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Bronchoconstriction applies compressive stress to airway epithelial
cells. We show that the application of compressive stress to cultured
murine tracheal epithelial cells elicits the increased phosphorylation
of extracellular signal–regulated kinase (ERK) and Akt through an
epidermal growth factor receptor (EGFR)–dependent process, con-
sistent with previous observations of the bronchoconstriction-
induced activation of EGFR in both human and murine airways.
Mechanotransduction requires metalloprotease activity, indicating
a pivotal role for proteolytic EGF-family ligand shedding. However,
cells derived from mice with targeted deletions of the EGFR ligands
Tgfa and Hb-egf showed only modest decreases in responses, even
when combined with neutralizing antibodies to the EGFR ligands
epiregulin and amphiregulin, suggesting redundant or compensa-
tory roles for individual EGF family members in mechanotransduc-
tion. In contrast, cells harvested from mice with a conditional
deletion of the gene encoding the TNF-a–converting enzyme
(TACE/ADAM17), a sheddase for multiple EGF-family proligands,
displayed a near-complete attenuation of ERK and Akt phosphory-
lation responses and compressive stress–induced gene regulation.
Our data provide strong evidence that TACE plays a critical central
role in the transduction of compressive stress.
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Cells in the lung are normally subjected to a variety of
mechanical forces as a result of the dynamic nature of lung
function (1). These forces are small, however, compared with
the transepithelial pressure gradients generated during bron-
choconstriction in patients with asthma. We previously showed
that the application of transepithelial pressure gradients, similar
in magnitude to those found during asthmatic bronchoconstric-
tion, generates diverse cellular responses in primary bronchial
epithelial cells derived from rats or humans and grown in air–
liquid interface (ALI) culture conditions. Many of these responses
mimic the molecular events characteristic of asthmatic airway
remodeling (2–6).

Based on our previous observations, we deduced that stim-
ulation of the epidermal growth factor receptor (EGFR) is a key

component of events linking the mechanical compression of cells
to subsequent biochemical responses. Importantly, we also ob-
served an enhanced activation of EGFR directly resulting from
bronchoconstriction in the murine airway, linking cell culture
and the in situ response to mechanical loading (7). Here, we
adopted our ALI culture model for two distinct purposes, using
mice. First, uncontrolled genetic heterogeneity occurs among
human cell donors, which contributes to variability in responses
when studying human cells. Second, mice with targeted de-
letions of key components of the pathways under consideration
are available for probing the mechanisms of response, which
constitutes an alternative approach to using pharmacologically
based or antibody-based interventions. For example, we previously
showed that in normal human bronchial epithelial (NHBE) cells,
the application of compressive stress elicits a robust increase in
EGFR activation that is both ligand-dependent and metallopro-
tease-dependent (7, 8). However, because of the limitations
inherent in pharmacologically based or antibody-based interven-
tions, considerable ambiguity remains regarding the specific
ligands and metalloproteases involved in mechanotransduction
(7, 9).

EGFR ligands are produced as membrane-spanning propep-
tides, and are cleaved by cell-surface proteases (termed ‘‘shed-
dases’’) to release mature growth factors that bind EGFR (10).
Among known sheddases, TNF-a–converting enzyme (TACE/
ADAM17) is a major sheddase for TGF-a, amphiregulin,
epiregulin, and heparin-binding epidermal growth factor–like
growth factor (HB-EGF) (11–16). In the experiments described
here, we first showed that primary cultures of murine tracheal
epithelial cells (MTECs) transduce mechanical compression in
a manner similar to that in rat and human airway epithelial
cells. We then studied primary ALI cultures of murine tracheal
epithelial cells harvested from genetically manipulated mice, to
elucidate the molecular mechanisms controlling responses to
mechanical stress. Our results demonstrate redundancy in EGF-
family ligand contributions to mechanical stress–driven signal
transduction, and also demonstrate a critical role for TACE/
ADAM17 in the transduction of compressive stress by airway
epithelial cells.

MATERIALS AND METHODS

Animals

Wild-type C57BL/6 mice and B6129/SV F1 mice were purchased from Ta-
conic (Hudson, NY). R26Cre1 ER (B6;129-Gt(ROSA)26Sortm1(Cre/Esr1)Nat/J)
mice were purchased from Jackson Laboratory (Bar Harbor, ME). Heparin-
binding EGF (Hb-egf ) knockout mice and TGF-a (Tgf�) knockout mice
were prepared as described elsewhere (15, 17). Taceflox/flox mice were
previously described (18). Taceflox/flox mice were crossed with R26Cre1 ER
mice to generate Taceflox/flox R26Cre1 ER mice. For some experiments,
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B6129/SV F1 mice were crossed with R26Cre1 ER mice to generate
Tacewild/wild R26Cre1 ER mice. Mice of an appropriate genotype were
crossed with Taceflox/flox mice to produce littermates that were Taceflox/flox

R26Cre1 ER mice or Taceflox/flox R26Cre- ER mice. All mice were age-
matched and sex-matched, and when appropriate, littermate-matched. At
6–10 weeks of age, mice were killed by carbon dioxide narcosis, their
tracheas were removed, and cells were harvested. All procedures and
protocols using mice were approved by the Harvard Medical Area
Standing Committee on Animals.

Cell Culture

MTECs were isolated from mouse trachea and cultured on Transwell
membranes, establishing an ALI according to the method of You and
colleagues (19), with minor modifications. We seeded cells on 12-mm-
diameter, 0.4-mm-pore polycarbonate semipermeable membrane Trans-
well inserts (Corning, Cambridge, MA) in a 12-well plate format at
7–8 3 104 cells per well. Cells sufficient for six inserts were obtained
from 3–4 mice. Cells were cultured using MTECs plus medium (see
details in the online supplement) and 0.01 mM retinoic acid (Sigma-
Aldrich, St. Louis, MO) for 10–12 days, until they appeared confluent
according to phase microscopy. When confluence was achieved after 10–
14 days of culture, the medium was removed from the upper chamber of
the Transwell to establish an ALI. The lower part of the Transwell was
provided with fresh MTEC/NS (NuSerm) medium (see details in the
online supplement) and 0.01 mM retinoic acid (Sigma-Aldrich) every
2 days. On Day 14 after establishing the ALI, we performed the
experiments (see details in the online supplement). PCR was performed
with primers as indicated in Table 1.

Experimental Apparatus

MTECs grown on Transwells were exposed to transcellular compres-
sion, as previously described (2). At the onset of an experiment,
compressed cells were exposed to a transcellular gradient. Control cells
were similarly manipulated, but were exposed only to atmospheric
pressure. Approximately 20 hours before each experiment, the culture
medium was changed to MTEC basic medium.

Statistical Analysis

Results are expressed as means 6 SE. Two groups were compared
using the Student t test. Between-group comparisons of means were
examined using one-way ANOVA, followed by Tukey post hoc
analysis or two-way ANOVA. P , 0.05 was regarded as indicative of
a significant difference (*P , 0.05, **P , 0.01, ***P , 0.001).

RESULTS

MTEC Responses to Compressive Stress

MTECs exposed to compressive stress (see Figures E1A and
E1B) displayed an early and robust increase in ERK1/2
phosphorylation. This was an increase of 15.1 6 3.3-fold above
baseline, 20 minutes after applying 30 cm H2O compressive
stress (Figure 1A, P , 0.0001, ANOVA). The phosphorylation
of ERK1/2 displayed a prolonged peak response with the
maximal effect evident between 20 minutes and 4 hours. By 8
hours, the effect had begun to diminish, but was still present.
These results are similar to those in our previous report on

NHBE cells (5), except that in MTEC ERK1/2, the phosphor-
ylation was sustained for a longer period than in NHBE cells.
To examine the magnitude of dependence in this response, cells
were exposed to transcellular pressure gradients of 0, 7.5, 15, 30,
or 45 cm H2O for 20 minutes, and the phosphorylation of
ERK1/2 was used as the outcome measure (Figure 1B). In these
experiments, cells were derived from two different mouse
strains (i.e., C57BL6 and B6129F1). Because the genetically
manipulated mice used below were from a mixed C57BL6 and
SV129 background, we tested the B6129F1 mice to determine
whether strain-related differences in the response to compres-
sive stress would confound our analysis (Figure 1B). Cells from
the two strains were quite similar in terms of their response to
mechanical stress at transcellular pressures up to 15 cm H2O. At
30 and 45 cm H2O, the magnitude of the response was
significant, compared with no pressure in both strains, and
was lower by approximately 20% in cells derived from B6129F1
mice, but no statistically significant differences were evident
between strains. We found that the magnitude-dependence of
mechanical stress–induced ERK1/2 phosphorylation mirrored
that observed in NHBE cells (5).

We extended our findings on the response of MTECs in ALI
culture beyond that established in rat and human cells by
examining the phosphorylation of Akt in MTECs exposed to
compressive stress (30 cm H2O). The phosphorylation of Akt
increased, with a time course similar to that of ERK1/2. The
maximal effect was a 3.5 6 0.3-fold increase in the phosphor-
ylation of Akt at 30 minutes (Figure 1C; P , 0.0001, ANOVA).
We also examined the magnitude-dependence of the Akt phos-
phorylation response after exposure to transcellular gradients
of 0, 7.5, 15, 30, or 45 cm H2O for 30 minutes in cells from
C57BL6 mice. As was the case for ERK1/2, the increase in the
phosphorylation of Akt was dependent on the magnitude of trans-
cellular pressure gradient (Figure 1D; P , 0.0001, ANOVA).

Because we previously found that compressive stress in-
creased transcript levels for a panel of EGFR ligands in NHBE
cells (8), we tested whether similar changes occurred in MTECs.
Compressive stress (30 cm H2O) applied for 8 hours led to an
increase in expression of mRNA for multiple EGFR ligands
(Figure 1E). At 1 hour after the onset of compression, message
levels for HB-EGF were the most up-regulated (i.e., 3.2 6 0.4-
fold above baseline; P , 0.01, ANOVA). At 4 hours, amphi-
regulin was the most up-regulated (i.e., 7.5 6 0.7-fold above
baseline), followed by statistically significant increases in epi-
regulin, HB-EGF, and betacellulin. TGF-a and EGF transcript
levels were not significantly up-regulated by exposure to
compressive stress at any time point tested (Figure 1E).

Compressive Stress Drives Signal Transduction through

EGFR Signaling

To examine whether compressive stress induced the phosphor-
ylation of ERK1/2 and Akt through EGFR signaling, we used
AG1478, an inhibitor of the EGFR tyrosine kinase. Cells were

TABLE 1. REAL-TIME PCR PRIMERS

Gene Name Forward Primer (59/39) Reverse Primer (59/39)

GAPDH CATGGCCTTCCGTGTTCCTA TGCTTCACCACCTTCTTGATG

AREG TTAGGCTCAGGCCATTATGCA TCCCCAGAAAGCGATTCG

EREG GGGTCTTGACGCTGCTTTG GATCACGGTTGTGCTGATAACTG

HB-EGF GCCTCAGGAAATACAAGGACTACTG ACACCTGTGTCCGTGGTAACC

BTC CAACCAGAACACCAGAAACCAA GGTGGTACCTGTGCAGTTTTCC

TGF-a GGTTTTTGGTGCAGGAAGAGAA TCACAGCGAACACCCACGTA

EGF GACTGGATTGGCCGGAGAA CGCTCCCTCCAACAACAGA

Definition of abbreviations: AREG, amphiregulin; BTC, betacellulin; EGF, epidermal growth factor; EREG, epiregulin; GAPDH,

glyceraldehyde phosphate dehydrogenase; HB-EGF, heparin-binding epidermal growth factor–like growth factor.
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exposed to a compressive stress of 30 cm H2O for 20 minutes to
4 hours in the presence or absence of AG1478 (500 nM). We
found that the presence of AG1478 abolished both the early and
sustained compressive stress–induced phosphorylation of ERK1/
2 and Akt (Figures 2A and 2B). Thus we confirmed in MTECs

that compressive stress drives signal transduction through EGFR
signaling.

Taken together, the results in Figures 1 and 2 demonstrate
that murine tracheal epithelial cells respond to mechanical
stress with the activation of the same pathway that we identified

Figure 1. Murine tracheal epithelial cells

(MTECs) respond to compressive stress.

(A) Application of 30 cm H2O transcel-

lular pressure significantly increased ex-
tracellular signal–regulated kinase (ERK)

1/2 phosphorylation, with a peak 15.1 6

3.3-fold increase observed 20 minutes

after the onset of transcellular pressure
(n 5 4; P , 0.0001, ANOVA). The in-

crease in ERK1/2 phosphorylation by

compressive stress was sustained for 4
hours. (B) The increase in the phosphor-

ylation of ERK1/2 at 20 minutes was

dependent on the magnitude of the

transcellular pressure gradient. Statisti-
cally significant increases occurred at

30 cm H2O and 45 cm H2O, relative to

no pressure (n 5 4 for each strains; P ,

0.0001, ANOVA). Representative blots
are shown from four independent exper-

iments. (C ) The application of 30 cm

H2O transcellular pressure significantly
increased the phosphorylation of Akt,

with a peak 3.5 6 0.3-fold increase at

30 minutes after the onset of transcellu-

lar pressure (n 5 4; P , 0.0001,
ANOVA). The increase in the phosphor-

ylation of Akt by compressive stress was

sustained for 2 hours. (D) The phosphor-

ylation of Akt at 30 minutes increased in
proportion to the applied pressure (n 5

4; P , 0.0001, ANOVA). Representative

blots are shown from four independent
experiments. (E ) Compressive stress led

to an increase in multiple epidermal

growth factor receptor (EGFR) ligand

gene expression. Among the six ligands
examined, amphiregulin (AREG), epire-

gulin (EREG), heparin-binding epidermal

growth factor–like growth factor (HB-

EGF), and betacellulin (BTC) were signif-
icantly altered (n 5 4; P , 0.001 for four

EGFR ligands, ANOVA). TGF-a and epi-

dermal growth factor (EGF) were not

significantly up-regulated. Values are
expressed as mean fold changes with

standard errors. Significant differences,

as determined by Tukey post hoc analy-
sis, are indicated by asterisks (*P , 0.05,

**P , 0.01, ***P , 0.001). Results are

presented as means 6 SE. p-Akt, phos-

phorylated Akt; p-ERK, phosphorylated
ERK.
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in rat and human cells, and in constricted murine airways (2, 3,
5–7). This similarity provided the basis for our further study of
this model, to better understand how mechanical stress is linked
to the biological activation of airway epithelial cells in ALI
culture, using genetic manipulations available only in mice.

EGFR Ligands Play Redundant Roles in Mechanotransduction

To identify which EGFR ligands were responsible for the com-
pressive stress–induced phosphorylation of ERK1/2, we tested
tracheal epithelial cells derived from mice with targeted de-
letions of various EGFR ligands. Our first experiments were
performed using cells from mice with a targeted deletion of
Hb-egf. We had anticipated that this would be a key experiment,
because we previously found in NHBE cells that HB-EGF was
the EGFR ligand regulating the response to mechanotransduc-
tion (7). Cells derived from Hb-egf–deficient mice, along with
littermate control mice, were exposed to a transcellular pressure
gradient of 0, 7.5, 15, 30, or 45 cm H2O for 20 minutes, and the
phosphorylation of ERK1/2 was examined. Surprisingly, the
effect of compressive stress on the phosphorylation of ERK1/2
in these Hb-egf2/2 cells was not distinguishable from that ob-
served in cells derived from wild-type littermates (Figure 3A).
These data indicate a substantial functional difference in the
response to compressive stress between NHBE cells and
MTECs. Therefore, we explored the role of other EGFR
ligands.

Based on evidence that TGF-a signaling is involved in the
phosphorylation of EGFR in human airway epithelial cells (20),
we performed experiments using cells from mice with a targeted
deletion of Tgfa. Cells derived from mice with a deletion of Tgfa
were exposed to compressive stress (30 cm H2O) for 20 minutes,
alongside cells derived from wild-type littermate controls. We
found that the cells derived from mice with a targeted deletion of
Tgfa showed a diminished ERK1/2 phosphorylation response
relative to the response in cells derived from wild-type littermate
controls. The ratio of the ERK1/2 phosphorylation response in
cells with the Tgfa deletion to the phosphorylation response of
cells derived from mice without the deletion was 0.64 6 0.07 (P ,

0.001) (Figure 3B).
To investigate the involvement of additional EGFR ligands

in compressive stress–induced ERK1/2 phosphorylation, we
applied compressive stress (30 cm H2O) for 20 minutes to cells
derived from mice with the deletion of Tgfa in the presence
of mouse-specific neutralizing antibodies against epiregulin
(2.5 mg/ml) and amphiregulin (5 mg/ml), and examined the
phosphorylation of ERK1/2. We used those antibodies at a
concentration that was shown to be more than adequate to

prevent the activation of EGFR in other experiments (21). No
further difference was evident in the magnitude of the compres-
sive stress–induced ERK1/2 phosphorylation response in the pre-
sence or absence of these neutralizing antibodies (Figure 3C).

These observations may be explained by proposing that in
mice with the deletion of Tgfa, other EGFR ligands are
recruited to compensate for the loss of TGFa signaling. To test
this idea, cells from mice with or without the deletion of Tgfa
were exposed to compressive stress (30 cm H2O) for 4 hours,
and the levels of transcripts for amphiregulin, epiregulin, HB-
EGF, betacellulin, and EGF were measured. Cells from mice
with the deletion of Tgfa exhibited no differences compared
with wild-type mice in their transcripts for HB-EGF, amphir-
egulin, epiregulin, betacellulin, and EGF before the application
of compressive stress. These data indicate no baseline compen-
sation in ligand gene expression (Figure 3D). We found that the
basal level of threshold cycle values for EGF was much higher
than for other EGFR ligands, indicating that the expression of
EGF was much lower than that of other EGFR ligands.
Surprisingly, cells derived from mice deficient in Tgfa exhibited
a significantly greater induction of amphiregulin in response to
compressive stress than did wild-type mice, that is, a 1.8 6 0.1-
fold increase compared with the response observed in mice
without the deletion of Tgfa (P , 0.05) (Figure 3E). This
amplified response was mirrored in the epiregulin response,
although the magnitude of the differential effect did not reach
statistical significance. The responses for transcript levels of
HB-EGF, betacellulin, and EGF were essentially the same in
wild-type and Tgfa knockout mice exposed to compressive
stress.

Proteolytic Ligand Shedding Is Essential

for Mechanotransduction

Because all EGFR ligands are produced as membrane-spanning
proforms that are cleaved by cell-surface sheddases (10), we
examined whether proteolytic ligand shedding was required for
mechanotransduction in our model. Cells in ALI culture from
C57BL/6 mice were exposed to a compressive stress of 30 cm
H2O for 20 minutes in the absence or presence of one of two
sheddase inhibitors. In one set of experiments (Figure 4A) (1),
we used TAPI-2 (5 mM or 50 mM), a hydroxamate-based
inhibitor of matrix metalloproteases including TNF-a–converting
enzyme (TACE, also referred to as a disintegrin and metallopro-
tease 17, ADAM17) (22, 23). In the other set, we used GM6001
(10 mM), a broad-spectrum inhibitor of matrix metalloproteases.
The phosphorylation of ERK1/2 and Akt was measured as the
outcome indicator in both experiments. The concentrations of

Figure 2. Compressive stress

drives signal transduction
through EGFR signaling. (A)

Cells were exposed to com-

pressive stress (30 cm H2O)
for 20 minutes in the absence

or presence of AG1478

(500 nM). AG1478 strongly

attenuated the compressive
stress–induced phosphoryla-

tion of ERK1/2 and Akt. (B)

Cells were exposed to 30 cm

H2O for 4 hours in the absence
or presence of AG1478.

AG1478 strongly inhibited the

compressive stress–induced

phosphorylation of ERK1/2
and Akt.
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TAPI-2 were chosen on the basis of published reports (24, 25),
but we also tested the effect of TAPI-2 at 50 mM on the viability
of MTECs. In these experiments, incubation with 0.1% Triton-
X100 increased the concentration of LDH in the medium over
100-fold, whereas incubation with 50 mM TAPI-2 increased the
concentration of lactic dehydrogenase (LDH) in the medium less
than 0.1-fold. These data indicate a lack of toxicity for TAPI-2 at
50 mM. Moreover, we found that the treatment of MTECs with
TAPI-2 attenuated the compressive stress–induced phosphoryla-
tion of ERK1/2 and Akt in a dose-dependent manner. GM6001
also inhibited the compressive stress–induced phosphorylation of
ERK1/2 and Akt (Figure 4A).

Next, the transcript levels for EGFR ligand genes were
examined in the presence and absence of TAPI-2 (50 mM; see
protocol outlined in Figure E1, 2b). The treatment of cells with
TAPI-2 significantly ablated the compressive stress–induced
expression of epiregulin, amphiregulin, and HB-EGF (P 5

0.0001 for all three EGFR ligands, ANOVA) (Figure 4B). Thus,
in contrast to the weak effects of removing individual ligands on
mechanotransduction (Figure 3), these data suggest an absolute
requirement for the membrane cleavage of ligand precursors
from the cell membrane by a sheddase to initiate mechanical
signal transduction.

TACE Mediates Mechanotransduction

We hypothesized that among sheddases, TACE was the major,
if not only, enzyme responsible for the cleavage of EGFR ligand
precursors from the cell membrane in our system. Because
a targeted deletion of Tace leads to perinatal lethality (16), we
bred Taceflox/flox mice with mice that widely expressed Cre
recombinase under control of a tamoxifen-specific promoter
(R26CreER) (B6;129-Gt(ROSA)26Sortm1(cre/Esr1)Nat/J; Jackson
Laboratory). We isolated MTECs from the floxed mice, and

Figure 3. Cells derived from EGFR ligand

knockout mice remain responsive to com-
pressive stress. (A) Cells derived from mice

with or without the deletion of Hb-egf

were exposed to a transcellular gradient
of 0, 7.5, 15, 30, and 45 cm H2O for 20

minutes. A representative blot from two

independent experiments indicates no dif-

ference between these groups in their
response to compressive stress in ERK1/2

phosphorylation. (B) Cells derived from

mice with or without the deletion of Tgfa

were exposed to compressive stress
(30 cm H2O) for 20 minutes. Cells derived

from mice with the deletion of Tgfa

showed a significant decrease in the phos-

phorylation of ERK1/2, compared with
those without the deletion of Tgfa (n 5

3; P , 0.0001, ANOVA). Representative

blots are shown from three independent
experiments. Significant differences

according to Tukey post hoc analysis are

indicated by an asterisk (***P , 0.001).

Results are presented as means 6 SE. (C )
Cells derived from mice with the deletion

of Tgf� were exposed to compressive

stress (30 cm H2O) for 20 minutes in the

presence of both mouse-specific neutral-
izing antibodies (nAb) against EREG and

AREG (n 5 2). Neutralizing antibodies

against EREG and AREG did not inhibit
the compressive stress–induced phosphor-

ylation of ERK1/2. (D) Basal-level threshold

cycle (Ct) values for the expression of

EGFR ligands in wild-type (Wild) and Tgf�
knockout (KO) mice. No differences were

evident in basal-level Ct values for the

expression of EGFR ligands in wild-type

and Tgf� knockout mice. (E ) Cells derived
from mice with or without the deletion of

Tgf� were exposed to compressive stress

(30 cm H2O) for 4 hours. EREG, AREG, HB-
EGF, BTC, and EGF gene expression was

examined at 4 hours. Cells from mice with

the deletion of Tgf� showed an increased

expression of AREG in response to com-
pressive stress, compared with those from

mice without the deletion of Tgf� (n 5 3;

*P , 0.05).
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cultured them at an ALI with and without 4-OH tamoxifen
in the culture medium for various periods of time (Figure 5A).
We confirmed the deletion of TACE protein in tamoxifen-
treated MTECs from Taceflox/flox Cre1 ER mice by Western blot
analysis (Figure 5B). When cells were cultured in the presence
of tamoxifen and exposed to compressive stress, the phosphor-
ylation of ERK1/2 increased 13.7 6 2.9-fold in cells from
Taceflox/flox R26Cre2 ER mice, compared with 2.7 6 0.9-fold
in cells from Taceflox/flox R26Cre1 ER mice (P , 0.01) (Figure
5C). The phosphorylation of Akt increased 3.9 6 0.5-fold in
cells from Taceflox/flox R26Cre2 ER mice, compared with 1.5 6

0.4-fold in cells from Taceflox/flox R26Cre1 ER mice (P , 0.01)
(Figure 5D). These results indicate that in the presence of
tamoxifen, cells derived from Taceflox/flox R26Cre1 ER mice
showed a substantial (.80%) decrease in the response of
ERK1/2 and Akt to compressive stress relative to Cre2 cells,
consistent with a dominant role for TACE in the compressive
stress–induced activation of EGFR.

The incomplete attenuation of the mechanotransduction
response may have resulted from the presence of residual
TACE protein, or from the contributions of another metal-

loprotease to EGF-family shedding. To investigate the first
possibility, we measured mRNA for TACE in MTECs treated
with tamoxifen from Taceflox/flox R26Cre1 ER mice. TACE was
present at less than 0.2% of the concentration found in Taceflox/flox

R26Cre2 ER mice (data not shown). To test whether residual
TACE protein might account for the remaining ERK phos-
phorylation response, we prolonged the period of tamoxifen
exposure from 14 days to 19 days. This amount of time was
based on the reasoning that longer exposure to tamoxifen would
lead to a more complete deletion of TACE protein. However,
even with the longer period of incubation, no change was
evident in the phosphorylation of residual ERK induced by
compressive stress in cells from Taceflox/flox R26Cre1 ER mice
(data not shown), suggesting that contributions from other
proteolytic shedding mechanisms are likely to account for the
residual mechanotransduction.

Because the mechanoactivation of EGFR in human cells
appears to initiate an autocrine amplification loop (8), we
examined the effects of compressive stress on transcripts for
EGFR ligands in cells with or without the tamoxifen-sensitive Cre
promoter. Hence tamoxifen was included in all cell cultures. A

Figure 4. Compressive stress

drives signal transduction

through a metalloprotease-
dependent process. (A) Cells

were exposed to compressive

stress (30 cm H2O) for 20

minutes in the absence or
presence of TAPI-2 (5 mM or

50 mM), a hydroxamate-based

inhibitor of matrix metallo-

protease and tumor necrosis
factor a–converting enzyme

(TACE), or GM6001 (10 mM),

a broad-spectrum matrix met-
alloprotease inhibitor. TAPI-2

attenuated the compressive

stress–induced phosphoryla-

tion of ERK1/2 and Akt in
a dose-dependent manner.

GM6001 also inhibited the

compressive stress–induced

phosphorylation of ERK1/2
and Akt. (B) Cells were ex-

posed to compressive stress

(30 cm H2O) for 4 hours.
EREG, AREG, and HB-EGF gene

expression was examined at

baseline, in the presence of

TAPI-2 (50 mM), after 4 hours
of compression, and after 4

hours of compression with

TAPI-2. Values are expressed

as mean fold change 6 SE.
ANOVA indicated significant

differences between groups

(n 5 3; P 5 0.0001 for all
three EGFR ligands). Asterisks

indicate significant differences

according to Tukey post hoc

analysis. ***P , 0.001.
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significant decrease was evident in the compressive stress–
induced up-regulation of multiple EGFR ligands in cells from
Taceflox/flox R26Cre1 ER mice compared with those from Taceflox/flox

R26Cre2 ER mice (Figure 5E). The differential response to
compressive stress between cells derived from these strains was
lost when cells were cultured in the absence of tamoxifen (data
not shown), confirming the specific and pivotal role of TACE in
mechanoregulated gene expression. Because Cre recombinase
can be toxic (26, 27), we performed experiments to determine if
EGFR stimulation using recombinant EGF (thus bypassing
sheddases in the signaling cascade) had an impact on EGFR-
mediated signaling. In these experiments, the exogenous EGF in-

duced a similar degree of ERK1/2 phosphorylation in the presence
of the tamoxifen induction of Cre recombinase (Figure 5F).

DISCUSSION

Our study demonstrates that MTECs in ALI cultures respond to
compressive stress in a manner similar to, but not identical with,
human airway epithelial cells cultured under similar conditions.
During bronchoconstriction, as may occur in asthma, the con-
striction of smooth muscle generates a compressive force on the
order of 30 cm H2O on airway epithelial cells (28). We found that
a transepithelial cell layer pressure gradient of 30 cm H2O

Figure 5. The ablation of TACE in
MTECs decreases responses to compres-

sive stress. (A) 4OH-tamoxifen (1 mM)

was applied to culture media to induce

the expression of Cre recombinase at
indicated times. (B) Western blots of cell

lysates of MTECs from Taceflox/flox/

R26Cre1 ER and Taceflox/flox/R26Cre2 ER

mice, when cultured in the presence of
tamoxifen (1 mM). TACE protein is not

evident in cells cultured from Cre1 mice.

Representative blots are shown from four
independent experiments. (C, D) Cells

derived from Taceflox/flox R26Cre1 ER mice

and littermates Taceflox/flox R26Cre2 ER

mice, cultured in the presence of tamox-
ifen (1 mM), were exposed to compres-

sive stress (30 cm H2O) for 20 minutes.

Cells derived from Taceflox/flox/R26Cre1

ER mice showed a significant decrease
in the phosphorylation of ERK1/2 and

Akt induced by compressive stress (n 5

4; P , 0.0001 and P , 0.0001, respec-
tively, ANOVA). Representative blots are

shown from four independent experi-

ments. (E) The ablation of TACE in

MTECs decreases the mRNA expression
of EGFR ligands induced by compressive

stress. Cells derived from Taceflox/flox

R26Cre1 ER mice and Taceflox/flox R26Cre2

ER mice were exposed to compressive
stress (30 cm H2O) for 4 hours. The

expression of EGFR ligand genes was

examined at 4 hours. Values are
expressed as mean fold change 6 SE. A

Student t test showed significant differ-

ences between groups (n 5 4; *P , 0.05;

NS, not significant). Significant differ-
ences according to Tukey post hoc

analysis are indicated by asterisks (*P ,

0.05, **P , 0.01, ***P , 0.001; NS,

not significant). Results are presented
as means 6 SE. (F) Cells derived

from Taceflox/flox R26Cre1 ER mice and

Taceflox/flox R26Cre2 ER mice, cultured in

the presence of tamoxifen, transduced
signals stimulated by EGF in the same

fashion. Representative blots are shown

from three independent experiments.
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induced a peak response in the phosphorylation of ERK1/2
through EGFR signaling in MTECs. This finding is similar to
our previous findings in NHBE cells (5). We also found that
mechanical stress up-regulated the gene expression of EGF-
family ligands in MTECs, with a peak at 4 hours.

Some differences were evident in the response of MTECs and
NHBE cells. In MTECs, amphiregulin was most highly up-regulated
by compressive stress, whereas in NHBE cells, HB-EGF was most
highly up-regulated. However, both MTECs and NHBE cells ex-
hibited the activation of the same EGFR-dependent pathways in
response to compressive stress. This similarity (Figures 1 and 2)
provided a basis for using this model to elucidate how mechanical
stress is linked to the biological activation of airway epithelial cells,
using cells from genetically manipulated mice.

We first examined mice with a deletion of Hb-egf, based on
previous experiments in human cells where a neutralizing anti-
body to HB-EGF appeared effective at attenuating mechano-
transduction (7). Although we expected that cells derived from
these animals would not respond to compressive stress, we
found that the signal transduction response was not distinguish-
able from that observed in cells derived from littermate control
mice without the deletion. We considered that species differ-
ences might exist between humans and mice. In fact, Hb-egf was
not up-regulated in response to mechanical stress in MTECs.
We also speculate that mice born without Hb-egf may develop
compensatory pathways for signaling that replace Hb-egf.

Based on evidence that TGF-a plays a critical role in
autocrine EGFR phosphorylation in airway epithelial cell lines
(20) and that human bronchial epithelial cells shed TGF-a (9),
we explored mechanotransduction responses in cells harvested
from mice with a targeted deletion of Tgf�. We found that the
ERK1/2 phosphorylation response to compressive stress was
partially attenuated in these cells (z 36% reduction). This at-
tenuation was not further modified by the addition of neutral-
izing antibodies against the EGF-family ligands epiregulin and
amphiregulin.

Our study was limited insofar as blocking all EGF-family
ligands is impossible, because of the lack of availability of neu-
tralizing antibodies for all murine EGF family members. Taken
together, our data allow us to conclude that TGF-a plays a con-
tributing role in the phosphorylation of ERK1/2 induced
by compressive stress in MTECs, but the genetic deletion of
TGF-a alone only partly attenuates the mechanotransduction
response.

However, we know that other (likely multiple) EGFR
ligands could also contribute to mechanotransduction respon-
ses, based on the abundant expression of amphiregulin, epire-
gulin, and betacellulin. EGF is unlikely to play as important
a role, because the EGF mRNA in MTECs was minimally
detectable compared with that for TGFa, amphiregulin, epi-
regulin, HB-EGF, and betacellulin, and the expression of EGF
mRNA was not up-regulated by mechanical stress. We attemp-
ted to measure the direct release of EGFR ligands in our
system, but were unsuccessful. This failure likely occurred
because after EGFR ligands are released, the soluble ligands
are captured by EGFR, making detection in the cell superna-
tant difficult (29, 30). In our previous study of NHBE cells, to
detect EGFR ligands (EGF and TGF-a) in the cell-culture
medium, we needed to add a neutralizing EGFR antibody (9).
Because no mouse-specific neutralizing EGFR antibody was
available, we could not detect any EGFR ligands in our cell
supernatants.

Although we were unable to pinpoint a specific EGFR
ligand responsible for linking mechanical compression to bi-
ological signal transduction, all EGFR ligands are released from
cell membranes by sheddases (13, 31), that is, enzymes that

cleave membrane-bound precursors of a ligand, leading to
signal transduction in the microenvironment of its release. We
reasoned that an individual sheddase could impose a rate-
limiting step in the mechanotransduction cascade. Our initial
data were consistent with a pivotal role for shedding in
mechanotransduction, in that the inhibition of metalloproeases
with the small molecule inhibitors GM6001 and TAPI-2 abro-
gated the ERK1/2 and Akt phosphorylation responses to
mechanical stress (Figure 4). These findings were in agreement
with results from NHBE cells (7). However, because these
inhibitors are not specific for any single metalloprotease or class
of metalloproteases, our results did not allow us to determine
which specific sheddase links mechanical stimulation to down-
stream biological events.

Among known sheddases, tumor necrosis factor-a–converting
enzyme (TACE/ADAM17), we hypothesized, was the major
enzyme responsible for the cleavage of EGFR ligand precursors
from the cell membrane. TACE is a member of the ADAM
family, a group of zinc-dependent transmembrane metallopro-
teases (16, 32) and a major sheddase for TGF-a, amphiregulin,
epiregulin, and HB-EGF (11–13, 31). Tace knockout mice are
perinatal-lethal, and their phenotype resembles that of mice
with a targeted deletion of EGFR, sharing features with Tgf�-
deficient, Hb-egf–deficient, or amphiregulin-deficient mice (11,
14, 16, 33). The overlapping phenotypes of mice lacking these
growth factors and those lacking TACE support a critical role for
the soluble forms of EGFR ligands, and imply that the proteolytic
release of EGFR ligands is fundamental in EGFR signaling.

To test the role of TACE in mechanotransduction, we bred
floxed Tace mice (18) with mice expressing a tamoxifen-
inducible Cre recombinase (34). We induced Cre activity after
cells were isolated and in culture, based on the knowledge that
the activation of autocrine EGFR plays a key role in airway
epithelial proliferation. Thus we anticipated that cells har-
vested from mice in which Tace was already deleted by the
activation of Cre in vivo might not be viable for our cell-culture
experiments.

In control experiments, we found that incubating MTECs
derived from normal mice in ALI culture with 1 mM 4-OH
tamoxifen for 14 days (35, 36) had no impact on responses to
compressive stress. Therefore, the duration of tamoxifen expo-
sure needed for the removal of floxed Tace alleles would not
affect our results. Cells derived from mice with the floxed Tace
allele, when activated by tamoxifen, exhibited markedly de-
creased (. 80%) responses to compressive stress (Figure 5). In
contrast, cells from the same mice cultured in the absence of
tamoxifen transduced compressive stress in a normal fashion.
These results demonstrate that TACE is the dominant sheddase
necessary for the transduction of compressive stress through
the activation of EGFR. Our data do not allow us to distin-
guish between an increased activation of TACE by compressive
stress or simply greater access of already activated TACE to
membrane-bound precursor ligands. Further research will be
needed to determine the specific mechanisms at work.

The modest residual response of tamoxifen-treated MTECs
derived from Taceflox/flox R26Cre1 ER mice could involve the
manifestations of at least two possible mechanisms, residual
TACE protein activity or the contributions of an alternative
sheddase. Extending tamoxifen exposure to 19 days did not
resolve the residual mechanotransduction response, arguing
against a measurable contribution from residual TACE protein,
which should diminish with prolonged tamoxifen exposure. In
a murine model of asthma, both ADAM10 and TACE were
overexpressed in the lungs (37). Because ADAM10 can shed
EGFR ligands, including TGF-a (38) and HB-EGF (39), ADAM
10 could be responsible for the residual response to compressive
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stress. Consistent with this explanation, recent studies demon-
strated that ADAM10 plays a role in the TGF-a processing of
Tace-deficient cells (40), and ADAM10 is a major sheddase for
betacellulin (31, 41), which was one of the EGF-family ligands
up-regulated by compressive stress in MTECs.

Recent evidence suggests that a variety of stimuli can trigger
the activation of EGFR in airway epithelium, and that EGFR
plays important roles in airway biology. Thus the demonstration
of a dominant role for TACE as a sheddase in airway epithelium
has potentially broad implications. Several lines of evidence link
the activation of EGFR and asthma, and in particular, the
remodeling of airway epithelium in animals (42) and human cells
(43, 44). We reported that EGFR-dependent mechanosignaling
contributes to mucous cell hyperplasia in response to repeated
bouts of compressive stress (45). TACE was previously linked to
the regulation of mucin gene expression in cultured human
epithelial cells (20), although the link was only definitively
documented in the NCI-H292 cell line. Another study demon-
strated that TACE mediates cell proliferation via the shedding of
amphiregulin in response to cigarette smoke, again in NCI-H292
cells (46). Our study (to the best of our knowledge, for the first
time) definitively identified a dominant role for the TACE-
dependent activation of EGFR in primary airway epithelial cells
grown under well-differentiated conditions in ALI cultures.

Our data extend previous findings by demonstrating that
compressive stress also initiates the phosphorylation of Akt in a
pressure-dependent manner (Figure 1). Studies of the ovalbumin-
induced allergic asthma murine model showed that the serine
phosphorylation of Akt is part of the ‘‘asthma-like’’ response
observed in these mice (47). The finding that mechanical stress
can provoke this asthma-related signal echoes previous obser-
vations that mechanical stress responses in airway epithelial
cells mimic many of the molecular events characteristic of
asthmatic airway remodeling (2–6). Although redundant
EGFR ligands appear to occur in the signaling cascade, the

cleavage of these ligands is largely restricted to TACE, making
it a potential target for limiting airway remodeling, as is known
to occur in patients with asthma. (Figure 6). Further work will
be needed to determine if TACE activity is regulated biochemi-
cally or by variations in the access of EGFR ligands to TACE.

In conclusion, we demonstrate in MTECs that the compres-
sive stress–induced phosphorylation of ERK1/2 and Akt
through EGFR signaling is a metalloprotease-dependent pro-
cess (Figure 6). Our data indicate a dominant role for TACE as
the key sheddase involved in mechanically driven signal trans-
duction in MTECs. These findings provide new insights into the
mechanisms regulating mechanotransduction in MTECs.
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