatic, and lung cancers [4, 5]. Leukemia is

one of the most prevalent cancers, and is the deadliest cancer for people below the age of 20

in the United States [6]. Targeting the SK pathway has been effective at inducing apoptosis

in multiple types of leukemic cells [7]. Inhibition of SK in cultured and primary leukemic

cells also increases their sensitivity to chemotherapy, even in cells that have become multi-

drug resistant [8, 9]. Notably, SK inhibitors induce apoptosis in primary acute myeloid

leukemia (AML) cells at a much higher rate than in healthy cells [8]. SK is also

overexpressed in chemotherapeutic-resistant CML cell lines [10] and is thought to regulate

drug resistance by increasing the stability of Bcr-Abl, the oncogenic fusion protein that is

the proximate cause of CML [11]. Drugs that target SK activity in cancer are currently in

multiple clinical trials and are especially promising for treating drug-resistant leukemia [12].

One challenge facing the development of novel cancer therapeutics is that cells from the

same tumor can have extraordinary phenotypic and functional heterogeneity [13, 14].

Intratumor heterogeneity has been demonstrated to have profound implications for disease

evolution, patient prognosis, and the development of drug resistance [15]. Despite the

important implications of tumor heterogeneity in treating leukemia [16–18], very little is

known about the variability of SK activity at the single-cell level in primary leukemia.

Conducting single-cell lipid kinase measurements in primary cells is difficult due to the

challenges in generating antibodies specific for endogenous lipids, limited availability of

patient samples, and a lack of robust technologies with single-cell limits of detection.

Microscopy and flow cytometry are powerful methods that have been commonly used for

single-cell analysis. In particular, phospho-specific flow cytometry, which utilizes

antibodies against phosphorylated proteins, has enabled characterization of the activity of

many kinases in primary samples [19, 20]. However, without commercially available

antibodies specific to sphingosine and S1P, SK activity cannot be directly measured using

these techniques. In addition, flow cytometry requires large numbers (104–106) of cells,

making the method unsuitable for patient specimens with small numbers of cells [21].

Microscopy has been utilized to measure single-cell enzyme activity with fluorescent protein

probes, but these probes must be genetically encoded, which limits their application in

primary cells [22]. Separation techniques capable of physically distinguishing sphingosine

and S1P, such as high performance liquid chromatography with mass spectrometry

detection, are commonly used to measure sphingolipids in ensemble samples of hundreds of

thousands of cells, but the limits of detection are far too high to detect these analytes in

single cells [23].
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Capillary electrophoresis (CE) with laser-induced fluorescence detection is a promising

technology for kinase activity measurements in single, primary cells. Typical CE limits of

detection for fluorescent species are in the sub-attomole level, sufficiently low to quantify

molecules from single cells [24, 25]. Single-cell CE has been utilized to measure lipid

metabolism and enzyme activity in a number of cell types [26–28]. However, the majority of

single-cell CE research has used immortalized cell lines for enzyme activity measurements.

Although these cell lines are a convenient and often useful model system, there is increasing

evidence that they may not resemble primary cells in terms of function, behavior, and

physiological signaling [29]. Indeed, among the few studies that have performed single-cell

CE analysis of enzymatic activity in primary cells, including rat brain neurons [30], human

airway epithelial cells [31], and human pancreatic tumor cells [32], at least two found

differences in activity between primary cells and cultured cells [31, 32]. There is a clear

need for studies applying CE measurements to primary cells to increase the availability of

this technology for clinically relevant measurements on cells.

This paper will describe the use of automated single-cell CE to characterize SK activity in

tissue-cultured cells of leukemic origin, PBMCs from leukemia patients, and purified

leukemic blasts. Assay performance was optimized in the leukemia-derived K562 cell line.

The metabolism of the fluorescent sphingosine was then quantified in these cells. Ensemble

measurements of frozen and fresh PBMCs from patients with leukemia were compared to

determine whether freezing cells altered SK activity in the primary cells. Phosphorylation of

the SF reporter was then measured in single PBMCs, which were composed of a mixed

population of leukemic blasts and normal leukocytes. Reporter uptake, phosphorylation, and

the number of fluorescent metabolites in each cell were measured in the PBMCs from CML,

AML, and B-ALL patients. SK activity was also measured in isolated leukemic blasts from

a fourth patient with AML. In total, over 100 patient cells were analyzed and SK

heterogeneity within each patient was characterized.

Experimental

Reagents and materials

Sphingosine 5/6-fluorescein (SF) and sphingosine-1-phosphate 5/6-fluorescein (S1PF) were

purchased from Echelon Biosciences Inc. (Salt Lake City, UT). Sodium chloride, potassium

chloride, magnesium chloride, calcium chloride, piperazine-1-ethanesulfonic acid (HEPES),

and glucose were acquired from Sigma-Aldrich Inc. (St. Louis, MO). Monosodium

phosphate, 1-propanol, methanol, isopropanol, and pre-cleaned glass slides (50 mm × 45

mm × 1.5 mm) were procured from Fisher Scientific (Pittsburgh, PA). Ethanol was acquired

from Decon Labs (King of Prussia, PA). Roswell Park Memorial Institute Media (RPMI)

was purchased from Cellgro (Manassas, VA) and Adoptive Immunotherapy Media (AIM-

V®) was acquired from Gibco (Grand Island, NY). Fetal bovine serum (FBS) was

purchased from Atlanta Biologicals (Lawrenceville, GA), human AB serum (HS) from

Gemini BioProducts, and penicillin/streptomycin from Gibco (Grand Island, NY). EPON

resin 1002F (phenol, 4,4'-(1-methylethylidene) bis-, polymer with 2,2'-[(1-methylethylidene)

bis (4,1-phenyleneoxymethylene)]bis-[oxirane]) was procured from Miller-Stephenson

(Sylmar, CA, USA). SU-8 developer (1-methoxy-2-propyl acetate) was acquired from
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MicroChem (Newton, MA, USA). Poly(dimethylsiloxane) (PDMS) (Slygard 184 Silicone

Elastomer) was purchased from Dow Corning (Midland, MI).

Fabrication of three-channel device for automated single-cell CE analysis

The three-channel system for physiologic buffer, air, and electrophoretic buffer was

fabricated from PDMS (Figure S1 Electronic Supplementary Material) [33]. The channel for

loading electrophoretic buffer was 3 cm in length, 0.5 cm in width, and 1.5 mm in depth.

The physiologic buffer channel was 3.5 × 0.3 cm, with circular reservoirs that were 1 cm in

diameter at both ends of the channel. The electrophoretic and physiologic buffer channels

were connected by a perpendicular 5 × 1 mm channel that was filled with air. The PDMS

channels were bonded to a 1002F-coated coverslip containing an array of 10 × 10 microwell

cell traps [34]. The cell trap array was placed at the center of the physiologic buffer channel.

The cell traps used to capture K562 and primary cells were 30 μm and 15 μm in diameter,

respectively. All cell traps were 20 μm in depth and separated from adjacent traps by 100

μm. The arrays of cell traps were fabricated using standard photolithographic procedures.

Coverslips were washed with water, ethanol, and then dried using nitrogen gas. Coverslips

were then plasma-cleaned for 45 min (PDC-001, Harrick), spin-coated with 1002F-10 for 30

s at 1100 rpm, and soft-baked for 30 min at 95°C. The 1002F-coated coverslip was then

covered with an iron oxide photomask and illuminated with a total dose of 600 mJ of light

using a UV exposure system (Oriel, Newport Stratford, Inc., Stratford, CT). The photoresist-

coated coverslip was subsequently baked at 95°C for 8 min, developed for 2 min in SU-8

developer, rinsed with isopropanol, and then hard-baked for 30 min at 120°C.

Isolation of primary peripheral blood mononuclear cells (PBMCs) from whole blood

De-identified patient peripheral blood samples were obtained from the University of North

Carolina Hematolymphoid Malignancies Tissue Procurement Facility under an institutional

IRB-approved protocol in accordance with the Declaration of Helsinki. The Tissue

Procurement Facility additionally provided information about the percentage of leukemic

cells for each patient. Peripheral blood samples were stored at room temperature and

processed using Ficoll-Paque PLUS density centrifugation within 24 h after extraction.

Briefly, 5 mL of Ficoll-Paque PLUS (GE Healthcare Bio-Sciences, Pittsburgh, PA) was

added to a sterile 15 mL centrifuge tube (Denville Scientific Inc., Metuchen, NJ). 8 mL of

whole blood diluted at least 1:1 in phosphate buffered saline (PBS) was gently layered on

the Ficoll-Paque PLUS, so as not to disturb the interface between the liquids. The tubes were

centrifuged for 20 min with the brake off at 900 × g in a swinging bucket centrifuge.

PBMCs were collected from the interface of the two layers and immediately washed twice

with PBS.

Cell culture

K562 cells, which were derived from a CML patient in blast crisis, were grown in RPMI

supplemented with 10% FBS, 50 mg/mL streptomycin, and 50 units/mL penicillin. Frozen

K562 cells were thawed and passed for one week before being utilized in single-cell

experiments. K562 cells were not used in assays past their 15th passage. Primary cells were

maintained in AIM-V® containing 10% heat-inactivated HS and 1% penicillin/
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streptomycin. Fresh primary cells were analyzed within 6 h of isolation from whole blood.

Between experiments, primary and cultured K562 cells were stored at 37°C in a humidified

incubator with 5% carbon dioxide.

Cell viability measurements

Viability was determined using a trypan blue exclusion assay. Cells were pelleted,

resuspended in PBS, and stained with a final concentration of 0.35% trypan blue. Viable

cells were counted using a hemacytometer 2–3 min after the addition of the trypan blue

stain. At least 100 cells were counted for each viability determination. The number of cells

per unit volume of buffer was determined by counting viable cells using a hemocytometer.

Enrichment of CD34+ AML blasts from PBMCs

Selection of CD34+ cells from Ficoll-Paque PLUS isolated PBMCs was performed using the

CD34 MicroBead Kit UltraPure (Miltenyi Biotec, Inc.) following the manufacturer's

protocol. To check for purity and viability, the cells were stained with a PE-conjugated anti-

CD34 antibody (555822; BD Biosciences) and DAPI, and then analyzed on a MACSQuant

flow cytometer (Miltenyi Biotec, Inc.).

Loading of SF into cells

For single-cell experiments, SF was loaded into cells by incubating 5 × 105 cells in 100 μL

culture media containing freshly diluted SF for 30 min. SF concentrations of 20 μM and 80

μM were used for reporter loading in K562 cells and primary cells, respectively. Cells were

stored at 37°C in a 5% carbon dioxide atmosphere during incubation with SF. Cells were

pelleted and then washed 5 × with 200 μL physiologic buffer (135 mM sodium chloride, 5

mM potassium chloride, 1 mM magnesium chloride, 1 mM calcium chloride, 10 mM

HEPES, and 10 mM glucose at pH 7.4). Cells were then resuspended in physiologic buffer

at a concentration of 1 × 106 cells/mL and immediately loaded into the arrayed cell traps.

Measurements of SK activity in PBMC lysates

For ensemble measurements of SK activity, 5 × 105 PBMCs were pelleted and resuspended

in culture media at a concentration of 5 × 106 cells/mL. The cells were then incubated with

80 μM SF for 1 h at 37°C and 5% carbon dioxide. During reporter incubation, cells were

gently resuspended every 15 min to minimize settling. After 1 h, cells were pelleted, washed

5 × with 200 μL physiologic buffer, and resuspended in 10 μL physiologic buffer. Cells were

lysed by adding 10 μL methanol and stored at −80°C until analysis. Lysate samples were

diluted in electrophoretic buffer (27 mM monosodium phosphate and 10% 1-propanol at pH

7.3) and analyzed using a custom-built CE system, described previously [33]. The sample

was separated in a 35 cm fused-silica capillary with an inner diameter of 30 μm. The field

strength was 450 V/cm, and laser-induced fluorescence detection was performed 4 cm from

the capillary inlet. Standards of SF and S1PF were used to identify analyte migration times.

Electropherograms were analyzed using a multiple peak fit function for Gaussian peaks

(OriginPro 8.1, OriginLab, Northhampton, MA).
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Capture of cells in three-channel device

Prior to the single-cell analysis, the three-channel device containing cell traps was mounted

on an inverted microscope (Ti-E, Nikon (Melville, NY)) with a computer-controlled

motorized stage (Ti-SER, Nikon). The stage was fitted with a temperature controlled stage

insert, maintained at 37°C for the duration of the experiment. The address of each cell trap

in the microwell array was calculated using a customized Python program (Wolfeboro Falls,

NH) [33]. Cells loaded with SF reporter were seeded into the microwells by placing 10 μL

of a solution of cells on the microwell array. After allowing the cells to settle into the cell

traps for 5 – 10 min, excess cells were rinsed from the array with physiologic buffer. The

trapped cells were then continually bathed in physiologic buffer at 35°C (1 mm/s flow

velocity). Each cell trap with a single cell was manually identified and its address input into

a customized program for subsequent analysis.

Single-cell analysis of SK activity with capillary electrophoresis (CE)

Automated single-cell analysis was performed as described previously [33]. Prior to

analysis, the inlet of a 35 cm, 30 μm i.d. capillary was manually aligned 50 μm above the

plane of the microwells. Upon start of the program, the following events occurred

sequentially under computer control. The microscope stage moved to the address of the first

cell, placing the cell directly below the inlet of the capillary (Figure S1 Electronic

Supplementary Material). The cell was lysed using a focused laser pulse [35] and 5 kV was

applied across the capillary for 1 s to electrokinetically inject the cellular contents. The

applied voltage was then set to zero for 1 s and the stage was moved to the center of the

electrophoretic buffer channel. During this stage movement, the capillary was transferred

through the air gap connecting the electrophoretic and physiologic buffer channel so that the

alignment of the capillary was not disturbed. In addition, the air gap prevented the

physiologic and electrophoretic buffers from mixing. Once the capillary was moved into the

electrophoretic buffer, a voltage of 18 kV was applied across the capillary for 55 s, 56 s, or

57 s to separate the cellular contents. The voltage was then set to zero for 1 s during which

time the capillary was moved back to the physiologic buffer and placed at the address of the

next cell to be assayed. This process was repeated until all of the cells in the array were

analyzed. A Python program controlled the motorized stage while all other tasks were

performed using customized software written in LabVIEW (National Instruments, Austin,

TX). Data was analyzed using a custom-built MATLAB program (Natick, MA) [36]. Cells

with fluorescence values that saturated the PMT were omitted from subsequent analysis.

Results and Discussion

Characterization of SK activity in tissue-cultured cells of leukemic origin

In order to characterize system performance using cells of leukemic origin, a tissue-cultured

cell line, K562 (derived from CML), was initially analyzed. K562 cells were incubated with

SF, washed, and trapped within arrayed microwells prior to analysis by automated CE [33].

The automated CE system was used to sequentially lyse, inject, and separate the contents of

single K562 cells in the microwell array (Figure S1 Electronic Supplementary Material).

Individual K562 cells were analyzed at a rate of 0.98 ± 0.07 cell/min, in order to fully

separate SF, S1PF, and additional fluorescent products without peak overlap from
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sequentially injected cells. 94 cells were measured over the course of five experiments. The

resulting electropherograms contained as many as three fluorescent peaks (Fig. 1a). The first

peak migrated at 33 ± 2 s, a migration time identical to that of SF standards. The second

peak co-migrated with standards of S1PF at 45 ± 2 s. The final peak, termed U50, was of

unknown identity and migrated at 50 ± 2 s. The separation efficiencies were 4000 ± 2000,

8000 ± 4000, and 8000 ± 4000 for SF, S1PF, and U50, respectively. The resolution was 5.3

± 1.1 for SF and S1PF and 2.3 ± 0.6 for S1PF and U50. The automated CE system enabled

fast and efficient separations on these nonadherent cells derived from leukemia.

In order to characterize SK activity in all of the analyzed K562 cells, a customized

MATLAB program was developed to identify peaks attributable to each cell and measure

their migration time, peak area, and full width at half maximum. The peak areas were then

compared to that of standards of known concentration to estimate the number of moles of SF

and S1PF found in each cell [36]. The number of moles of U50 was estimated by comparing

the peak area of the U50 peak to the average moles per peak area of SF and S1PF standards.

The majority of cells (79 ± 30%) formed S1PF, although in varying amounts (Fig. 1b). The

percentage of reporter converted to S1PF (S1PFmoles/(SFmoles+ S1PFmoles + U50 moles))

varied from 0% to 100% (Fig. 1c). Distinct subpopulations of cells were not readily

identifiable with respect to the percentage of S1PF formed. The amount of reporter loaded

into the cells varied by as much as four orders of magnitude, with an average of 6 ± 14 amol

per cell. The percentage phosphorylation of the reporter did not correlate with the total

amount of reporter loaded into the cell (coefficient of determination (R2) = 0.03) or the time

after the cell was loaded with SF (R2 = 0.08) (Figure S2a Electronic Supplementary

Material). Previous research has also indicated that the phosphorylation of the reporter was

not dependent on the amount of reporter loading or the time after loading [33]. This likely

indicates that the heterogeneity of single-cell SK activity obscures these trends.

When observed at the single-cell level, the metabolism of SF in K562 cells was extremely

heterogeneous. The average percentage of the reporter that was phosphorylated in K562

cells was 39%. However, only 18% of cells possessed 34 to 44% of the SF in the phospho

form, and nearly as many cells (17%) had either very high (>95%) or low <5%) levels of

phosphorylation. Single-cell measurements of SK activity provided a significantly richer

picture of sphingosine metabolism than that derived from population-averaged data. The

distribution of SK activity in the K562 cells was quite different from that previously

measured in U937 cells, a histiocytic lymphoma/sarcoma-derived cell line with myeloid

leukemia properties [33]. In the U937 cells, two cell populations were readily observed with

respect to SK activity, a high state (>80% of SF converted to S1PF) and a low state (<1% of

SF converted to S1PF). Most U937 cells (78%) existed in the high state, whereas only 9% of

K562 cells possessed >80% phosphorylated S1PF. Even though both cell lines were derived

from aggressive hematologic malignancies, SK activity varied greatly between these two

cell types. Both cell types did possess cells expected to be susceptible to SK inhibitors as

well as unresponsive to SK inhibitors.

The percentage of U50 formed in single K562 cells varied across the cell population by as

much as that for S1PF. 60% of K562 cells converted SF to U50 and within this population

there was significant heterogeneity in the percent of the reporter that was converted (Fig.
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1d). The average percentage of U50 formed with respect to total reporter for all K562 cells

was 12 ± 25%. Since U50 was not observed in cells that were not loaded with SF, U50 was

most likely formed from an unidentified enzyme acting on SF or a downstream metabolite

of the SK pathway (Figure S3 Electronic Supplementary Material). The identification of U50

awaits synthesis of standards of additional fluorescent metabolites of the sphingosine

signaling pathway. The number of moles of U50 produced in cells was weakly correlated

with S1PF (R2 = 0.46), the total amount of SF loaded into the cell (R2 = 0.26) and the

incubation time of the reporter in the cell (R2 = 0.22) (Figure S2b–d Electronic

Supplementary Material). The amount of U50 produced in cells was more strongly correlated

with the amount of S1PF formed rather than the total SF loaded into the cell suggesting that

U50 might be a downstream product of S1PF, such as hexadecenal fluorescein (Figure S3

Electronic Supplementary Material). The migration time of U50 also suggested that it

possessed a more polar chemical structure than SF, which additionally supports the

hypothesis that it might be a downstream product of S1PF.

Analysis of primary peripheral blood mononuclear cell (PBMC) populations

To evaluate the activity of SK in human primary cells, initial experiments focused on the

suitability of freshly frozen PBMCs from leukemic patients. These PBMCs contain a mixed

population of mononuclear blood cells, including immature leukemic blasts as well as more

differentiated tumor cells and normal lymphocytes, monocytes, and macrophages. Frozen

PBMCs were chosen as a tissue source due to the ready availability of frozen specimens.

However, frozen primary PBMCs can rapidly lose viability upon thawing [37].

Consequently, initial experiments focused on identifying the time span over which the cells

remained intact as determined by trypan-blue exclusion assays. Immediately upon thawing,

94 ± 2% of cells excluded trypan blue but this number dropped to 87 ± 2% after 4 h and to

71 ± 1% after 24 h. The number of cells in the culture volume also decreased by 69 ± 16%

over the first 24 h. These data suggested that cells should be assayed immediately after

thawing to maximize viability.

While the frozen primary cells might be viable immediately after thawing, their rapid

decline over 24 h suggested that the cells may be on a programmed pathway to death and not

suitable for use in signaling assays, particularly assays investigating apoptosis. To determine

whether SK activity was altered by freezing, SK activity was measured in cell lysates

prepared from fresh or thawed cells from the same leukemic patient. PBMCs were collected

from a patient, and divided into 2 samples. The first sample was incubated with SF, lysed,

and then assayed for formation of S1PF. The second sample was frozen for 24 h, thawed,

and then immediately incubated with SF and lysed. The lysate prepared from frozen cells

exhibited decreased conversion of SF to S1PF relative to the lysate from fresh cells (0% vs

10% of SF converted to S1PF) (Fig. 2a,b). The freshly prepared lysate also exhibited a

number of SF metabolite peaks that were not present on the electropherograms obtained

from the previously frozen cell lysate. Similar results were obtained for K562 cell lysates, in

which conversion of the SF reporter to S1PF and additional metabolites decreased by 46 ±

24% after being frozen and thawed. These data suggest that frozen primary cells (and frozen

tissue cultured cells) rapidly lose SK activity as well as other related enzymatic activities
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upon thawing and are not suitable for assay of the SK pathway. Therefore, fresh primary

cells were used for all subsequent assays.

Measuring single-cell SK activity in PBMCs of patients with leukemia

In order to characterize the activity of SK in primary samples, PBMCs of leukemic patients

were isolated from a patient with accelerated phase CML with 5% leukemic blasts (the other

white blood cells were leukemia-derived but more differentiated), a patient with relapsed

AML with 87% blasts, and a patient with de-novo B-ALL with 20% blasts. SK activity was

then measured in freshly isolated cells loaded with SF and without regard for the cell type

within the sample. A total of 22, 13, and 39 cells from a single CML patient, a single AML

patient, and a single B-ALL patient were analyzed, respectively. Due to the heterogeneity of

the samples, it was expected that 1, 11, and 8 of these cells were leukemic blasts, for CML,

AML, and B-ALL PBMC samples, respectively. Single-cell traces from each patient are

shown in Figure 3(a–c). All PBMC samples possessed cells with analytes that co-migrated

with SF and S1PF. Two cells from the CML patient and three cells from the AML patient

displayed up to five unidentified peaks that were named based on their migration times, U50

(50.6 ± 0.1 s), U53 (53.0 ± 0.2 s), U55 (54.8 ± 0.1 s), U57 (57.5 ± 0.5 s), and U60 (60.9 ± 0.6

s) (Fig. 3a). The number of peaks per cell varied within each patient, as well as between

patients (Fig. 3d). The total amount of reporter per cell varied from 1.7 ± 2 amol to 21 ± 80

amol for the patient samples, but was not significantly different between the three patient

samples (Table 1). These levels are similar to endogenous amounts of sphingosine, which

ranges from 5 – 30 amol per cell [38,39]. The percentage of SF converted to S1PF varied

considerably among the cells from all three patients (Fig. 3e). However, there were too few

cells to accurately measure the correlation between the amount of S1PF and the reporter

loading amount and time (Figure S4 and S5 Electronic Supplementary Material). In contrast

to U937 and K562 cells, the majority of PBMCs converted very little SF to S1PF (Fig. 3f).

None of the patients had significantly different levels of phosphorylation or production of

unidentified compounds despite the diverse disease states and dissimilar numbers of normal

vs tumor cells. These samples demonstrated the challenge of performing measurements on

patient samples comprised of very small numbers of mixed cell types. A future step for this

work will be to combine single-cell CE with fluorescence microscopy of immunostained

cells to distinguish cell types just prior to CE analysis. However, these data do demonstrate

the ability of the automated CE system to detect fluorescent sphingosine and its metabolites

in single primary cells.

Single-cell SK activity in isolated CD34+ AML blasts

In order to characterize SK activity in leukemic blasts, CD34+ leukemic cells were isolated

from an AML patient. CD34 is a leukemic stem cell marker expressed in a subset of AML

patients and CD34 expression is linked to poor prognosis [40]. An AML patient expressing

CD34 was identified by flow cytometry of the peripheral blood cells and the CD34+ cells

were then enriched by positive selection using magnetic-activated cell sorting (Fig. 4a). The

enriched cells were then examined by flow cytometry for viability and purity (Fig. 4b). 92%

of the cells were judged to be viable using DAPI exclusion, and 99% of the viable cells

expressed CD34. SK activity was then measured in this purified population of freshly-

isolated CD34+ leukemic cells.
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The CD34+ leukemic stem cells differed from the mixed PBMC populations by several

attributes. The CD34+ cells possessed a ten-fold lower amount of SF relative to the prior

samples despite being loaded with SF under identical conditions (Table 1). CD34+ cells are

known to express high levels of drug efflux pumps, so the lower amount of SF measured in

CD34+ cells may be due to higher levels of SF efflux [41, 42]. Despite containing less SF,

the average percent phosphorylation per cell was 19 ± 36%, which was comparable to the

PBMCs. A total of 18% of cells phosphorylated the reporter, at levels from 45% to 100%

phosphorylation (Fig. 4c). The percentage of SF converted to S1PF did not correlate with

the incubation time for SF within the cell (R2 = 0.02) and was not strongly correlated with

total SF loaded into the cell (R2 = 0.34) (Figure S6 Electronic Supplementary Material). SK

activity was highly variable when viewed at the single cell level even in this relatively pure

population of cells from a single patient. Moreover, a minor subpopulation of the cells

displayed very high SK activity relative to the other cells in the population. These results

support previous findings that there is immense phenotypic heterogeneity in leukemia [43],

and demonstrate that understanding the diversity of SK signaling in single primary cells will

be important to determine the suitability of SK inhibitors as treatments for leukemia.

In addition to displaying heterogeneous SK activity, the CD34+ cells also demonstrated

variable conversion of the reporter to the unidentified peak U50. 27 % of CD34+ cells

contained U50, at levels ranging from 23% to 100% of the reporter present (Fig. 4d–e). The

CD34+ cells possessed a significantly higher average percentage of U50 per cell than the

mixed PBMCs (Table 1). Interestingly, there was a greater average percentage of reporter

converted to U50 (27 ± 39%) in the CD34+ cells than that for S1PF in any of the primary

cells examined. It will be important to identify U50 in future studies to understand whether it

is a metabolite of S1PF, in which case SK inhibitors might still be effective against the U50-

generating cells. If U50 is a product of enzymes upstream of SK, however, then SK

inhibitors would likely not be effective in a patient such as this (Figure S3 Electronic

Supplementary Material). This work, in addition to existing studies [44], demonstrates the

necessity of fully characterizing multiple signaling pathways at the single-cell level in order

to identify the best therapeutic targets in individual patients.

Conclusion

Measurement of SK activity in primary and immortalized cells of the hematopoetic system

was optimized. Frozen cells were found to be inferior to fresh samples because freezing and

thawing resulted in a significant drop in SK activity as well as the activity of other enzymes

within this pathway. Thus fresh samples are critically important for accurate measurements

of SK signaling. SK activity was highly variable within single cells from freshly isolated

PBMCs. Since mixed populations of cells were present in each PBMC sample, the

heterogeneity may have reflected the diverse cell types within the sample. However, when

SK activity was measured in a nearly pure population of leukemic blasts, these cells also

demonstrated a significant level of heterogeneity in SK activity. The SK pathway was highly

active in a subpopulation of these CD34+ blasts cells; however, the majority of the cells did

not convert substantial quantities of SF to other metabolites in the SK pathway. These blasts

also generated significantly more of the unidentified compound U50 than the tissue cultured

cells or the PBMCs. A future goal of this work will be identification of the U50 compound
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and consequently the enzyme(s) responsible for converting SF into this metabolite. This may

enable identification of additional drug targets in leukemic cells.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
SF reporter metabolism in single K562 cells. (a) A representative electropherogram of a

single-cell experiment in which SF, S1PF, and U50 were separated in 18 K562 cells. (Inset)

An expanded region of the electropherogram shows the separation of the reporter and its

metabolites in 3 cells. (b) Percent of phosphorylated reporter (S1PFmol/(SFmol + S1PFmol +

U50 mol)) plotted against the total amount of reporter loaded (SFmol + S1PFmol + U50 mol)

into each cell (n = 94). (c) The distribution in the percentage of SF phosphorylated in K562

cells. (d) The percentage of SF converted to U50 (U50 mol/(SFmol + S1PFmol + U50 mol))

plotted against the total reporter loaded into a cell.
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Fig. 2.
Comparison of SF reporter conversion in fresh vs frozen PBMC lysates. (a) An

electropherogram showing the conversion of the SF reporter to S1PF and several

unidentified metabolites in a lysate prepared from fresh PBMCs. (b) An electropherogram

demonstrating the decrease in SF metabolism in a lysate prepared from frozen PBMCs.
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Fig. 3.
Measurements of reporter metabolism in single PBMCs from three patients with different

types of leukemia. (a–c) Electrophoretic traces from a CML patient with 5% leukemic blasts

(a), an AML patient with 87% leukemic blasts (b), and a B-ALL patient with 20% leukemic

blasts (c). (d) The distribution of the number of electropherogram peaks identified in each

cell for the different patients. (e) The percent of reporter phosphorylation (S1PFmol/(SFmol +

S1PFmol + U50 mol + U53 mol + U55 mol + U57 mol + U60 mol)) plotted against the total amount

of reporter loaded into each cell (SFmol + S1PFmol + U50 mol + U53 mol + U55 mol + U57 mol +

U60 mol) for each patient. (f) A histogram showing the percentage of S1PF relative to total

SF loaded in the PBMCs for each patient.
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Fig. 4.
Single-cell measurements in CD34+ cells isolated from the PBMCs of an AML patient. (a)

Flow cytometry data of the PBMCs prior to CD34+ enrichment by MACS. Side light scatter

(SSC) is plotted against phycoerythrin (PE) fluorescence. The cells were labeled with PE-α-

CD34+. (b) Flow cytometry data of the MACS-enriched CD34+ PBMCs. (c) Percent of

phosphorylated reporter (S1PFmol/(SFmol + S1PFmol + U50 mol)) plotted against the total

amount of reporter loaded into a CD34+ cell (SFmol + S1PFmol + U50 mol). (d) Histogram

showing the distribution of reporter phosphorylation and conversion to U50 (U50 mol/(SFmol

+ S1PFmol + U50 mol)). (e) The percent of reporter converted to U50 was plotted against the

total reporter loaded into a cell.
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Table 1

Properties of PBMCs and CD34+ cells for the four leukemic patients

Parameter Averages (per cell)

Cells % Blasts SF loaded (amol) Incubation time (min) % S1PF % U50 Total number of cells
assayed

CML patient PBMCs 5 21 ± 80 171 ± 7 16 ± 25 0.8 ± 2.5 22

AML patient PBMCs 87 13 ± 20 195 ± 4 11 ± 26 0.8 ± 2.5 13

B-ALL patient PBMCs 20 1.7 ± 2 185 ± 20 13 ± 23 0 ± 0 39

AML CD34+ 99 0.12 ± 0.2** 92 ± 20** 19 ± 36 27 ± 39* 45

p values were calculated by comparing all cellular measurements per patient between all 4 patients

*
p < 0.05;

**
p < 0.01
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