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Since the 1989 discovery that mutations in the cystic fibrosis
transmembrane conductance regulator (CFTR) gene cause cystic
fibrosis (CF), there has been substantial progress toward under-
standing the molecular basis for CF lung disease, leading to the
discovery and development of new therapeutic approaches. How-
ever, the earliest impact of the loss of CFTR function on airway
physiology and structure and its relationship to initial infection and
inflammation are poorly understood. Universal newborn screening
forCF in theUnitedStates represents anunprecedentedopportunity
for investigatingCF clinicalmanifestations very early in life. Recently
developed animal models with pulmonary phenotypic manifesta-
tions also provide a window into the early consequences of this
genetic disorder. For these reasons, the National Heart, Lung, and
Blood Institute (NHLBI) convened a working group of extramural
experts, entitled “Future Research Directions in Early CF Lung Dis-
ease” on September 21–22, 2010, to identify future research direc-
tionsofgreatpromise inCF.Thepriorityareas identified included(1)
exploring pathogenic mechanisms of early CF lung disease; (2)
leveraging newborn screening to elucidate the natural history of
early lung disease; (3) developing a spectrum of biomarkers of early
lung disease that reflects CF pathophysiology, clinical outcome, and
response to treatment; (4) exploring the role of genetics/genomics
(e.g., modifier genes, gene–environmental interactions, and epige-
netics) in early CF pathogenesis; (5) defining early microbiological
events in CF lung disease; and (6) elucidating the initial airway in-
flammatory, remodeling, and repairmechanisms in CF lung disease.
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Cystic fibrosis (CF) is a life-shortening autosomal recessive dis-
order caused bymutations in the gene encoding the cystic fibrosis
transmembrane conductance regulator (CFTR) (1, 2). CFTR is
an anion channel that influences the composition and quantity
of liquid on the surface of epithelia. Significant advances have
increased understanding of CFTR structure and function and
how mutations disrupt function (2). Survival and quality of life
have improved, through better management of nutrition and
respiratory infections, rather than through interventions that
target the basic defect. Promising therapies directed to correct-
ing dysfunctional CFTR (3, 4) are being tested in older children
and adults with CF, but their effectiveness in infants and young
children remains unexplored.
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AT A GLANCE COMMENTARY

Scientific Knowledge on the Subject

Emerging evidence suggests that lung disease begins very early
in life in cystic fibrosis (CF), although it is initially “silent”
without overt signs and symptoms of a progressive disease
process. The nature of CF lung abnormalities in the first years
of life remains poorly understood, and the possibility of
preventing or delaying the onset of disease through early
intervention has scarcely been explored. A new frontier in
CF, made possible by the early diagnosis of CF with newborn
screening, is to understand and characterize presymptomatic
lung disease in infants and young children, leading to early
interventions to mitigate disease progression at stages when
therapeutic intervention or prevention may be most effective.

What This Study Adds to the Field

This review provides a summary of recommendations from
an NHLBI workshop convened to review the progress and
direction of CF research and to identify and prioritize the
research opportunities that hold the most promise to pro-
vide new mechanistic insights into the genesis and evolution
of early CF lung disease.
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Because lung disease causes most CF morbidity and mortality,
much research has focused on understanding the pathophysiologi-
cal cascade of events progressing fromCFTRmutations to irrevers-
ible lung damage (Figure 1). Impaired eradication of bacteria early
in life induces a predominantly neutrophilic inflammatory re-
sponse that injures the lung (5, 6). Airway remodeling and airway
obstruction ensue (7). The temporal sequence from loss of CFTR
function to initial bacterial airway infection, and the impact of
environmental factors such as viruses on this process, are not clear.

Since 2010, newborn screening for CF has been universal in the
United States and many other countries (8), providing an unprec-
edented opportunity to longitudinally monitor disease progression
(6, 9) and evaluate emerging therapeutic approaches from infancy
(3, 4, 10). New CF animal models (11–14) provide a pulmonary
phenotype for studying the origins of disease. In addition, re-
searchers can employ improved and emerging technologies to
measure airway physiology, structure, and disease progression
(10, 15–22). These factors position the field to address questions
about the initiating events of CF lung disease. With several prom-
ising therapies on the horizon, it is imperative that the pathogen-
esis of early lung disease be elucidated so that future interventions
can prevent and not simply treat CF lung disease. For this reason,
the National Heart, Lung, and Blood Institute (NHLBI, Bethesda,
MD) convened a workshop on September 21–22, 2010 to review
the progress of CF research and to prioritize research opportuni-
ties (Table 1) that promise to provide mechanistic insight into the
genesis and evolution of early CF lung disease.

PRIORITY 1: EXPLORE PATHOGENIC MECHANISMS
OF EARLY CF LUNG DISEASE

CF lung disease is a multistep process. Immediately after birth, CF
lungs may have a host defense defect that impairs bacterial eradica-
tion (14) and induces inflammation and airway remodeling. At some
point, airways become chronically infected, and the cycle of infec-
tion, inflammation, and remodeling accelerates to obstruct and de-
stroy airways. Loss of CFTR could also affect multiple individual
processes along the pathway, leading toward structural damage.
Elucidating discrete responsible mechanisms is also made difficult
by the spatial and temporal heterogeneity of the disease (22).

The field is now positioned to begin elucidating the initial
defects that trigger lung disease and define the directional con-
nections among the many reported defects. Three animal models
(11–13, 23) are available to study mechanisms—pigs, ferrets,
and mice; each can generate in vitro models for dissecting mo-
lecular mechanisms and comparison with humans. Differences
and similarities among CF models may inform investigators
about mechanisms in early disease. Potential research opportu-
nities include the following:

d Elucidate the defect(s) that impairs host defense in the
newborn lung.

d Identify the sequence of events that causes progression of
airway disease and learn how loss of CFTR alters the
process.

d Investigate cross-species comparisons to clarify early path-
ological events.

d Define mechanisms underlying the heterogeneity of CF
lung disease.

PRIORITY 2: LEVERAGE NEWBORN SCREENING TO
ELUCIDATE THE NATURAL HISTORY AND CLINICAL
MANIFESTATIONS OF EARLY CF LUNG DISEASE

Study of presymptomatic CF infants identified by newborn
screening will allow characterization of the earliest manifesta-
tions of the disease, including the relationship between lung in-
fection and inflammation (6, 7, 9, 22), stratification by mutation
subclass (2, 24), follow-up throughout the life span (6, 25), and
intervention before irreversible disease develops (4, 10, 15, 24,
25). Technologies to elucidate features of CF physiology (air-
way surface liquid generation, mucus clearance, etc.) (16, 17)
and disease biomarkers (9, 18–20) are in place. New CFTR
modulators (4, 10, 24) and interventions that alter fluid and
electrolyte transport (3, 4, 10, 16, 24, 26) will serve as valuable
tools for better understanding early CF lung disease and estab-
lishing validated biomarkers and clinical end points in young,
presymptomatic patients. Creating clinical sample repositories

Figure 1. The steps hypothesized to be relevant to the progression

from dysfunctional cystic fibrosis transmembrane conductance regula-

tor (CFTR) to initial infection and inflammation and eventual develop-
ment of airway structural damage are described. At each step, genetic

and environmental modifiers can operate to alter outcome. The micro-

graph displays a bronchial airway from an individual with CF with the

hallmark pathological findings including airway obstruction with mu-
cus and inflammatory cells and peribronchial inflammatory response.

TABLE 1. RESEARCH PRIORITIES FOR EARLY CF LUNG DISEASE

1. Explore pathogenic mechanisms of early CF lung disease

2. Leverage newborn screening to elucidate the natural history and clinical

manifestations of early CF lung disease

3. Develop biomarkers of early lung disease that reflect CF pathophysiology,

clinical outcome, and response to treatment

4. Identify the role of genetics, genomics, and epigenetics in early CF disease

pathogenesis

5. Define early microbiological events in CF lung disease and how they lead

to chronic infection

6. Elucidate the initial airway inflammatory responses, innate and adaptive

immune responses, and mechanisms of repair/remodeling in early CF

lung disease

Definition of abbreviation: CF ¼ cystic fibrosis.
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from subjects with early CF will enable future research. Poten-
tial research opportunities include the following:

d Develop data and specimen (e.g., DNA, plasma) reposi-
tories beginning in the newborn period to expedite re-
search.

d Elucidate the natural history and clinical manifestations of
early CF lung disease.

d Develop new and improved technologies to monitor dis-
ease progression and outcome.

d Determine the mechanisms responsible for pulmonary ex-
acerbation in early CF.

PRIORITY 3: DEVELOP BIOMARKERS OF EARLY LUNG
DISEASE THAT REFLECT CF PATHOPHYSIOLOGY,
CLINICAL OUTCOME, AND RESPONSE TO TREATMENT

Characterization of lung disease in very young patients is challeng-
ing (15, 22, 25) because CF lung disease likely starts in the small
airways (22), where early changes are physiologically and struc-
turally difficult to measure . Early lung disease in CF is hetero-
geneous, with various degrees of air trapping and atelectasis (9,
21, 22, 27). Although imaging studies cannot visualize airways
less than 1 mm in cross-section, the presence of structural changes
in small airways can be visualized as trapped air even before any
measurable changes in air flow (9, 21, 22). The use of bronchoal-
veolar lavage (BAL) has provided significant insight into early
infection and inflammatory responses (5, 6, 21). Studies have
assessed peripheral airway physiology in infants and preschool
children by lung function testing, using the raised volume rapid
thoracic compression (RVRTC) technique and the lung clear-
ance index, which represent promising techniques that may be-
come useful measures of small airway obstruction (6, 9, 15, 21,
28). Although promising, many of these procedures expose
infants to ionizing radiation (computed tomography, CT) (29)
or require sedation (BAL, CT, RVRTC), increasing cost/risk
and reducing usefulness for therapeutic trials. Thus, there is a crit-
ical need for minimally invasive measures of early lung disease
that reflect early CF pathophysiology, clinical outcomes, and
responses to treatments. There is also a need to develop bio-
markers that can discriminate levels of CFTR function and reflect
its impact on ion transport and airway function (26). Potential
research opportunities include the following:

d Establish reliable clinical or physiological end points for
evaluating the efficacy/safety of novel therapies.

d Identify new and improved biomarkers of disease onset,
progression, and severity that reflect clinical outcome or
response to treatment.

d Elucidate the connections between structural changes and
physiological abnormalities, using new or improved tech-
nologies adapted for use in infants and young children.

PRIORITY 4: EXPLORE THE ROLE OF GENETICS,
GENOMICS, AND EPIGENETICS IN EARLY CF LUNG
DISEASE PATHOGENESIS

The relationship between CFTR genotype and pulmonary disease
severity does not show a close correlation (30, 31). Several factors
account for this complexity. First, many distinct CFTR mutations
exist. Second, different mutations disrupt CFTR to variable
extents. Third, transcriptional regulation of CFTR gene expres-
sion is spatially and temporally controlled and may vary as dis-
ease progresses. Fourth, several modifier genes and genomic

regions influence lung disease severity (31, 32). Fifth, microRNAs
(33) may play a significant role in disease modification, but have
been little investigated in CF. Sixth, infection, inflammation, and
other factors might produce epigenetic changes including histone
acetylation, gene methylation, and other alterations (34, 35). Sev-
enth, environmental factors account almost equally to genetic
factors for variation in lung disease; unique exposures contribute
the majority of the effect (36).

Several advances provide an opportunity to probe this com-
plexity and decipher how these factors influence CF lung disease.
These include next-generation sequencing technologies, genome-
wide methods for assessing epigenetic modifications (35), and
methodologies for understanding gene networks. The reservoir
of naturally occurring mutations in CF centers and databases
provides an important resource for study (2, 37), although efforts
would benefit from expanding detailed genotypic and phenotypic
resources and banked samples. Recently developed pig (14) and
ferret (11) CF models and newer murine models (12, 13) provide
powerful new opportunities for evaluating mechanisms of dis-
ease and therapies. Potential research opportunities include
the following:

d Expand knowledge of genetic heterogeneity and diversity
of CFTR mutations linked to functional and phenotypic
consequences.

d Identify modifier genes.

d Use genetic studies to gain mechanistic insights into CF
biology.

d Identify gene–gene and gene–environmental interactions
in early lung pathogenesis.

d Define epigenetic signatures in early life that predict dis-
ease status later in life.

d Identify regions of the genome that regulate CFTR tran-
scription and other relevant genes and determine their
influence on disease severity.

d Define microRNAs and small interfering RNAs influenc-
ing development and function of airway cells in early CF
lung disease.

PRIORITY 5: DEFINE MICROBIOLOGICAL EVENTS IN
EARLY CF LUNG DISEASE AND HOW THEY LEAD TO
CHRONIC INFECTION

Bacterial airway infection and the resulting inflammation cause
lung function decline (2, 6, 38). Antiinfective therapy has im-
proved survival, but treatment remains inadequate: bacterial lin-
eages persist despite countless antibiotic courses; antibiotics only
reduce bacterial load, which rebounds off therapy (39); and an-
tibiotic responses wane over time (39, 40). New ideas about CF
microbiology (Figure 2) have come from the use of non–culture-
based detection techniques, studies on microbial interactions,
progress in understanding pathogen evolution, and studies on
biofilms (15, 41, 42). Better understanding CF microbiology could
improve outcomes in chronically infected patients.

Defining how CFTR mutations cause infection susceptibility
and identifying bacteria causing infection remain critical tasks.
Research has focused on Pseudomonas aeruginosa (Pa) (38,
43) because Pa acquisition is associated with mortality and lung
function decline (44, 45). However, non–culture-based techniques
on upper airway samples have revealed a multitude of bacterial
species (42). Identifying which species are actually present in
CF lungs, and determining which contribute to disease, remain
major questions. Other major challenges include identifying
factors that promote the transition from early transient to
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chronic endobronchial infection, resistant to eradication. Iden-
tifying the nature and diversity of bacterial genetic adapta-
tions, pivotal host–bacteria interactions, and microbiological
changes that occur during pulmonary exacerbation (46) could
suggest therapeutic strategies. Key research directions include
the following:

d Define how CFTR mutations cause susceptibility to infec-
tion, reservoirs of infecting bacteria, timing of infection
onset, and organisms involved.

d Investigate microbial diversity in the early CF lung and
identify organisms causing disease.

d Characterize key bacterial and host factors pivotal to the
transition from acute to chronic infection.

d Develop new agents with activity against bacteria in chronic
infections, or that enhance the activity of existing drugs.

d Identify mechanisms and biomarkers of exacerbations and
develop new treatment approaches that improve patient
management and outcomes.

PRIORITY 6: ELUCIDATE THE INITIAL AIRWAY
INFLAMMATORY RESPONSE, INNATE AND ADAPTIVE
IMMUNE RESPONSES, AND MECHANISMS OF REPAIR/
REMODELING IN EARLY CF LUNG DISEASE

Current understanding of how the CF airway changes over the first
year(s) of life including composition of the microbiome, innate im-
munity, injury and repair remains rudimentary, but it is likely that
inflammatory responses are central to the development of early air-
way disease (6, 7, 47). Recent advances in lung biology, including
delineation of molecular programs underlying lung development
and responses to injury and remodeling (48), recognition of the
critical role of airway epithelial cells in inducing and regulating
innate and adaptive immunity in the lung (49), and recognition of

the fact that resolution of inflammation in the lung is an active,
regulated process (50), provide novel tools for understanding early
pathogenesis in the CF airway. Improved knowledge of inflam-
matory processes has obvious implications, both for insight into
disease pathogenesis and for development of novel antiinflam-
matory therapeutics. Potential research opportunities include
the following:

d Identify the primary pathogenetic locus (or loci) that un-
derlies the dysregulated inflammatory milieu of the CF
airway.

d Define molecular and cellular mechanisms responsible for
developmental, inflammatory, innate and adaptive immu-
nity, repair, and remodeling abnormalities of the early CF
airways.

d Develop validated biomarkers for assessing dysregulated
airway inflammation, immunity, injury, and remodeling in
early CF.

CONCLUSIONS

Emerging evidence suggests that CF lung disease begins in infancy
and is initially “silent” without overt signs or symptoms. By the
time symptoms appear, the disease process is established. Thus,
understanding how loss of CFTR predisposes airways to infection
and initiates the cascade of inflammation, remodeling, and airway
obstruction is critical for developing new therapeutic and preven-
tive strategies. New CF animal models and technologies for dis-
ease characterization are in place and can provide insights to
inform future human studies of primary prevention and/or miti-
gation of CF lung disease in infancy and early childhood. The
priority areas that this workshop identified provide a roadmap for
better understanding the earliest stages of CF lung disease and
preventing or delaying its onset.
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