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Abstract

Problem—Inflammatory biomarkers are associated with preeclampsia (PE) and poor fetal

growth; however, genetic epidemiologic studies have been limited by reduced gene coverage and

the exclusion of African American mothers.

Method of study—Cases and controls (N = 1646) from a pregnancy cohort were genotyped for

503 tagSNPs in 40 genes related to inflammation. Gene-set analyses were stratified by race and

were followed by a single SNP analysis within significant gene sets.

Results—Gene-level associations were found for IL6 and KLRD1 for term small for gestational

age (SGA) among African Americans. LTA/TNF and TBX21 were associated with PE among

European Americans. The strongest association was for PE among European Americans for an

upstream regulator of TNF with RR = 1.8 (95% CI 1.1–2.7).

Conclusion—Although previous studies have suggested null associations, increased tagging and

stratification by genetic ancestry suggests important associations between IL6 and term SGA for

African Americans, and a TNF regulator and PE among European Americans (N = 149).
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Introduction

Hypertensive disorders of pregnancy and poor fetal growth often co-occur1 and may share

underlying pathology.2 Hypertensive disorders of pregnancy, including gestational

hypertension (GHTN) and preeclampsia (PE), occur in up to 20% of pregnancies3 and are a

leading cause of maternal mortality.4 Pregnancies complicated by hypertension are at

increased risk of stillbirth, poor fetal growth, and preterm birth.1,5 The prevalence and health

consequences of poor fetal growth depend largely on the metric of assessment6 and the

specific etiology.7 However, low birth weight is consistently associated with increased

infant mortality.8 Each outcome has also been associated with later risk of cardiovascular

disease in the mother.9–11

Hypertension in pregnancy and poor fetal growth may share common placental pathology

including shallow or inadequate placentation.2,12 Adequate placentation requires remodeling

of the spiral arteries in the decidua to allow adequate blood flow to the placenta.12,13 With

PE, there is poor to absent vascular remodeling in the myometrium and decidua. For

pregnancies complicated by poor fetal growth, vascular remodeling is more evident but is

diminished in depth and extent.14 Placental invasion and development are dependent on

tightly regulated local inflammatory processes.2,15 In particular, the interaction between

fetal trophoblasts and maternal decidual cells is mediated by maternal natural killer (NK)

and T-cell activity.16,17 In addition to mediating placentation, inflammatory cytokines may

be released as a result of hypoxia and ischemic–reperfusion injuries which result from

inadequate placentation.13,18 In fact, women with either outcome exhibit altered

inflammatory biomarkers both preceding15,19,20 and at the time of diagnosis.2,15,21

The extensive placental growth and uterine wall remodeling that occur during normal

gestation may additionally be influenced by cell cycle genes that regulate cell growth and

division in rapidly growing tissue such as the placenta.22,23 Human and animal placental

expression studies suggest that cell cycle genes may differ in expression or function in

women with hypertension in pregnancy or small for gestational age (SGA).24,25

Although a fetal genetic component has been identified for both hypertension in pregnancy

and fetal growth, these disorders also have a maternal genetic component.26,27 Very few

candidate gene studies have examined poor fetal growth. Studies of PE, while more

numerous, have largely been dominated by genes in the renin angiotensin, coagulation, and

angiogenic pathways.28 Candidate gene studies for other pathways have been limited, have

focused on relatively few markers per gene without accounting for up- and downstream

regions, and have often lacked control for population stratification.29 To address these

limitations, we conducted a study nested within the pregnancy, infection, and nutrition (PIN)

cohort, a biracial pregnancy cohort in North Carolina. Our focus was on genes related to

inflammation and cell cycle pathways.
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Methods

Study participants were drawn from the PIN cohort, which was established to assess

antenatal risk factors for a variety of reproductive outcomes.30 Women were enrolled

between August 1995 and June 2005 from prenatal clinics at Wake County Human Services

Department, Wake Medical Center and the University of North Carolina (UNC) Hospital.

Women were ineligible if they were less than 16 years old, did not speak English, lacked a

telephone, were carrying more than one fetus, or did not plan to continue care at the

recruitment hospital.

Outcome and covariate data were collected through self-administered questionnaires,

telephone interviews during pregnancy, and abstraction of maternal and infant medical

records. Maternal blood for genetic analysis was collected during the first study visit. All

participants gave consent, and the study was approved by the Institutional Review Boards of

UNC School of Medicine and Wake Medical Center.

Of those enrolled, 3539 women (68.5%) consented to genetic analysis. Eligibility for

genotyping in the present study also included collection of a suitable bio-specimen (N =

3289), self-reported race as White or African American (N = 3075) and recorded date of

delivery (N = 3065). These eligibility criteria resulted in 3065 (59.3%) women who were

eligible for selection. From the eligible population, 1646 pregnancies were selected for

genotyping. Attempts were made to genotype all eligible cases. Missing or inadequate

samples resulted in (N, % of eligible): 216 (90.4%) SGA, 398 (95.2%) GHTN, and 170

(91.9%) PE cases being included in the study. Although GHTN and PE cases were exclusive

case definitions, pregnancies complicated by SGA could also have a diagnosis of GHTN or

PE. Control births (N = 918) were selected from the remaining eligible women.

Among the 1646 samples genotyped, 11 individuals were dropped due to fewer than 95% of

markers successfully called. Exclusions were also made for congenital anomalies (N = 24),

stillbirths (N = 10), and unintentional duplicate samples (N = 3). As a result of these

exclusions, 1598 women were available for analysis.

Outcome Assessment

Small for gestational age status was defined as birth weight below the 10th percentile for

gestational age, stratified by infant race, sex, and maternal parity based on percentiles from

1989 US births.31 As a proxy measure for impaired fetal growth, SGA may not

appropriately classify preterm infants6 and may misidentify constitutionally small infants as

SGA. In as much as common causes may exist for preterm birth and poor intra-uterine

growth, term SGA was considered as an additional phenotype.

Gestational hypertension and PE were assessed using evidence of new hypertension after 20

weeks and proteinuria abstracted from antenatal charts and discharge diagnoses. Prior to

2002, hypertension during pregnancy was defined using a relative increase of 30 mmHg in

systolic blood pressure (BP) or a 15 mmHg increase in the diastolic BP from a woman's

baseline blood pressure. Following American College of Obstetrics and Gynecology

(ACOG) recommendations in 2002, the definition of hypertension was changed to an

Harmon et al. Page 3

Am J Reprod Immunol. Author manuscript; available in PMC 2014 June 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



absolute cut point of systolic BP ≥140 mmHg or diastolic BP ≥90 mmHg.3 Diagnoses in this

study reflect the clinical criteria in use at the time of the pregnancy. While the newer ACOG

criteria reduces the number of women who receive a diagnosis of PE, the positive predictive

value for adverse maternal and infant outcomes is similar for the two sets of criteria.32

GHTN was defined as new onset hypertension following 20 weeks in the absence of

proteinuria. Pregnancies with evidence of GHTN that developed proteinuria later in

pregnancy were classified as PE. PE was defined as new onset hypertension (using the

criteria appropriate at the time of pregnancy) and evidence of proteinuria. Women with

preexisting hypertension, or hypertension before 20 weeks, were excluded from both the

case and control groups for all analyses of GHTN and PE.

DNA Extraction and Genetic Analysis

Maternal blood was drawn at a study visit in the second trimester. Buffy coat fractions were

isolated from fresh whole blood and stored at –80°C in CPT tubes. DNA was extracted

using Applied Biosystems automated DNA extractor and Qiagen (Gentra, Valencia, CA,

USA) Puregene chemistry.

Thirty inflammatory and ten cell cycle genes (546 SNPs) were selected as candidate genes.

TagSNPs were selected using TagZilla33 for two population (Eurpoean and Yoruban,

HapMap build 27) with a 20 kb upstream and 10 kb downstream margin, restricting to minor

allele frequencies ≥10% in at least one population and linkage disequilibrium (LD) r2 > 0.8.

A custom 1536 Illumina GoldenGate plate was designed which also included SNPs from

genes in the angiogenesis and apoptosis pathways.

Genotyping was conducted at the University of North Carolina Mammalian Genotyping

Core (Chapel Hill, NC, USA), and genotypes were called with Illumina GenomeStudio

software (Illumina, San Diego, CA, USA).

Poor genotyping quality (<95% of individuals called) resulted in the loss of 43 SNPs.

Further quality control was conducted on the remaining 503 SNPs using blinded PIN

samples and standardized controls from Corriel Utah family trios. There was one instance of

a single base pair genotyping discrepancy found among 199 blind samples, and there were

no instances of Mendelian errors among 21 trios examined. Hardy–Weinberg equilibrium

was assessed using SAS 9.234 among non-cases stratified by genetic ancestry. One SNP

(IL2: rs10027390) significantly violated HWE (P < 10–5) in African American non-cases

and was dropped from analysis for this ancestry group.

In tagging two populations, inclusion of redundant tagSNPs with high LD in one ancestral

population was necessary to adequately capture variation in the other population. In order to

examine the linkage between both typed and untyped markers in this study population,

heatmaps were created using Haploview,35 and long-range LD with untyped SNPs was

explored using SNAP36 with the 1000 Genomes Project Pilot 1 data.

Genetic Ancestry

Differences in the allelic frequency in genes associated with inflammation have been

reported among Whites and African Americans in the United States.37 Birth weight8 and the
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incidence of PE3 also vary by self-reported race, raising the possibility of confounding by

genetic ancestry. Genetic ancestry was therefore assessed using ancestry informative

markers (AIMs) (N = 148) that have been used in a similar population in North Carolina.38

STRUCTURE was used to calculate a continuous genetic ancestry variable assuming two

underlying populations.39 The calculated ancestry variable was used to dichotomize the

population into European American and African American ancestry groups using a cut point

that corresponded with self-reported race. All analyses were stratified by genetic ancestry

and also included continuous percent ancestry.

Statistical Analysis

We employed a two-stage approach to identify associations between inflammatory and cell

cycle genes, and the outcomes of SGA, term SGA, GHTN and PE. Stage 1 utilized the SNP

set kernel association test (SKAT) with a linear kernel.40 This approach is analogous to

logistic regression with an additive genetic model. SKAT was chosen because it permits

SNP interactions within a gene, allows adjustment for covariates, and accounts for SNPs

with opposing effects (protective or risk) within a gene. We included all markers within a

given gene as a SNP set, including markers within the upstream and downstream margins. If

genes were positioned within 25 kbp of each other, they were analyzed together. Genes with

single SNPs (cyclin H (CCNH), transforming growth factor beta 3 (TGFB3), and beta 1

(TGFB1), MDM2 oncogene (MDM2)) or SNPs chosen solely for replication (interleukin(IL)

1A, interleukin 1B) were not included in the Stage 1 analysis. Individuals with missing

genotype information on any SNPs in a set were dropped from the Stage 1 analysis. On

average, 99% of genotyped individuals were included in each SNP set, with a minimum of

91%. Analyses were conducted for each outcome with uncomplicated term births as the

control group (‘Disease Free’ column in Tables I and II). For GHTN and PE, women with

chronic hypertension were excluded from both the case and control group.

Covariates considered were maternal age, body mass index (BMI), maternal smoking,

parity, and a continuous measure of socioeconomic status. A false discovery rate (FDR)41 of

20% was used to identify SNP sets which advanced to Stage 2 analysis. P-values from

SKAT were transformed to Q42 values using R (p.adjust, FDR)43 accounting for the number

of SNP sets analyzed (N = 31).

Among the genes that advanced to Stage 2 analysis, individual SNP associations were

measured. Given the relatively common outcome of GHTN (14% in the underlying PIN

cohort, Table S1), associations were measured using risk ratios from a log-linear risk model.

Dominant genetic models were used unless the smallest genotype cell size was >5. Each

outcome was compared to a control group, which included all genotyped pregnancies

without the outcome of interest (‘Control’ columns in Tables I and II). For the outcome of

term SGA, only term births were included in the control group.

Inverse probability of selection weighting was used so that the estimates are generalizable to

the entire eligible population. Briefly, a logistic model was used to calculate the probability

that an eligible woman (N = 3065) was selected for genotyping (N = 1646) based on all

covariates in Table I, and other study-related, demographic and pregnancy-related variables.
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The inverse of this probability was then used to weight the model. Robust variances were

used, although these likely overestimate the true variance.44

Top-ranking SNPs from Stage 2 were reported based on the consistency of the observed

association across related outcomes (SGA and term SGA) as well as between genetic

ancestry groups. Analyses were stratified on genetic ancestry and additionally adjusted for a

continuous ancestry variable.

Results

The final analysis dataset included 1598 women. Tables I and II present the demographic

characteristics of the case and control groups for SGA and hypertensive disorders of

pregnancy, respectively. Women who consented and were successfully geno-typed were

similar to the underlying PIN cohort (Table S1) and were predominately White (62.6%),

well educated (51.9% with more than high school education), non-smokers (74.4%) with a

mean age of 26.1 years, and a mean BMI of 26.5 kg/m2. Although the distribution of some

covariates differed by self-identified race, the differences were not as pronounced between

cases and controls within strata of genetic ancestry (Tables I and II). Adjustment for any or

all of the covariates in Table I failed to change the single SNP point estimates more than

10% (results not shown). Therefore, we present estimates adjusted only for genetic ancestry.

Stage 1: Gene-Set Analysis in SKAT

SNPs were combined into 31 SNP sets. Due to proximity on the genome, tumor necrosis

factor (TNF) and lymphotoxin α (TNF superfamily member 1)(LTA), IL-13 (IL13) and IL-4

(IL4), and cyclin-dependent kinase inhibitor 2A (CDKN2A) and 2B (CDKN2B) were

considered as single SNP sets. Four SNP sets met our FDR criteria of 20% in Stage 1. IL-6

(IL6) (q = 0.17) and killer cell lectin-like receptor subfamily D, member 1 (KLRD1) (q =

0.17) were associated with term SGA among African Americans, and T-box 21 (TBX21) (q

= 0.05) and LTA/TNF (q = 0.05) were associated with PE among European Americans. No

SNP sets met the FDR criteria for SGA overall or GHTN (Table III).

Stage 2: Single SNP Analysis

There were 55 individual SNPs within the SNP sets that passed FDR criteria in Stage 1, and

eight additional SNPs not included in Stage 1 that were assessed in Stage 2 analyses (Tables

IV and V). Variant allele frequencies and genotype frequencies for SNPs reported in Tables

IV and V can be found in Tables S2–S5. Single SNP results for all genes and outcomes can

be found in Tables S6 and S7.

Term SGA

In Stage 1, IL6 and KLRD1 were associated with term SGA in African Americans. Single

SNP associations within IL6, however, were generally consistent in both ancestral groups,

although slightly weaker for European Americans (Table IV). The strongest single SNP

association for term SGA for both ancestry groups was seen for a group of three IL6 SNPs

(rs1548216, rs2069843, and rs2069849), all having risk ratios in the range of 1.9–2.4. This

group of SNPs is in full LD (r2 = 1) among European Americans and partial LD in African
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Americans (r2 = 0.72– 0.85) (Fig. 1). An additional group of SNPs upstream of IL6 was also

associated with an increased risk of term SGA of similar magnitude for both African and

European Americans (rs6963444, rs7784987, and rs3087221).

For KLRD1, however, single SNP associations were not similar across the two ancestry

groups. In Euro pean Americans, the tagSNPs represent a single block of high LD, except

for two SNPs which were quite rare in European Americans (rs10772256 and rs7301562)

(Fig. 2, Table S2). Seen as a block, there was an overall null association with term SGA for

European Americans. In contrast, among African Americans, a number of SNPs were

relatively strongly associated with term SGA. In particular, rs10772256 and rs7301562

(which were in high LD, r2 = 1) were associated with a decreased risk of term SGA (RR =

0.5, 95% CI 0.3–0.9). Additionally, rs3759270 was associated with a substantially decreased

risk of term SGA (RR = 0.4, 95% CI 0.3–0.8). Finally, two SNPs in perfect LD (rs3809214

and rs2302489) were associated with an increased risk of term SGA (RR = 1.6) among

African Americans.

Preeclampsia

LTA/TNF and TBX21 were associated at the gene level with PE, but only for European

American women. Moreover, the single SNP results were generally null for African

Americans (Table V). LTA and TNF are quite close on chromosome 6 (6p21.3), and tagging

for LTA also captured regions of the adjacent gene nuclear factor of kappa light polypeptide

gene enhancer in B-cells inhibition-like 1 (NFKBIL1). Single SNP results for tags within

NFKBIL1 were generally null. Among European Americans, two SNPs in LTA that were in

high LD (r2 = 0.99) (Fig. 3a), rs909253 and rs1041981, were associated with an increased

risk of PE (RR = 1.5 and 1.4). A missense SNP in LTA rs2229094 was associated with a

decreased risk of PE (RR = 0.6, 95% CI 0.4–1.0). In TNF, rs1800629, an upstream SNP that

is thought to upregulate TNF expression,45 was found to increase the risk of PE (RR = 1.8,

95% CI 1.1–2.7).

TagSNPs for TBX21 captured two upstream SNPs which were closer to an adjacent gene

TBK-binding protein 1 (TBKBP1) (rs2013383 and rs1808192). These two SNPs are in

moderate LD with each other (r2 = 0.68) (Fig. 3b) and have long-range LD extending

through TBKBP1 with very little pairwise or long-range LD with typed or untyped SNPs in

TBX21. The two TBKBP1 SNPs were associated with a decreased risk of PE RR = 0.6. For

tagSNPs within TBX21 itself, the associations were null.

Discussion

We examined 40 genes related to inflammation and cell cycle pathways, and their

associations with SGA, GHTN and PE in a biracial North Carolina popula tion. There were

no significant associations for any of the cell cycle genes. However, a number of interesting

and novel associations were found for inflammatory gene variants. Among African

American women, IL6 and KLRD1 were associated with term SGA. Single SNP associations

within IL6 suggest that a similar, though weaker, association may exist for European

Americans. For the outcome of PE, associations within LTA and TNF were seen for
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European American women. Two SNPs within a novel gene, TBKBP1, were associated with

a decreased risk of PE among European American women only.

We report gene-level associations among African Americans only within the term SGA

phenotype, suggesting that these associations are mediated by pathways unrelated to

prematurity. It is unclear why distinctive association patterns emerged for African

Americans and Whites; however, it may reflect distinct phenotypes, or possibly interactions

with social or environmental exposures that are differentially distributed across these two

populations. IL6 was chosen as a candidate gene due to evidence that in early pregnancy IL6

may influence the ability of the placenta to become adequately implanted.46IL6 has been

examined previously in relation to SGA with null associations, although many fewer SNPs

were used to tag the gene,21,47,48 and, apart from the Engel study, the populations were

White.

KLRD1 (CD94) codes for a portion of a receptor on both NK- and T-cells that recognize

HLA-E molecules expressed by trophoblasts during pregnancy.49 Tight regulation of

maternal immunity at the time of implantation mitigates against rejection of the fetal tropho-

blasts and permits adequate placental development and implantation. Dysregulation of

KLRD1 might result in a heightened inflammatory response to the invading placenta

resulting in inadequate placentation impairing fetal growth. In this study, polymorphisms in

KLRD1 were only associated with term SGA among African Americans. Although genetic

diversity of HLA-E is much lower than the diversity seen in other major histocompatibility

genes, there have been haplotype differences documented between individuals of European

and African descent.50 Underlying differences in HLAE haplotypes may explain these

discrepant associations across racial groups.

Genes coding for TNF-α (TNF) and TNF-β (LTA) were associated with an increased risk of

PE among European American women. TNF-α has been implicated in the pathogenesis of

PE1 both as a modulator of placental implantation and as a response to the hypoxia created

by poor placental perfusion.13 Infusion of TNF-α induces hypertension in pregnant rats.29

Despite the credibility of the biology implicating TNF-α with PE, results of genetic

epidemiologic studies have been less encouraging. Meta-analyses of the 308A missense

mutation (rs18000629)51,52 found null pooled estimates. The meta-analyses, however,

combined estimates from populations of very different genetic ancestries. It has previously

been reported that allele frequencies in TNF and its related receptors vary substantially by

self-reported race. Moreover, regulation of TNF-α levels during pregnancy appears to differ

between White and African American women.53 In our stratified analysis, an association at

the gene level was only apparent for European Americans. Despite the null association in the

meta-analysis, the complexity of TNF regulation and apparent heterogeneity based on

genetic ancestry support further investigation into this gene.

TBX21 is an important regulator of TH1 immunity.54 However, the strongest single SNP

association in our study may have been with a tagSNP associated with a close upstream gene

TBKBP1 (aka SINTBAD). TBKBP1 was identified in 2004, and its function is still being

elucidated. It appears to be related to signaling in the TNF-α/NFκB pathways and the
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activation of interferon.55,56 Given the role of TNF-α in PE, further investigation of this

novel gene is warranted.

Preeclampsia is a heterogeneous disease and may represent a number of distinct phenotypes

with a shared clinical presentation. We did not collect data on the severity of disease or the

timing of clinical onset and therefore we were unable to subdivide our case group into more

homogeneous phenotypes. In addition, the changing diagnostic criteria over the course of

the study resulted in further heterogeneity of phenotype based on the year of diagnosis.

Newly released diagnostic criteria present the possibility that there is under ascertainment of

PE cases among women with hypertension and other signs of end-organ involvement who

do not present with protein-uria.57 These shortcomings reduce our power to identify

associations that may exist between SNPs and specific subtypes of PE (for example, early

onset disease or PE with severe features). Future studies of PE will benefit from increased

sample size and additional clinical information that will permit the classification of cases

based on gestational age at onset and the presence of severe features.

The heterogeneity in the PE phenotype may also be the result of interactions between

genetic susceptibility and environmental exposures such as smoking, infections, nutrition, or

exposure to environmental toxicants. Although we were underpowered to explore gene by

environment interactions in this study, the strong protective association between smoking

and PE offers an opportunity for future genetic association studies to explore gene by

environment interactions.

While our study comprises the largest bi-racial study of inflammatory genes in relation to

these important obstetric outcomes, it suffers from some notable limitations. This study was

limited by the lack of fetal DNA, which is an important genetic factor in both of these

reproductive outcomes. However, the results of this study support a role of maternal genes

in these outcomes. Although we incorporated genetic variation in upstream and downstream

regions, our pre-specified boundaries may be too narrow to capture long-range regulatory

elements.58 Finally, previous research has demonstrated that a candidate gene approach has

been only modestly successful in identifying genetic associations that replicate across

populations. Nonetheless, the results presented herein are consistent with current

understanding of the biological underpinning of PE and SGA, although verification in an

independent population is needed.

Conclusions

This study expanded coverage of candidate inflammatory genes and examined novel cell

cycle and NK cell genes while carefully addressing population stratification. The results of

this study reveal important differences in the genetic underpinnings of term SGA and PE in

European and African Americans while also finding that there may be pathways in common.

Novel associations between KLRD1 and term SGA, and TBKBP1 and PE warrant further

exploration, ideally with enhanced tagging of polymorphisms within TBKBP1 and

consideration of HLA-E haplotypes for KLRD1.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Linkage disequilibrium (r2) in IL6 stratified by genetic ancestry. r2 is the amount of

correlation between two SNPs with empty black cells representing 100% correlation and

lighter cells representing less correlation. *SNPs are mentioned in results section.

Approximate SNP location (vertical bars) and IL6 location (grey bar) noted along genome.
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Fig. 2.
Linkage disequilibrium (r2) in KLRD1 stratified by genetic ancestry. r2 is the amount of

correlation between two SNPs with empty black cells representing 100% correlation and

lighter cells representing less correlation. *SNPs are mentioned in results section.

Approximate SNP location (vertical bars) and KLRD1 location (grey bar) noted along

genome.
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Fig. 3.
Linkage disequilibrium (r2) among European Americans in (a) LTA, TNF, and (b) TBX21. r2

is the amount of correlation between two SNPs with empty black cells representing 100%

correlation and lighter cells representing less correlation. *SNPs are mentioned in results

section. Approximate SNP location (vertical bars) and gene location (grey bar) noted along

genome.
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Table I

Demographic Characteristics of Small for Gestational Age (SGA) Cases and Controls

Genetic ancestry
a SGA cases Disease free Non-SGA controls

b

European
American N =

117 N (%)

African
American N =

92 N (%)

European
American N =

409 N (%)

African
American N =

204 N (%)

European
American N =

890 N (%)

African
American N =

499 N (%)

Maternal age (years)

    <25 55 (47.0) 27 (29.4) 215 (52.6) 68 (33.3) 440 (49.4) 182 (36.5)

    25–34 46 (39.3) 59 (64.1) 133 (32.5) 132 (64.7) 325 (36.5) 295 (59.1)

    35+ 16 (13.7) 6 (6.5) 61 (14.9) 4 (2.0) 125 (14.0) 22 (4.4)

Smoking
c

    No 68 (63.6) 58 (72.5) 302 (77.4) 148 (84.6) 588 (71.0) 362 (83.2)

    Yes 39 (36.5) 22 (27.5) 88 (22.6) 27 (15.4) 240 (29.0) 73 (16.8)

    Missing 10 (8.5) 12 (13.0) 19 (4.6) 29 (14.2) 62 (7.0) 64 (12.8)

BMI (kg/m2)
d

    <18.5 11 (9.9) 11 (13.1) 23 (5.7) 16 (8.3) 44 (5.1) 27 (5.8)

    18.5–24.9 72 (64.9) 35 (41.7) 250 (62.2) 79 (40.9) 454 (52.7) 166 (35.8)

    25–29.9 16 (14.4) 13 (15.5) 71 (17.7) 39 (20.2) 174 (20.2) 100 (21.6)

    30+ 12 (10.8) 25 (29.8) 58 (14.4) 59 (30.6) 189 (22.0) 171 (36.9)

    Missing 6 (5.1) 8 (8.7) 7 (1.7) 11 (5.4) 29 (3.3) 35 (7.0)

Marital status

    Married 77 (65.8) 13 (14.1) 313 (76.5) 32 (15.7) 644 (72.4) 109 (21.9)

    Unmarried 40 (34.2) 79 (85.9) 96 (23.5) 172 (84.3) 246 (27.6) 389 (78.1)

Education (years)

    13+ 61 (52.1) 27 (29.4) 275 (67.2) 68 (33.3) 542 (60.9) 201 (40.3)

    ≤12 56 (47.9) 65 (70.7) 134 (32.8) 136 (66.7) 348 (39.1) 298 (59.7)

Parity

    Nulliparous 49 (41.9) 48 (52.2) 189 (46.4) 88 (43.1) 437 (49.2) 220 (44.2)

    Multiparous 68 (58.1) 44 (47.8) 218 (53.6) 116 (56.9) 451 (50.8) 278 (55.8)

    Missing 0 0 2 (0.5) 0 2 (0.2) 1 (0.2)

Poverty index

    Mean (S.D.) 310 (237) 119 (85) 367 (238) 144 (123) 345 (237) 148 (124)

    Missing 10 (8.6) 26 (28.3) 24 (5.9) 37 (18.1) 70 (7.9) 85 (17.0)

Additional outcomes

    Term SGA 96 (82.1) 64 (69.6) 0 0
717

e
393

e

    Gestational HTN 19 (17.0) 14 (16.9) 0 0 226 (27.2) 131 (28.5)

    PE 11 (9.8) 10 (12.1) 0 0 82 (9.9) 62 (13.5)

    Preterm birth 21 (18.0) 28 (30.4) 0 0 173 (19.4) 106 (21.2)

a
Genetic ancestry determined using 148 ancestry informative markers and STRUCTURE.

b
Non-SGA controls include uncomplicated births as well as births with other pregnancy outcomes including preterm birth; GHTN, gestational

hypertension; and PE, preeclampsia.
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c
Self-reported smoking during months 1–6 of pregnancy.

d
Pre-pregnancy body mass index (BMI) calculated from self-reported pre-pregnancy weight and measured height.

e
Controls for term SGA are limited to term births.
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Table III

Q
a
 Values from SKAT Analysis for each SNP Set Stratified by Genetic Ancestry

Pathway/gene European American
b

African American
b European American African American

SGA Term SGA SGA Term SGA GHTN PE GHTN PE

Inflammatory

TBX21 
c 1.00 1.00 0.87 0.83 0.84 0.05 0.83 0.99

LTA&TNF 
c 0.84 0.91 1.00 1.00 0.58 0.05 0.83 0.81

IL6 
c 0.84 1.00 0.87 0.17 0.58 0.91 0.83 0.99

KLRD1 
c 0.84 0.91 0.87 0.17 0.83 0.91 1.00 1.00

IL12B 0.84 1.00 0.87 0.83 0.35 0.91 0.83 1.00

IL2 0.84 1.00 0.87 0.83 0.35 0.91 0.83 0.81

IL10 0.84 1.00 0.87 0.83 0.35 0.91 0.83 0.81

IFNGR2 0.84 1.00 1.00 1.00 0.80 0.39 0.84 0.81

IL12A 0.84 0.91 0.87 0.83 0.80 0.39 0.83 0.99

KIR2DL4 0.84 1.00 0.87 0.87 0.53 0.91 0.83 0.81

IL13&IL4 0.84 1.00 0.87 0.87 0.58 0.81 0.83 0.81

IL6R 0.84 0.91 0.87 0.83 0.58 0.91 0.83 0.81

IL8 0.84 0.91 0.87 0.83 0.62 0.91 0.83 0.81

K R3DL3 0.84 1.00 0.94 1.00 0.62 0.91 0.83 0.81

IL18 0.84 1.00 0.87 0.83 0.80 0.81 0.83 0.81

CSF2 0.84 1.00 0.87 0.83 0.80 0.91 0.84 1.00

IFNG 1.00 1.00 0.88 1.00 0.80 1.00 0.84 0.81

NFKB1 0.84 0.91 0.89 0.83 0.80 0.81 0.84 1.00

TNFRSF1B 0.84 0.91 0.87 0.83 0.98 0.91 0.83 0.81

IL15 0.84 1.00 0.87 0.83 0.80 0.53 0.83 0.81

KIR3DL2 0.84 1.00 0.87 0.84 0.92 0.81 0.83 0.81

GATA3 0.84 1.00 0.87 0.83 0.84 1.00 0.83 0.81

IL8RB 0.84 0.91 0.87 0.83 1.00 0.91 0.83 0.81

CXCL10 0.84 1.00 0.87 0.83 0.80 0.91 0.84 0.81

Cell cycle

RASSF1 0.84 1.00 0.79 0.83 0.35 0.23 0.83 0.81

NOV 0.84 1.00 0.87 0.83 0.80 0.81 0.83 0.81

CNNM2 0.84 1.00 0.87 0.83 0.80 0.81 0.83 0.81

GADD45A 0.84 1.00 0.87 0.83 0.80 0.91 0.83 0.88

CDKN2A&CDKN2B 0.84 1.00 0.87 0.83 0.80 0.91 0.84 0.81

CCND1 0.84 1.00 0.87 0.83 1.00 0.91 0.83 0.81

CCNA2 1.00 1.00 0.87 0.83 1.00 1.00 0.83 1.00

Bold values indicate significant (Q <0.20).

SKAT, SNP-set Kernel Association Test; SGA, small for gestational age; GHTN, gestational hypertension; PE, preeclampsia; AIMs, ancestry
informative markers; FDR, false discovery rate.
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a
Q values represent the proportion of false positives (number of false rejections/total number of rejections).

b
Genetic ancestry determined from 148 AIMS and STRUCTURE.

c
Meets FDR <0.20 for at least one outcome.
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Table IV

Single SNP Associations, Risk Ratio, and 95% Confidence Interval for Maternal SNPs for SGA and Term

SGA in Infants Stratified by Maternal Genetic Ancestry

African American
a

European American
a

Gene/SNP SGA Term SGA SGA Term SGA

IL6 
b

    rs4719711 1.0 (0.7, 1.6) 0.9 (0.5, 1.5) 0.7 (0.4, 0.9) 0.7 (0.4, 1.0)

    rs6963444 1.8 (1.2, 2.8) 2.5 (1.5, 4.2) 1.9 (1.0, 3.7) 2.1 (1.0, 4.2)

    rs1546762 1.1 (0.7, 1.7) 0.8 (0.5, 1.5) 0.6 (0.4, 0.9) 0.6 (0.4, 1.0)

    rs7784987 1.5 (1.0, 2.4) 2.1 (1.2, 3.6) 2.0 (1.0, 3.8) 2.1 (1.1, 4.4)

    rs3087221 1.4 (0.9, 2.3) 1.8 (1.1, 3.1) 2.3 (1.0, 5.4) 2.0 (0.8, 5.4)

    rs1800795 1.1 (0.6, 2.2) 0.7 (0.3, 1.8) 0.9 (0.6, 1.3) 1.0 (0.7, 1.6)

    rs1548216 1.6 (1.0, 2.5) 2.1 (1.2, 3.5) 2.3 (1.2, 4.2) 2.4 (1.2, 4.7)

    rs2069843
c 1.5 (1.0, 2.3) 2.0 (1.3, 3.1) 2.1 (1.2, 3.8) 2.4 (1.2, 4.6)

    rs2069849 1.4 (0.9, 2.3) 1.9 (1.1, 3.2) 2.2 (1.2, 4.1) 2.4 (1.2, 4.6)

KLRD1

    rs3759270 0.6 (0.4, 1.0) 0.4 (0.3, 0.8) 1.3 (0.9, 2.0) 1.3 (0.8, 2.0)

    rs3809214
c 1.3 (0.9, 1.8) 1.6 (1.1, 2.4) 0.8 (0.6, 1.0) 0.8 (0.6, 1.1)

    rs2302489
c 1.3 (0.9, 1.8) 1.6 (1.1, 2.4) 0.8 (0.6, 1.1) 0.8 (0.6, 1.1)

    rs7301562 0.6 (0.4, 1.0) 0.5 (0.3, 0.9) 1.1 (0.2, 7.9) 1.6 (0.2, 11.8)

    rs10772256 0.6 (0.4, 1.0) 0.5 (0.3, 0.9) 1.1 (0.2, 7.9) 1.6 (0.2, 11.8)

    rs2270238 0.8 (0.4, 1.8) 0.8 (0.3, 2.1) 1.5 (1.0, 2.2) 1.5 (1.0, 2.4)

    rs11611333
c 1.1 (0.8, 1.5) 1.0 (0.7, 1.5) 1.3 (1.0, 1.6) 1.2 (0.9, 1.7)

    rs12829155
c 1.3 (0.9, 1.9) 1.5 (0.9, 2.4) 0.8 (0.6, 1.0) 0.8 (0.6, 1.1)

SGA, small for gestational age.

Allele and genotype frequencies presented in Tables S2 and S3.

a
Genetic ancestry determined from 148 ancestry informative markers and STRUCTURE.

b
Selected results for IL6 presented. Results from all SNPs available in Table S6.

c
Additive model presented.
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Table V

Single SNP Associations, Risk Ratio, and 95% Confidence Interval for Maternal SNPs and PE Stratified by

Genetic Ancestry

Gene/SNP European American
a

African American
a

NFKBIL1

    rs2857605 1.1 (0.7, 1.6) 1.0 (0.5, 1.9)

    rs2239707 1.0 (0.6, 1.5) 1.4 (0.8, 2.4)

    rs2230365 1.0 (0.6, 1.5) 1.5 (0.8, 3.0)

    rs3130062 1.2 (0.7, 2.1) 1.7 (0.5, 5.4)

    rs4947324 0.6 (0.3, 1.1) 0.9 (0.5, 1.7)

    rs2857709 1.0 (0.6, 1.6) 0.8 (0.3, 1.9)

LTA

    rs915654 1.0 (0.6, 1.5) 1.7 (0.9, 3.1)

    rs909253
b 1.5 (1.1, 2.0) 1.0 (0.7, 1.4)

    rs2229094 0.6 (0.4, 1.0) 1.3 (0.8, 2.1)

    rs1041981
b 1.4 (1.0, 2.0) 1.0 (0.7, 1.5)

Intergenic

    rs1799964 0.7 (0.4, 1.1) 1.0 (0.6, 1.8)

    rs1800630 0.8 (0.5, 1.2) 1.4 (0.8, 2.4)

TNF

    rs1800629 1.8 (1.1, 2.7) 0.6 (0.3, 1.2)

    rs7769073 0.8 (0.4, 1.8) 0.9 (0.4, 1.7)

TBKBP1

    rs2013383 0.6 (0.4, 0.9) 1.1 (0.7, 1.8)

    rs1808192 0.6 (0.4, 0.9) 1.0 (0.6, 1.6)

TBX21

    rs4461115 1.2 (0.8, 1.9) 0.8 (0.3, 2.0)

    rs16946264 1.1 (0.6, 1.8) 1.0 (0.6, 1.6)

    rs11079788 0.8 (0.5, 1.3) 1.2 (0.7, 1.9)

    rs16946878 1.3 (0.7, 2.4) 1.0 (0.5, 1.9)

    rs16947078 0.8 (0.5, 1.3) 0.8 (0.5, 1.3)

PE, preeclampsia.

All single SNP estimates are presented in Table S7.

Allele and genotype frequencies presented in Tables S4 and S5.

a
Genetic ancestry determined from 148 ancestry informative markers and STRUCTURE.

b
Additive model presented.
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