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All aspects of plant and animal development are controlled by complex networks of transcription factors. Transcription factors
are essential for converting signaling inputs, such as changes in daylength, into complex gene regulatory outputs. While some
transcription factors control gene expression by binding to cis-regulatory elements as individual subunits, others function in a
combinatorial fashion. How individual subunits of combinatorial transcription factors are spatially and temporally deployed
(e.g. expression-level, posttranslational modifications and subcellular localization) has profound effects on their control of gene
expression. In the model plant Arabidopsis (Arabidopsis thaliana), we have identified 36 Nuclear Factor Y (NF-Y) transcription
factor subunits (10 NF-YA, 13 NF-YB, and 13 NF-YC subunits) that can theoretically combine to form 1,690 unique complexes.
Individual plant subunits have functions in flowering time, embryo maturation, and meristem development, but how they
combine to control these processes is unknown. To assist in the process of defining unique NF-Y complexes, we have created
promoter:b-glucuronidase fusion lines for all 36 Arabidopsis genes. Here, we show NF-Y expression patterns inferred from
these promoter:b-glucuronidase lines for roots, light- versus dark-grown seedlings, rosettes, and flowers. Additionally, we
review the phylogenetic relationships and examine protein alignments for each NF-Y subunit family. The results are discussed
with a special emphasis on potential roles for NF-Y subunits in photoperiod-controlled flowering time.

Eukaryotic gene expression is often controlled
by combinatorial transcription factors (Singh, 1998;
Wolberger, 1998; Remenyi et al., 2004). Combinatorial
transcription factors are multiprotein complexes that
derive their gene regulatory capacity from both intrin-
sic properties and the properties of their trans-acting
partners (Singh, 1998). Participation in such higher
order complexes allows an organism to use single
transcription factors to control multiple genes with
different temporal and spatial expression patterns.

MADS box transcription factors represent a well-
studied example of this phenomenon (Messenguy and
Dubois, 2003; Yamaguchi and Hirano, 2006). Through
the formation of homodimers, heterodimers, and het-
eromultimers, MADS box proteins bind unique cis-
regulatory elements and control, for example, most of
the floral organ fates in plants (Kaufmann et al., 2005).
While less well studied in the plant lineage, the
numerous heterotrimeric NF-Y (for Nuclear Factor Y)
transcription factors might provide similar levels of
combinatorial diversity for transcriptional fine-tuning.

NF-Y transcription factors are likely found in all
eukaryotes and have roles in the regulation of diverse
genes (McNabb et al., 1995; Edwards et al., 1998; Maity
and de Crombrugghe, 1998; Mantovani, 1999). In
mammals, where their biochemistry is well described,
the NF-Y transcription factor complex is composed of
three unique subunits: NF-YA, NF-YB, and NF-YC.
Assembly of the NF-Y heterotrimer in mammals fol-
lows a strict, stepwise pattern (Sinha et al., 1995, 1996).
Initially, a heterodimer is formed in the cytoplasm
between the subunits NF-YB and NF-YC. This dimer
then translocates to the nucleus, where the third
subunit, NF-YA, is recruited to generate the mature,
heterotrimeric NF-Y transcription factor (Frontini
et al., 2004; Kahle et al., 2005). Mature NF-Y binds
promoters with the core pentamer nucleotide sequence
CCAAT, and this can result in either positive or neg-
ative transcriptional regulation (Peng and Jahroudi,
2002, 2003; Ceribelli et al., 2008). Bioinformatic analy-
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ses indicate that 25% to 30% of all mammalian pro-
moters have predicted NF-Y binding sites (Bucher,
1990; Testa et al., 2005), and recent chromatin im-
munoprecipitation data demonstrate additional wide-
spread NF-Y binding in nonpromoter sites. Suggesting
the importance of binding context, NF-Y-regulated
gene expression can be tissue specific, developmentally
regulated, or constitutive (Maity and de Crombrugghe,
1998). Predictably, NF-Y function is essential for mam-
malian development (Hu andMaity, 2000; Bhattacharya
et al., 2003).

Despite the wide cellular distribution and functional
variability of NF-Y-regulated genes, most eukaryotic
genomes have only one or two genes encoding each
NF-Y subunit (Maity and de Crombrugghe, 1998;
Riechmann et al., 2000). For example, humans and
mice encode only one copy of each subunit. Thus,
there is minimal combinatorial diversity in the subunit
composition of the heterotrimeric mammalian NF-Y.
In contrast, Arabidopsis (Arabidopsis thaliana) has mul-
tiple genes encoding each subunit (10 NF-YA, 13 NF-
YB, and 13 NF-YC homologs; Riechmann et al., 2000;
this article). This Arabidopsis NF-Y expansion is a
general feature of the plant lineage, including mono-
cots and dicots. Because of the heterotrimeric compo-
sition, the 36 Arabidopsis NF-Y subunits can
theoretically combine to generate 1,690 unique tran-
scription factors.

NF-Y function in the plant lineage is poorly under-
stood, yet many of the mechanistic details are likely
conserved across plant, animal, and fungal lineages.
This inference comes from strong, cross-kingdom con-
servation of amino acid residues with well-characterized
importance in mammalian and yeast NF-Y functions
(Maity and de Crombrugghe, 1992; Maity et al., 1992;
Mantovani et al., 1994; Sinha et al., 1995, 1996; Coustry
et al., 1996; Kim et al., 1996; Romier et al., 2003).
Additionally, several groups have demonstrated that
each of the three plant NF-Yproteins can substitute for
their yeast counterparts in gene expression assays
(Masiero et al., 2002; Ben-Naim et al., 2006). Finally,
our own preliminary data suggests that dominant
negative Arabidopsis NF-YC subunits can be readily
predicted from existing mammalian and yeast data
(Kim et al., 1996; B.F. Holt and R.W. Kumimoto,
unpublished data). Hence, animal and yeast models
provide excellent starting points for further investiga-
tions of the numerous plant NF-Y proteins.

No complete plant NF-Y complex has been de-
scribed, but individual subunits are increasingly
known to be involved in a number of important
processes. LEAFY COTYLEDON1 (LEC1 or NF-YB9;
Table I) was the earliest cloned and described plant
NF-Y. LEC1 has strong expression in the developing
embryo and is necessary for controlling the transition
from embryo to adult status (West et al., 1994; Lotan
et al., 1998; Lee et al., 2003). Evidence comes from the
precocious development of trichomes on lec1 cotyle-
dons and the presence of embryo-like tissue on the
adult leaves of LEC1-overexpressing plants. The

closely related LEC1-LIKE (L1L or AtNF-YB6) is also
involved in embryogenesis (Kwong et al., 2003). While
LEC1 has been studied for well over a decade, the
requirements for specific NF-YA and NF-YC subunits
remain elusive. This may be partly due to the com-
plexity of genetic and biochemical studies in the
embryo. However, another likely reason for the gen-
eral lack of complete plant NF-Y complexes is the
likelihood of extensive redundancies between NF-Y
subunits. Several new phenotypes associated with
overexpression and mutant versions of NF-Y subunits
promise to provide the anchor points for describing
complete in planta complexes.

The Medicago truncatula NF-YA subunit, MtHAP2-1,
is expressed in a narrow region of the root nodule
meristem and is essential for postinitiation nodule
development (Combier et al., 2006). Interestingly, spa-
tial and temporal maintenance of MtHAP2-1 nodule
expression is dually controlled by microRNA169
(Jones-Rhoades and Bartel, 2004) and a small RNA-
binding peptide (uORF1p) encoded by the MtHAP2-1
leader sequence (Combier et al., 2008). Thus, as with
the narrow expression of LEC1 and L1L in embryos,
MtHAP2-1 expression is quite finely controlled. This is
in contrast to animal systems, where NF-Y expression
is largely ubiquitous and, unsurprisingly, suggests
refinements and specialization of NF-Y function in
the plant lineage.

Plant NF-Y function also appears to be important for
responses to drought stress. Although a specific mech-
anism remains unclear, overexpression of NF-YB1 and
its ortholog in maize (Zea mays), ZmNF-YB2, leads to
enhanced drought resistance (Nelson et al., 2007).
Although the ability of NF-YB1 to promote drought
resistance is clear, no loss-of-function data were pro-
vided to demonstrate an actual biological role in
Arabidopsis. In contrast, a recent publication shows
both overexpression and loss-of-function data for NF-
YA5 (Li et al., 2008). Overexpression of NF-YA5 re-
duced drought susceptibility, anthocyanin production,
and stomatal aperture, while nf-ya5 mutants had the
expected opposite phenotype in each instance. As with
the role of MtHAP2-1 in nodule meristem develop-
ment, miRNA169 also plays a regulatory role in
drought resistance. Specifically, the miRNA169 pre-
cursors miRNA169a and miRNA169c are strongly
down-regulated by drought treatments in an abscisic
acid (ABA)-dependent manner. Similar to NF-YA5 loss
of function, 35S:miRNA169 plants were more drought
susceptible (Li et al., 2008). Although still unknown,
the involvement of both NF-YA and NF-YB in plant
drought resistance suggests that complete NF-Y com-
plexes with NF-YC subunits will eventually be dis-
covered.

Perhaps the most interesting recent discovery is the
involvement of NF-Y in the control of photoperiod-
regulated flowering time. In Arabidopsis, the key
regulator of photoperiod-induced flowering time is
the zinc-finger-type transcriptional activator encoded
by CONSTANS (CO; Redei, 1962; Koornneef et al.,
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1991; Putterill et al., 1995). CO mRNA levels are
controlled by the circadian clock and oscillate on a
daily basis: CO expression peaks during the day in
long-day (LD) conditions and during the night in
short-day conditions (Suarez-Lopez et al., 2001). Peak
expression during the day is essential for CO activity
because the protein is rapidly degraded in the dark
(Valverde et al., 2004). Under LD conditions, CO
protein accumulates and induces the expression of
FLOWERING LOCUS T (FT). Recent evidence strongly
suggests that FT protein is the primary component of
“florigen,” the long-sought mobile flowering signal
(Izawa, 2007; Jaeger and Wigge, 2007; Mathieu et al.,
2007; Tamaki et al., 2007). Therefore, in LD-grown co
mutants, FT does not accumulate to sufficient levels to
induce flowering (Kardailsky et al., 1999; Samach et al.,
2000). While the genetics of this biological process
have been carefully examined, precisely how CO inte-
grates with DNA to trigger FTexpression remains unclear.
Several publications strongly suggest that NF-Y

transcription factors are intimately involved in photo-
period-regulated flowering. Research groups studying
flowering time in both tomato (Solanum lycopersicum)
and Arabidopsis identified NF-YB and NF-YC sub-
units as CO-interacting proteins via yeast two-hybrid
assays (Ben-Naim et al., 2006; Wenkel et al., 2006).
Additionally, two independent research groups de-
scribed moderate flowering time delays for the same
nf-yb2 allele (Cai et al., 2007; Chen et al., 2007). Fur-
thermore, overexpression of NF-YB2 resulted in sig-
nificantly more rapid flowering. Finally, Kumimoto
et al. (2008) found that nf-yb2 nf-yb3 double mutant
plants flower as late as co mutants. Because of NF-Y’s
well-characterized role as a transcription-activating,
DNA-binding complex in mammals and yeast, these
results immediately suggest a possible platform for
CO interactions with DNA. Additionally, the region of
interaction between CO and NF-Y proteins is highly
conserved in many CO-like genes (Wenkel et al., 2006).
This suggests that the CO/NF-Y regulatory module

might be paradigmatic for other CO-like DNA inter-
actions and developmental processes.

The emerging picture has plant NF-Y complexes
acting as essential regulatory hubs for many processes.
While functions for individual NF-Y genes are begin-
ning to emerge, overlapping functionality remains a
persistent problem for further investigations. Addi-
tionally, demonstration of a complete NF-Y complex
remains elusive. In this article, we present updated
phylogenetic trees and alignments for all 36 Arabi-
dopsis NF-Y proteins. As determined by functional
analyses in yeast and mammals, we clearly identify
the essential amino acids for each subunit type and
specifically discuss these data in the context of recent
findings on the NF-Y requirement in flowering. Fur-
thermore, we test the utility of mammalian and yeast-
derived positional weight matrices for defining
CCAAT sites in plant promoters. Finally, we examine
the tissue- and development-specific expression pat-
terns for all 36 NF-Y genes using stable promoter:GUS
fusions. The resulting plant lines will facilitate the
discovery of complete NF-Y complexes and are freely
available to academic researchers. Collectively, we
hope the following data and review will serve as an
entry point for other researchers interested in plant
NF-Y function.

RESULTS

Notes on Nomenclature

Various nomenclatures are used for the three NF-Y
families. The three most widely used names in various
organisms are CBF (for CCAAT-binding factor), HAP
(for histone or heme-associated protein), and NF-Y.
Additionally, the unique subunits are alternatively
assigned numerical or letter designations, and those
designations often do not match across genera. For
example, NF-YA in Homo sapiens is homologous to
CBF-B in Rattus norvegicus, HAP2 in Saccharomyces

Table I. Suggested NF-Y nomenclature

Nomenclature is the same as originally proposed (Gusmaroli et al., 2001, 2002), except the At designations are removed and seven new genes
(bold) have been added (see note on nomenclature). AGI, Arabidopsis Genome Initiative number.

NF-YA Family NF-YB Family NF-YC Family

Current Name AGI Other Name Current Name AGI Other Name Current Name AGI Other Name

NF-YA1 At5g12840 AtHAP2a NF-YB1 At2g38880 AtHAP3a NF-YC1 At3g48590 AtHAP5a
NF-YA2 At3g05690 AtHAP2b NF-YB2 At5g47640 AtHAP3b NF-YC2 At1g56170 AtHAP5b
NF-YA3 At1g72830 AtHAP2c NF-YB3 At4g14540 NF-YC3 At1g54830
NF-YA4 At2g34720 NF-YB4 At1g09030 NF-YC4 At5g63470
NF-YA5 At1g54160 NF-YB5 At2g47810 NF-YC5 At5g50490
NF-YA6 At3g14020 NF-YB6 At5g47670 LEC1-LIKE NF-YC6 At5g50480
NF-YA7 At1g30500 NF-YB7 At2g13570 NF-YC7 At5g50470
NF-YA8 At1g17590 NF-YB8 At2g37060 NF-YC8 At5g27910
NF-YA9 At3g20910 NF-YB9 At1g21970 LEC1 NF-YC9 At1g08970 AtHAP5c
NF-YA10 At5g06510 NF-YB10 At3g53340 NF-YC10 At1g07980

NF-YB11 At2g27470 NF-YC11 At3g12480
NF-YB12 At5g08190 NF-YC12 At5g38140
NF-YB13 At5g23090 NF-YC13 At5g43250
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cerevisiae, and HAPB in Aspergillis nidulans. Because
there are still relatively few Arabidopsis NF-Y papers
and we provide information on all 36 genes, we
discussed nomenclature options with curators from
The Arabidopsis Information Resource (TAIR). In
Arabidopsis, these genes are alternatively called
AtHAP, AtNF-Y, NF-Y, and CBF (Edwards et al., 1998;
Kusnetsov et al., 1999; Gusmaroli et al., 2001; Kumimoto
et al., 2008). Due to their usage for unrelated genes,
HAP (for HAPLESS) and CBF (for C-Repeat/DRE Bind-
ing Factor) nomenclature options are both problematic
and confusing. Additionally, TAIR curators are en-
couraging limited usage of the “At” designation. Thus,
we jointly chose the NF-Y nomenclature following the
number scheme initially suggested by Gusmaroli et al.
(2001, 2002) and expanded here with seven new genes.
To avoid unnecessary complexity, we respectfully re-
quest that future Arabidopsis researchers follow this
updated naming scheme (Table I).

NF-Y Phylogenies and Alignments

Published phylogenies are available for Arabidop-
sis, rice (Oryza sativa), and wheat (Triticum aestivum)
plant NF-Y families (Gusmaroli et al., 2001, 2002; Yang
et al., 2005; Stephenson et al., 2007). A comprehensive
examination of all Arabidopsis transcription factors
concluded that there are 36 total NF-Y genes (10 NF-
YA, 13 NF-YB, and 13 NF-YC homologs; Riechmann
et al., 2000). Nevertheless, published phylogenies only
list 29 to 30 genes (Gusmaroli et al., 2001, 2002; Yang
et al., 2005). Therefore, we repeated the BLASTsearches
for each NF-Y family (Altschul et al., 1990). In each
case, BLAST searches were performed with several
members of each NF-Y family using amino acid se-
quences from highly conserved (across genera) re-
gions. Although there is no absolute rule for
inclusion/exclusion from a gene family, in each case
we chose the last member of the family based on very
obvious and large breaks in the BLAST-derived E
value score (e.g. using NF-YB1 in BLAST analysis, we
accepted NF-YB family members with E values rang-
ing from 2e-50 to 2e-06; the next closest nonfamily
member had an E value of 0.11). Our searches con-
firmed the previous finding of 36 total NF-Y genes
(Riechmann et al., 2000) and are presented as three
phylogenetic trees (Fig. 1) and three amino acid align-
ments (Figs. 2–4).

NF-YA Family

NF-YA proteins represent a unique transcription
factor class lacking obvious homology to other de-
scribed proteins (Maity and de Crombrugghe, 1998).
NF-YA proteins are characterized by the presence of
Gln (Q)- and Ser/Thr (S/T)-rich NH2 termini, a sub-
unit interaction domain (NF-YB/NF-YC interaction),
and a DNA-binding domain (Olesen and Guarente,
1990; Maity and de Crombrugghe, 1992; Xing et al.,
1993, 1994). The protein interaction and DNA binding

domains are well conserved between plant and other
eukaryote lineages (Fig. 2). As with other eukaryotes,
NF-YA NH2-terminal regions are also characterized by
an overall high composition of Q and S/T residues.
The Q-rich regions of NF-YA and NF-YC are thought
to act redundantly in transcriptional activation (di
Silvio et al., 1999). However, it is notable that plant NF-
YA proteins have lowQ:S ratios (1.0:2.1, Q:S), while the
yeast, human, and rat NF-YA proteins have the oppo-
site relationship (2.9:1.0, Q:S). It is currently unknown
how these changes might affect the transcriptional
activation potential of plant NF-Y complexes.

The alignment in Figure 2 highlights the cross-
kingdom conservation of NF-YA proteins in their
interaction and DNA-binding domains. Functionally
required amino acids were previously determined by
mutagenesis in yeast and mammalian NF-YA (HAP2
and CBF-B, respectively; Maity and de Crombrugghe,
1992; Xing et al., 1993). Of the three plant NF-Y
families, functionally required amino acids are most
highly conserved in the NF-YA proteins (“required”
throughout refers to data from yeast or mammals;
almost no amino acid requirements have been exper-
imentally determined for plant NF-Y proteins). There
is one notable change that is apparently specific to the
plant lineage: the required Arg (R) residue at position
9 is almost always Gly (G) or Ala (A) in the plant
lineage. This is true for all Arabidopsis NF-YA pro-
teins as well as the majority of other plant NF-YA
sequences (rice, poplar [Populus spp.], grape [Vitis
vinifera], moss, wheat, etc.). All other required amino
acids from yeast are absolutely conserved in all 10
Arabidopsis NF-YA proteins.

The conservation of specific amino acid residues
across highly divergent NF-YA lineages strongly sug-
gests functional conservation. This is particularly rel-
evant when considering the recent finding that CO, a
master regulator of floral transitions, physically inter-
acts with NF-YB and NF-YC proteins (Ben-Naim et al.,
2006;Wenkel et al., 2006). In this sense, CO seems to act
like an NF-YA protein. Accordingly, the CCT (for CO,
CO-LIKE, TOC1) domain of CO and CO-LIKE (COL)
proteins shares a region of apparent homology to the
NF-YA proteins (see “CCT Cons.” line in Fig. 2;
Wenkel et al., 2006). In a stretch of 41 amino acids,
the CCT-containing proteins CO and COL1-5 share
32% identity with the NF-YA proteins (Fig. 2; Supple-
mental Figs. S1 and S2). Furthermore, previously
identified co alleles, and mutant alleles in related
CCT domain proteins, represent amino acid changes
in residues that are conserved between the CCT do-
main and NF-YA proteins (Wenkel et al., 2006). The
similarities between the conserved domains of NF-YA
and COL suggest the possibility of another layer of com-
binatorial interactions with plant NF-Y complexes.

NF-YB and NF-YC Families

As with NF-YA, NF-YB and NF-YC families have
well-described subunit interaction and DNA-binding
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domains (Figs. 3 and 4; Kim et al., 1996; Sinha et al.,
1996; McNabb et al., 1997; Romier et al., 2003). The
conserved regions of NF-YB and NF-YC have struc-
tural and amino acid homology to histone fold motifs.
Specifically, NF-YB is related to the histone fold motifs
of H2B histones, while NF-YC subunits are related to
H2A histones (Mantovani, 1999). NF-Y can physically
interact with H3/H4 tetramers and H3-/H4-like TATA-
binding protein-associated factors (Caretti et al., 1999;
Frontini et al., 2002).MatureNF-Ybinds theminorgroove
of DNA, resulting in localized DNA bending and distor-
tions of nucleosome-DNA interactions (Ronchi et al.,
1995;Coustry et al., 2001).Collectively, thesenucleosomal
distortions allow recruitment of chromatin-remodeling
enzymes and RNA polymerase II, leading to transcrip-
tional initiation (Matuoka and Chen, 2002).
For the majority of NF-YB and NF-YC proteins,

required amino acids are well conserved (Figs. 3 and 4;
Sinha et al., 1995, 1996; Kim et al., 1996). Phylogenet-
ically distant Arabidopsis family members, such as
NF-YB11 to -YB13 and NF-YC10 to -YC13 (Fig. 1), are
much more likely to have undergone changes in
required amino acids (Fig. 3). Because the required
amino acids are so highly conserved across evolution-
ary time and space, it is likely that nonconservative

changes will significantly alter protein function. In this
regard, LEC1 (NF-YB9) and LEC1-like (NF-YB6) have
Asp (D) residues where Lys (K) is found in yeast,
mammals, and most plants and is required for mam-
malian NF-YB function (position 29 in Fig. 3; actual
change is K55D). Although LEC1 has other differences
fromplant and animalNF-YB proteins, K55D is the only
change in a required amino acid and reversion of this
alteration in LEC1 eliminates rescue of the lec1 embry-
onic desiccation-intolerance phenotype (Lee et al., 2003).
Thus, LEC1 appears to have evolved a novel function.

NF-YB2 and NF-YB3, redundant players in photo-
period-related floral transitions (Kumimoto et al.,
2008), have replaced the required Ser (S) at position
48 (Fig. 3) with Gly (S66G and S72G, respectively).
Although Gly and Ser are both very small amino acids,
Gly is more hydrophobic. In fact, many of the changes
in the plant NF-YB and NF-YC proteins result in
changes in hydropathy (Yang et al., 2005). It would
be interesting to see if reversions to the apparently
ancestral Ser residue would eliminate the rescue of
flowering time defects in either the nf-yb2 or nf-yb3
mutant. Furthermore, it is possible that this change is
necessary for the CO/NF-Y interaction and might
prevent formation of the normal NF-Y heterotrimer

Figure 1. NF-Y family phylogenies. Phyloge-
netic trees for each family were constructed by
neighbor joining using the conserved regions
illustrated in Figures 2 to 4. Phylogenetic trees
were also generated for full-length proteins
and did not differ substantially from those
shown (data not shown). Reliability values at
each branch represent bootstrap samples
(2,000 replicates). All trees were determined
and constructed using MEGA 4 (Tamura et al.,
2007). Note that NF-YB12 and NF-YB13 are
sometimes included in a separate DR1-
related, two-member protein family (see
“Gene Families” at TAIR and Riechmann
et al. [2000]). Nevertheless, NF-YB12 and
-YB13 clearly show much stronger homology
to the larger NF-YB family than to any other
proteins, and there is currently no functional
evidence to differentiate them as unique.
Thus, we consider them to be divergent, but
related, NF-YB family members.
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in favor of CO/NF-YB/YC. There is a precedent for
alterations at this exact position driving the formation
non-NF-YA-containing heterotrimers. For rice OsNF-YB1,
there is an unusual Asp in this position, and this
difference preferentially drives the formation of an
OsMADS18/NF-YB/YC heterotrimer (Masiero et al.,
2002). As eight of 13 Arabidopsis NF-YB proteins have
alterations from the expected Ser, further experimen-
tation on this residue is important.

To date, very little is known regarding the NF-YC
proteins. Phylogenetic analyses and amino acid align-
ments suggest that there are two distinct clades. One
clade consists of NF-YC1 to -YC4 and -YC9 and is still
very similar to distant yeast and mammalian NF-YC
lineages (Figs. 1 and 4). Members of the second clade,
consisting of NF-YC5 to -YC8 and NF-YC10 to -YC13
are increasingly divergent from the ancestral NF-YC.
Suggesting that they may be evolving functions in-
consistent with yeast and mammalian NF-Y functions,
members of this clade have numerous nonconserva-
tive changes from required amino acids.

CCAAT Motif in Arabidopsis

In yeast and mammals, many CCAAT sites have
been experimentally defined (Mantovani, 1998; Testa
et al., 2005). CCAAT sites can be in either orientation
and are approximately 13 bp in length, including the

approximately centrally located CCAAT pentamer.
Yeast and mammalian NF-Y binding sites are defined
as C,Pu,Pu,C,C,A,A,T,C/G,A/G,G,A/C,G and are
typically between 250 and 2100 bp upstream of the
transcription start site (TSS; Mantovani, 1998). In hu-
mans and yeast, mutations in the flanking nucleotides
typically have moderate effects on NF-Y binding,
while mutations in the core CCAAT pentamer essen-
tially abolish binding (Dorn et al., 1987). Because in
vivo targets have not been identified, there is no
descriptive positional weight matrix (PWM) describ-
ing plant CCAAT motifs. Although there is strong
amino acid homology between the yeast, mammalian,
and plant NF-Y proteins, there is no formal evidence
that plant NF-Y complexes bind CCAAT sites. Never-
theless, select members of each Arabidopsis subunit
family have been successfully used in yeast CCAAT-
binding assays (Edwards et al., 1998; Ben-Naim et al.,
2006; Kumimoto et al., 2008). Thus, for at least a subset
of Arabidopsis NF-Y complexes, the ability to bind in
planta CCAAT motifs likely still exists.

We addressed whether or not a yeast/mammalian
PWM would find similar enrichments of CCAAT sites
in Arabidopsis promoters (Mantovani, 1998). Our
Arabidopsis promoter data set was assembled by
TAIR and consisted of 16,851 sequences corresponding
to 21,000 to +200 from the TSS. Only promoters with
known TSS were used. For humans, we obtained a

Figure 2. Arabidopsis NF-YA family alignment, including the consensus CCT domain from CO and COL1-5. Sequences correspond
to the conserved regions in NF-YA proteins across various lineages. Hs, Homo sapiens; Rn, Rattus norvegicus; Sc, Saccharomyces
cerevisiae.Numbers in parentheses correspond toactual aminoacidnumbers; numbers at topare for reference in the text. Threeblack
boxes in the alignment correspond to three nuclear localization signals that are collectively required forHsNF-YAbinding to importin
b (Kahle et al., 2005). In the NF-Y Cons. (consensus) line, uppercase letters represent identity in more than 80% of sequences,
lowercase letters represents 50% or greater identity, and x represents less than 50% identity. Required amino acid (AA) residues are
fromthe literature (Xing et al., 1993).CCTCons. (consensus)was determined fromseparatealignmentofCOandCOL1-5. Small black
boxes in the CCT Cons. line represent two amino acids that are required for the physical interaction between tomato COL1 and two
tomato NF-YC proteins (THAP5a and THAP5c; (Ben-Naim et al., 2006). CCT =NF-YA ($) and CCT¹NF-YA (#) lines identify amino
acids that are required for NF-YA function and are either conserved or not conserved, respectively, in CO and COL1-5.
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previously described set of 13,010 sequences corre-
sponding to the same region relative to the TSS
(FitzGerald et al., 2004). Computer-based scanning of
each human sequence for PWMmatches ($90%match
threshold) were consistent with previous publications
(i.e. there is a strong peak of putative CCAAT sites at
approximately 2100 from the TSS; Fig. 5A). In con-
trast, Arabidopsis promoters are largely devoid of this
strong enrichment of putative CCAAT sites. Although
the PWM does predict a small number of CCAATsites
in Arabidopsis (approximately one of 20 promoters
examined), the human peak is almost eight times
higher. These data suggest that NF-Y-binding sites

have significantly evolved from those of yeast and
mammals.

Because there is currently only one confirmed Arabi-
dopsis NF-Y binding site (Kusnetsov et al., 1999), we
were not able to test if a specialized plant PWM could
find more putative CCAAT sites. Furthermore, be-
cause of the many possible plant NF-Y complexes, it
might be more likely that plant NF-Y binding sites
have coevolved with specific complexes. Nevertheless,
we could assess the frequency of CCAAT-only se-
quences in Arabidopsis and humans (i.e. no flanking
sequences; Fig. 5B). Interestingly, when flanking se-
quences are removed from the search, Arabidopsis has

Figure 3. Arabidopsis NF-YB family alignment, constructed as in Figure 2. Note that the NF-YC interaction domain extends
across two independent regions and partly overlaps with the DNA-binding and NF-YA interaction domains. To eliminate a gap of
nonhomology, the amino acid sequence SECS was removed from NF-YB11 between the L and P residues at position 20/21.
Required AA, Required amino acid.
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more CCAAT/ATTGG sequences than humans. Ad-
ditionally, both Arabidopsis and humans have peaks
in the expected 250 to 2100 window. Thus, the core
pentamer is quite common in Arabidopsis, and there is
currently no reason to believe that Arabidopsis has
fewer CCAAT sites than humans.

Promoter:GUS Fusions

As with other multigene families, researchers inter-
ested in Arabidopsis NF-Y genes must contend with
overlapping functionality. Based on our own experi-
ence, loss-of-function mutations in NF-Y rarely have
any obvious phenotypes. From the lack of complete

Figure 4. Arabidopsis NF-YC family alignment, constructed as in Figure 2. Note that the NF-YA interaction domain extends
across two separate regions. The DNA-binding domain in NF-YC consists of the two amino acids AR (found in most NF-YC
homologs). To eliminate two large gaps of nonhomology, the amino acid sequence DTLTRS was removed from NF-YC7 between
the S and D residues at position 57/58 and YVNFQK was removed from NF-YC12 between the paired I residues at 18/19.
Required AA, Required amino acid.
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plant NF-Y complexes described in the literature, we
infer that other groups have also confronted this prob-
lem. We reasoned that assembling complete complexes
would be greatly facilitated if reporter gene fusions
were available for all 36 NF-Y genes. Accordingly, for
each gene we cloned 1,000 bp of upstream sequence
(5# untranslated region and promoter region) in front of
an enhanced GFP (eGFP):GUS reporter gene fusion
(Karimi et al., 2002). For each gene, we collected at least
two independent, stable (third-generation) transform-
ants and analyzed these in numerous plant tissues
throughout normal development. We expect the data
available from these lines to greatly facilitate the dis-
covery of complete, in planta NF-Y complexes.

Root Expression Patterns

As a first qualitative measure of the reporter lines,
we compared the GUS expression patterns in roots
with a high-quality data set based on florescence-

activated cell sorting (FACS; Birnbaum et al., 2005) and
numerous standardized microarray data sets available
for online visualization at Genevestigator and The
Botany Array Resource (Schmid et al., 2005; Toufighi
et al., 2005; Grennan, 2006). Figure 6 shows the pro-
moter:GUS expression patterns in the root tip for all 36
genes. Although precise quantitative comparisons are
difficult, we generally found that GUS expression
levels and patterns were consistent with expectations
from FACS and online data. For example, GUS and
FACS data sets agree that NF-YA2 is primarily ex-
pressed in the maturation zone of the root (Fig. 6). It is
important to note that all GUS pictures are static
representations of dynamic expression patterns. For
example, NF-YB2 is very weakly expressed in the
meristematic region of elongated roots (Fig. 6). Nev-
ertheless, in young roots that are just emerging from
the pericycle, NF-YB2 expression is very strong
throughout the root tip (data not shown).

We found only one obvious problem for the root GUS
expression patterns: NF-YB10 had essentially no GUS
expression. Nevertheless, FACS, Genevestigator, and
our own reverse transcription (RT)-PCR results show
that it is strongly expressed in the roots. Additionally,
NF-YA5 did not express anywhere in our experiments,
but another publication shows broad expression in the
aboveground plant that is highly ABA inducible (Li
et al., 2008). Our construct was not ABA inducible
(data not shown). This suggests that ABA induction of
NF-YA5 relies on promoter elements beyond 1 kb up-
stream of the start codon. Overall, for 34 of 36 NF-Y
genes, we find that our GUS patterns are largely
consistent with published expression patterns. Our
NF-YA5 andNF-YB10 results are included in all figures
but are boxed in red wherever they clearly differ from
the published record.

Dark- Versus Light-Grown Expression Patterns

To further demonstrate the usefulness of the pro-
moter:GUS fusions, we compared our results with a
previous publication examining NF-Y functions in
blue light perception and ABA signaling (Warpeha
et al., 2007). RT-PCR was used by the authors to
identify NF-Y expression in 6-d-old dark-grown seed-
lings. For the NF-YC genes, the authors examined NF-
YC1 through NF-YC9 and reported that NF-YC1, -YC4,
and -YC9 were expressed. We confirmed this finding
and added NF-YC3 to the list (Fig. 7). It is not surpris-
ing to find that NF-YC3 is expressed in a similar
fashion to NF-YC1, -YC4, and -YC9, as all four genes
are very closely related and likely arose from recent
duplication events (Fig. 1). Additionally, we also tested
NF-YC10 and the newly identified NF-YC11 to -YC13.
Demonstrating that NF-YC expression patterns in
dark-grown seedlings are more complicated than pre-
viously realized, we also found that NF-YC10, -YC11,
and -YC12 are strongly expressed in the dark. There
were no significant GUS expression differences be-
tween light- and dark-grown seedlings (Fig. 7).

Figure 5. Promoter searches for CCAAT motifs in Arabidopsis and
humans. A, Arabidopsis and human promoter data sets were searched
for sequence matches to a PWM based on a large human and yeast data
set of experimentally defined CCAAT sites. To control for differences in
the size of each data set, numbers of positive matches (90% threshold
for positive match) are presented as sites per 100 promoters examined.
B, The same data sets were searched for the simple presence of the
sequence CCAAT or its reverse complement ATTGG. Note that
Arabidopsis is the top line in B.
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In addition to the NF-YC data, it was previously
reported that only NF-YA5, NF-YB6, and NF-YB9 are
expressed in 6-d-old dark-grown seedlings (Warpeha
et al., 2007). To further validate our promoter:GUS
fusions, we additionally examined the NF-YA and NF-
YB expression patterns (data not shown). Our findings
were inconsistent with the previous report in that we
saw clear expression for all 10NF-YA genes (NF-YA5was
weak) as well as NF-YB2, -YB3, -YB5, -YB6, -YB8, -YB9,
and -YB12. In our experiments, NF-YB6 (L1L) and NF-
YB9 (LEC1) were among theweakest of the GUS-positive
NF-YB lines: GUS staining for NF-YB9 lines required
extensive incubation (2 d) in 5-bromo-4-chloro-3-indoxyl-
b-D-glucuronide solution. This finding is consistent
with online microarray data and the known, narrow
roles for LEC1 and L1L in embryogenesis, but it does
not rule out a role in blue light perception (Lotan et al.,
1998; Kwong et al., 2003; Lee et al., 2003; Warpeha
et al., 2007). We additionally confirmed our GUS re-
sults by examining the presence or absence of NF-Y
gene expression by RT-PCR (data not shown). Our RT-
PCR data were consistent with the GUS data presented
in Figure 7. Additionally, we generated a comparative
table for our GUS expression data versus publicly
available microarray data for the dark-grown seed-
lings, root tips, rosettes, and flowers (Figs. 6–9; Sup-
plemental Table S1).

Rosette Expression Patterns

We examined the rosette expression patterns of all
36 NF-Y genes (Fig. 8). In general, the NF-Y expression
patterns are spatially complex with highly variable
levels of intensity. For example, numerous genes have
trichome expression. In some instances, this is part of a
larger staining pattern (e.g. NF-YA7, NF-YB2, and NF-
YC3), while in others, the staining is much more
specific to the trichome (e.g. NF-YA1 and NF-YB12).
Several genes from each family have clear vascular
expression patterns. These genes are particularly in-
teresting because CO function in floral induction is a
phloem-specific process (An et al., 2004; Ayre and
Turgeon, 2004). Furthermore, it is nowwell established
that FT accumulates in the phloem and then translo-
cates to the shoot meristem (Corbesier et al., 2007;
Jaeger and Wigge, 2007; Mathieu et al., 2007; Tamaki
et al., 2007). If, as current data suggest, NF-Y proteins
form an interaction platform for CO at the FT pro-
moter, this process would also be expected to take
place in the leaf phloem.

Strongly supporting this theory,NF-YB2 and NF-YB3
are strongly expressed in the vasculature (Fig. 8), and
they are known to redundantly control photoperiod-
regulated flowering time (Kumimoto et al., 2008). NF-
YB2 and NF-YB3 are very closely related proteins

Figure 6. NF-Y expression patterns in 6-d-old Arabidopsis root tips. Note that none of the roots continue to have broad, whole
root expression above the approximate level where these pictures were cut off (i.e. mature roots do not generally have NF-Y
expression in the cortical and epidermal layers of the root). Many NF-Y genes have strong expression in the root stele; these are
generally the same genes that are expressed in the leaf vasculature of rosettes (Fig. 8). All panels are shown at the same
magnification. Bar in Col-0 panel = 200 mm.
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sharing 94% amino acid identity in their conserved
domains (Figs. 1 and 3).NF-YB8 andNF-YB12 also have
vascular expression patterns and might be expected to
have a role in flowering. Nevertheless, the vascular
expression of NF-YB8 is much weaker than that of
either NF-YB2 or -YB3 and does not appear to extend
into the second set of true leaves. NF-YB12 is phyloge-
netically distant from bothNFYB2 and -YB3, and nf-yb2
nf-yb12 double mutants show no additive delay in
flowering time over the nf-yb2 single mutant (B.F.
Holt, R.W. Kumimoto, and N. Siefers, unpublished
data). Therefore, especially considering their co mutant
phenocopy (Kumimoto et al., 2008), nf-yb2 nf-yb3 are
likely the majorNF-YB components of the photoperiod-
regulated flowering response. The next important chal-
lenge is to describe the entire NF-Y complex involved in
flowering.
NF-YC1, -YC3, -YC4, -YC9, -YC11, and -YC12 are all

vascular expressed and, therefore, are potential targets
for flowering time control. Beyond the first set of true
leaves, NF-YC1 and NF-YC11 expression does not gen-
erally extend into the vasculature. Of the remaining four
genes, NF-YC3, -YC4, and -YC9 are all very strongly
expressed in the vasculature and are very closely related;
in fact, NF-YC3 and YC9 are identical across their 78-
amino acid conserved regions. Unlike single mutations
in NF-YB2 and -YB3 (Cai et al., 2007; Chen et al., 2007;
Kumimoto et al., 2008), we did not measure any flower-
ing delays for nf-yc1, nf-yc3, nf-yc4, nf-yc9, or nf-yc11 (B.F.
Holt, R.W. Kumimoto, andN. Siefers, unpublished data).
Although this does not formally exclude involvement for
any of the other NF-YC genes, we suspect that over-
lapping functionality will be important here as well.
Assuming that they are involved, the NF-YA genes may
be the most complicated: most of them have some level

of vasculature expression, and the overall family con-
servation is much higher than for the NF-YB andNF-YC
families (Figs. 1, 2, and 8). Interestingly, plants expressing
35S:miR169, which is predicted to target all NF-YA
mRNAs except NF-YA4, -YA6, and -YA7 (Jones-Rhoades
and Bartel, 2004), do not show a flowering-time pheno-
type (Li et al., 2008; W.-X. Li and J.-K. Zhu, personal
communication).

Flower Expression Patterns

As in the rosettes, floral NF-Y expression patterns
are quite variable and complex. Some of the genes with
ubiquitous expression in rosettes are much more re-
stricted in the floral organs. For example, NF-YB3 is
widely expressed in the rosette but is restricted to the
filaments in flowers. Alternatively, genes such as NF-
YB7 are minimally expressed in the rosettes and ubiq-
uitously expressed in the flowers. The potential for
using these tissue-specific patterns to infer likely NF-Y
complexes is simply illustrated by the stigmas; in the
pictured developmental stage, only NF-YA7, NF-YB7,
NF-YB12, NF-YC3, and NF-YC12 have strong stigma
expression. To our knowledge, no phenotypes related
to floral organs have been reported for the NF-Y genes.
This small set may be a good place to start.

DISCUSSION

There have been numerous NF-Y duplications
unique to the plant lineage. However, compared
with yeast and mammals, much less functional infor-
mation is currently available. This is likely due to
overlapping functionality between NF-Y subunits re-

Figure 7. NF-YC expression pat-
terns in light- versus dark-grown
plants. Pairs of light- and dark-
grown seedlings are shown. To fa-
cilitate direct comparison, plants
were grown as described previ-
ously (Warpeha et al., 2007).
Dark-grown plants were infiltrated
and stained in the dark to prevent
possible light activation of pro-
moter:GUS fusions. Bar in Col-0
panel = 500 mm.
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sulting in very few plant NF-Y genes isolated in
forward genetic mutant screens. Additionally, when
plant NF-Yproteins have been associated with specific
functions, identifying their interacting partners has
been complicated by the numbers of possible NF-YA/
B/C combinations. Although their existence is virtu-
ally certain, no single complete NF-Y complex has ever
been described in plants.

To simplify future analyses and aid in the discovery
of complete complexes, we have created a set of
publicly available expression lines. The gross morpho-
logical expression patterns appear to be accurate for 34
of 36 lines. Arabidopsis NF-Y genes are expressed in

almost all plant tissues we examined, and this was
typically true for at least one of each subunit type per
tissue examined (Figs. 6–9). The epidermis and cortex
of mature roots were the only tissues largely devoid of
NF-Yexpression. The tissue- and development-specific
expression patterns presented here will simplify the
process of identifying complete NF-Y complexes.

It is interesting that plants utilize so many NF-Y
genes while other complicated organisms need only
single copies of each subunit. This expansion is also
true for other Arabidopsis transcription factors, such
as the Myb, Myc, and MADS proteins (Riechmann
et al., 2000; Riechmann and Ratcliffe, 2000). Evolution-

Figure 8. NF-Y expression patterns in 10-d-old ro-
settes. Plants were grown on soil in a standard LD
light regime. Bar in Col-0 panel = 2 mm.
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ary biologists have long postulated that infrequent
gene duplication events typically result in the loss or
inactivation of one of the duplicated copies (Lynch and
Force, 2000; Lynch et al., 2001; Meyer, 2003; Ward and
Durrett, 2004; Moore and Purugganan, 2005). How-
ever, whole genome sequencing has demonstrated
that gene duplications take place more commonly
than expected and are often maintained indefinitely in
the apparent absence of functional diversification
(Meyer, 2003). For many of the NF-Y genes, especially
NF-YA, the high degree of conservation strongly sug-
gests the maintenance of ancestral functions. Perhaps
plant NF-Yproteins have maintained their core ances-
tral DNA-binding and complex-forming functions

while refining the ways in which they interact with
specific cis- and trans-elements.

Our searches for CCAAT motifs using a yeast/
mammalian PWMsuggest divergence of the cis-elements
bound by plant NF-Y (Fig. 5). Alternatively, there may
simply be fewer NF-Y-regulated genes in plants. Be-
cause of the amino acid conservation across lineages,
we favor the idea that plant NF-Y complexes still bind
sequences with a central CCAAT motif but the sur-
rounding bases of their cognate cis-elements have
evolved from those of other lineages. Obviously, there
is a great need for direct, in vivomeasurements ofNF-Y/
DNA interactions if we hope to understand how these
proteins have uniquely evolved in the plant lineage.

Figure 9. NF-Yexpression patterns in flowers. Flowers were harvested from plants at approximate “principal growth stage” 6.50
(Boyes et al., 2001; Kjemtrup et al., 2003). Bar in Col-0 panel = 2 mm.
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The addition of novel, plant-specific trans-interacting
factors to NF-Y complexes may also greatly modify
their functionality. For example, there is at least one
known example of the NF-YB/YC dimer being coopted
by another transcription factor (OsMADS18; Masiero
et al., 2002). Additionally, there is evidence that CO
and CO-Like proteins can physically associate with
specific NF-Y subunits (Ben-Naim et al., 2006; Wenkel
et al., 2006), but it remains to be seen if these com-
plexes can bind CCAAT motifs in vivo.

One exciting prospect is that many of the CCT
domain proteins might require NF-Y complexes to
exert their regulatory effect on specific promoters. For
example, CO might exert its regulatory effects on FT
expression by competing for the position of NF-YA
occupancy in NF-Y complexes (Wenkel et al., 2006).
The coincidence of light (LD conditions) and peak CO
expression might allow CO to outcompete NF-YA for
utilization of specific NF-YB/C dimers. In this formu-
lation, specific NF-YA proteins might act as negative
regulators of CO-mediated flowering. As predicted by
this replacement model, overexpression of several NF-
YA subunits delayed flowering (Wenkel et al., 2006).
Additionally, as a variation on the replacement model,
there may be no need for NF-YA in a CO/NF-YB/YC
complex. To date, no supporting loss-of-function data
have been published regarding NF-YA subunits in
flowering.

While there are clear similarities between NF-YA
and CCT-containing proteins, there are important
unanswered questions with a replacement model.
First, the region of similarity between the two domains
is almost exclusively within the NF-YA DNA-binding
domain. There is essentially no similarity between
CCT proteins and the NF-YA subunit interaction do-
main (Fig. 2). Thus, the alignments do not support a
direct equivalency between NF-YA and CCT proteins
for interactions with NF-YB/YC dimers. Additionally,
while the DNA-binding domains of NF-YA proteins
share clear similarities with CCT domains, none of the
required His residues are shared. His residues are
absolutely essential for NF-Y complex binding to
CCAAT motifs (Xing et al., 1993). Therefore, assuming
that the replacement model is correct, one would not
expect the resulting CO/NF-YB/YC complexes to
bind at CCAAT motifs. An alternative model for
CO/NF-Y interactions places CO docking on preas-
sembled, mature NF-Y/DNA complexes but not actu-
ally displacing the NF-YA subunit. If this docking
model is correct, we would expect appropriate NF-YA
loss-of-function alleles to result in flowering delays.
Although this is just one example of NF-Y interac-
tions, it may prove paradigmatic for how NF-Y
complexes uniquely function and fine-tune plant
gene expression.

After numerous rounds of duplication, plant NF-Y
proteins have likely evolved numerous unique cis-
and trans-interactions and have clearly become much
more highly regulated in their tissue- and development-
specific expression patterns. This in turn suggests a

refinement and narrowing in their gene targets. We
expect that this refinement will be in marked contrast
to the more broad and universal transcriptional acti-
vation potential expected in animal systems. As there
are now several very interesting NF-Y-associated de-
velopmental and stress-responsive processes, we expect
that our collective understanding of NF-Y complexes
and their plant-specific functions will expand rapidly
in the next few years.

MATERIALS AND METHODS

Plant Growth Conditions

All Arabidopsis (Arabidopsis thaliana) plants used are in the Columbia

(Col-0) ecotype. Plants for rosette and flower expression patterns (Figs. 8 and

9) were grown at 23�C in a standard LD light regime (16 h of light/8 h of dark).

Plants were grown in medium containing equal parts Farfard C2 Mix and

Metromix 200 supplemented with 40 g of Marathon pesticide and dilute

Peters fertilizer (NPK = 20:20:20). Plants were watered throughout with dilute

fertilizer (approximately one-tenth the recommended regular feeding levels).

Root and light/dark experimental plants (Figs. 6 and 7) were grown on sterile

plates. To allow appropriate comparisons, root and light/dark plants were

grown exactly as described by Birnbaum et al. (2003) and Warpeha et al.

(2007), respectively.

Phylogenies and Alignments

Individual subunits were identified by standard BLAST searches at TAIR

and the National Center for Biotechnology Information (Altschul et al., 1990).

Full-length protein sequences were imported into MEGA 4, where phyloge-

nies and alignments were created (Tamura et al., 2007). Multiple sequence

alignments were done by ClustalX (Thompson et al., 2002). Alignments and

phylogenies were created from both full-length protein sequences and

truncated sequences identical to those shown in Figures 2 to 4. All phylo-

genetic trees presented in this article were derived from the truncated

alignments of highly homologous regions. Neighbor-joining and bootstrap

methods were employed as described previously (Hall, 2008). Figures 2 to 4

were created with BOXSHADE (created by K. Hofmann and M. Baron) within

the Mobyle Web portal (http://mobyle.pasteur.fr/cgi-bin/MobylePortal/

portal.py).

CCAAT Searches

Using the Perl TFBS module (Lenhard and Wasserman, 2002), we gener-

ated a 16-base PWM from the nucleotide frequencies in 178 confirmed yeast

and mammalian NF-Y binding sites (Mantovani, 1998). We searched the

human and Arabidopsis data sets with this PWM, counting only those

sequences that achieved a match score of 90% or greater of the maximum

possible score. Match scores were calculated as a sum across positions of the

weights for the observed nucleotide at that position. Arabidopsis promoter

sequences were assembled as described in the text by TAIR data curators

Aleksey Kleitman and Leonore Reiser.

Promoter:GUS Fusions

To clone each NF-Y promoter region, primers were designed with partial

B1 and B2 sites (according to standard Gateway protocols; Invitrogen) and

gene-specific sequence. These PCRs were then used in a second PCR step

containing full-length B1 and B2 primers. The resulting PCR products were

then cloned into pDONR207 (Invitrogen). After confirming the correct se-

quence for each promoter, each was transferred by LR recombination reaction

to the eGFP/GUS fusion-containing binary vector pGWFS7 (Karimi et al.,

2002). For each promoter, the sequence represented 1,000 bp starting at 2 bp

downstream of the ATG start codon and extending 995 bp upstream of the

start codon. The 2 bp downstream of the ATG placed the gene-specific ATG in

frame with the eGFP/GUS start codon. We chose this conservative strategy to

avoid possible aberrant expression patterns arising from the gene-specific
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start codon being out of frame with the reporter gene. After transferring each

construct into plants by standard Agrobacterium tumefaciens-based methods

(Bechtold et al., 1993), we confirmed the correct transgene in each line by PCR

amplification from plant DNA and restriction digestion. All pictures show

stable, third-generation plants with single T-DNA insertions. At least two

lines were examined per promoter:GUS fusion.

Microscopy

Macrophotography was used to visualize the Arabidopsis rosettes in

Figure 8. For this, an Olympus DP71 CCD camera was fitted with a Pentax KC

50-mmAdapter and mounted above the subject with a NikonMKII optic light

providing illumination from above. SPOT software (version 4.6) was used to

record the pictures. For Figures 6, 7, and 9, we used an Olympus BX41

microscope with an Insight 2 Megapixel Color Mosaic CCD camera. We used

SPOT software (version 4.6) to record the pictures.

Sequence data from this article can be found in the GenBank/EMBL data

libraries under accession numbers 831124, 819738, 843614, 818037, 841856,

820616, 839929, 838335, 821640, 830539, 818472, 834815, 827101, 837424,

819393, 834818, 815843, 818282, 838800, 824502, 817292, 830715, 832373,

824019, 842070, 841922, 836466, 835117, 835116, 835115, 832857, 837417,

837313, 820427, 833794, and 834343.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Phylogenetic tree for the CO-Like proteins.

Supplemental Figure S2. Full alignment of CCT domains from CO and

COL1-5 with the Arabidopsis, human (Hs), rat (Rn), and yeast (Sc) NF-Y.

Supplemental Table S1. GUS staining versus microarray scores.
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