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Abstract

Purpose—To assess the diagnostic yield and the practicality of implementing whole exome 

sequencing within a clinical ophthalmology setting.

Design—Evaluation of a diagnostic protocol.

Setting: Patient participants were enrolled during clinical appointments in a university based 

Ophthalmic Genetics clinic.

Patient Population: Twenty-six patients with a variety of presumed hereditary retinal 

dystrophies. Intervention: Participants were offered whole exome sequencing in addition to 

clinically available sequencing gene panels between July 2012 and January 2013 to determine the 

molecular etiology of their retinal dystrophy.

Main Outcome Measures: Diagnostic yield and acceptability of whole exome sequencing in 

patients with retinal disorders.

Results—Twenty-six of 29 (~90%) eligible patients who were approached opted to undergo 

molecular testing. Each participant chose whole exome sequencing in addition to, or in lieu of, 

clinically available sequencing gene panels. Time to obtain informed consent was manageable in 
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the clinical context. Whole exome sequencing successfully identified known pathogenic mutations 

or suspected deleterious variants in 57.7% of participants. Additionally, one participant had 2 

autosomal dominant medically actionable incidental findings (unrelated to retinopathy) that were 

reported to enable the participant to take preventive action and reduce risk for future disease.

Conclusions—In this study, we identified the molecular etiology for more than half of all 

participants. Additionally, we found that participants were widely accepting of whole exome 

sequencing and the possibility of being informed about medically actionable incidental findings.

INTRODUCTION

The pace of progress in ophthalmic genetics has been exponential over the last decade. It is 

critical for ophthalmologists to understand emerging diagnostic technologies which may 

have clinical implications for their patients in the very near future. Whole exome sequencing 

(exome sequencing) and massively parallel sequencing gene panels are attractive new 

testing approaches for diagnosing genetic disorders that exhibit genetic heterogeneity and 

overlapping phenotypes. Few Mendelian disorders exhibit the degree of genetic 

heterogeneity demonstrated by retinitis pigmentosa (RP), one of the most common retinal 

dystrophies.1-2 Over 100 genes have been associated with this condition, yet only half of all 

patients with RP have an identifiable mutation.3-4 Moreover, other retinal dystrophies, 

including cone-rod dystrophy, cone dystrophy and Stargardt disease also exhibit genetic 

heterogeneity.3,5 Further complicating the clinical assessment of these disorders is the fact 

that retinal disorders also demonstrate significant phenotypic heterogeneity. For instance, 

mutations in the ABCA4 gene have been associated with several hereditary retinal 

dystrophies (Stargardt disease, cone-rod dystrophy, cone dystrophy and RP).1

Prior to the advent of massively parallel sequencing, genetic testing for heterogeneous 

disorders was pursued one gene at a time or through limited and expensive gene panels via 

Sanger sequencing. The benefit of using a broader testing methodology in such 

circumstances is the potential to eliminate the guesswork inherent in choosing only a subset 

of genes to test. Another advantage is that many participants seen in Ophthalmic Genetics 

clinics report no family history of retinal dystrophy, complicating determinations of 

inheritance patterns that might otherwise guide diagnostic strategies. Since retinal 

dystrophies are thought to be almost exclusively hereditary in nature, one can assume that 

there are yet-unidentified genes associated with RP and other retinal dystrophies.2 Exome 

sequencing allows the clinician the flexibility of ordering a single test for all suspected 

heterogeneous disorders and allows the laboratory the flexibility to analyze newly reported 

genes without continuously updating testing platforms.

A potential complication of exome sequencing testing versus targeted massively parallel 

sequencing gene panels is the prospect of patients receiving incidental findings unrelated to 

the retinal diagnosis. That is, when essentially all genes in an individual's genome are 

sequenced, information will be potentially available regarding other genetic disorders 

unrelated to the indication for testing. The American College of Medical Genetics (ACMG) 

recommends that laboratories return selected medically actionable incidental findings as part 

of any genome-scale clinical test. Thus, a small but predictable subset of patients will have 
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such additional findings.6 It is uncertain how patients might react to this possibility in the 

clinical setting, therefore, additional time is required to discuss the likelihood and examples 

of incidental findings as part of the informed consent process

The goals of this study were to investigate the use of exome sequencing to identify the 

molecular etiology of retinal dystrophies in a clinical ophthalmology setting and to 

determine the feasibility of using this novel and complex form of genetic testing, with regard 

to the potential discovery of incidental findings. Previous studies have shown the 

effectiveness of exome sequencing and targeted gene panels in determining the molecular 

etiology of retinal dystrophies.7-10 Here we demonstrate its high diagnostic yield, feasibility 

and acceptability of exome sequencing for retinal dystrophy patients enrolled in a clinical 

setting.

MATERIALS & METHODS

Patients evaluated for retinal disorders in the University of North Carolina Kittner Eye 

Center Ophthalmic Genetics Clinic between July 2012 and January 2013 were invited to 

participate. Participants were enrolled in the research protocol to undergo research genetic 

testing during their initial or follow-up clinical visits. Return patients were eligible if the 

molecular etiology of their retinal disorder was unknown. All potential participants were 

offered clinically available massively parallel sequencing targeted gene panel testing and 

research exome sequencing through this study. The University of North Carolina at Chapel 

Hill Institutional Review Board approval was obtained prior to patient enrollment, and this 

study adhered to the tenets of the Declaration of Helsinki.

All participants were enrolled and consented by a certified genetic counselor and agreed to 

learn of any diagnostic related findings as well as any medically actionable incidental 

findings. Known pathogenic mutations and variants of unknown clinical significance that 

could potentially explain their retinal disease were returned to participants. However, only 

clearly pathogenic medically actionable incidental findings were returned. Thus, variants of 

unknown significance within genes associated with medically actionable findings were not 

returned to participants given their uncertainty and low a priori risk of being pathogenic in 

presumably unaffected individuals. The list of conditions in the category of medically 

actionable incidental findings was based on a schema previously described by our group and 

further refined by a committee of medical and molecular geneticists, genetic counselors, a 

neurologist, a cardiologist and an ethicist as part of the NCGENES Study currently being 

conducted at University of North Carolina at Chapel Hill.11,12 This list included all 

conditions recently recommended by the American College of Medical Genetics for return 

of incidental findings.6

Exome sequencing was performed using Agilent's SureSelect XT Target Enrichment System 

for Illumina paired-end sequencing on the HiSeq 2000 instrument. The average depth of 

coverage for all participants across the entire region targeted for enrichment was 58.19.
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We utilized a custom pipeline developed for the NCGENES project to process raw sequence 

data from FASTQ files to generate variant calls.13 Variants were stored in a database and 

extensively annotated.14

To facilitate evaluation of variants possibly related to the participants’ retinal disorder, we 

filtered the exome data using a comprehensive list of 186 genes previously associated with 

syndromic and non-syndromic retinopathies, which was curated using Online Mendelian 

Inheritance of Man (OMIM)15, GeneTests.org16, relevant medical literature and genes 

currently being evaluated in clinical laboratories. Participants’ exome data were reanalyzed 

using an updated gene list, including 214 genes, one year later. A complete list of these 

genes is available in supplemental material (Supplemental Table 1). Variants within this set 

of genes were then prioritized into computational classes by an informatics algorithm to 

select: A) variants previously reported as mutations in the Human Gene Mutation 

Database17; B) predicted truncating variants that demonstrated <1% minor allele frequency; 

C) missense variants with <1% minor allele frequency; and several other categories with 

decreasingly likely pathogenicity. Variants were then analyzed for pathogenicity using a 

custom user interface.18 The total number of exome and filtered variants for each participant 

is available in supplemental material (Supplemental Table 2). Manual analysis of filtered 

variants entailed a combination of literature searches, publicly available variant databases 

queries, locus specific database searches, Condel in silico modeling and evolutionary 

conservation.19

The veracity of potential disease causing variants identified by exome sequencing and 

passing manual curation were confirmed by Sanger sequencing on a duplicate sample in the 

CLIA-certified University of North Carolina McLendon Molecular Genetics Laboratory. All 

participants were asked to return for a follow-up research appointment to discuss results and 

were provided with a research report summarizing the yield of the exome sequencing 

analysis. Participants were not given the option of learning about non-medically actionable 

incidental results.

RESULTS

During the enrollment period, 29 patients were eligible (15 new and 14 return clinic 

patients). Twenty-six of the 29 (~90%) patients opted to undergo clinically available testing 

and/or research exome sequencing. Three new patients declined both clinical and research 

testing. All 26 patients who wished to proceed with genetic testing chose exome sequencing, 

and 3 of the new patients (Participants 11, 20 and 25) opted to have simultaneous clinically 

available genetic testing. Participant 11 had negative clinical testing and Participants 20 and 

25 had pathogenic variants identified that were also detected via exome sequencing.

The informed consent process for return patients opting for exome sequencing took 30 

minutes or less. New patient appointments lasted 75 minutes, and the informed consent 

process took approximately 30 minutes. All questions about exome sequencing were 

addressed, and none of the participants shared any concerns regarding the possibility of 

learning medically actionable incidental findings.
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Participants represented a wide variety of ages and clinical indications, outlined in Table 1. 

Five of 26 (~19%) participants were under 18 years of age, and the adults ranged in age 

from 22 to 69 years. The majority of participants had a firm clinical diagnosis; however, 3 of 

26 (11.5%) participants had an uncertain clinical diagnosis at the time of enrollment. 

Fourteen of 26 participants (~54%) did not have a known family history of retinal 

dystrophy.

Fifteen of 26 (~58%) participants had clearly deleterious mutations or highly suspicious 

variants of unknown significance consistent with their phenotype. A complete summary of 

previous genetic testing and exome sequencing results for each participant is shown in Table 

2. Each of these variants was confirmed using Sanger sequencing. Participant 4 had two 

different medically actionable incidental findings: an apparently novel nonsense variant in 

BRCA2, c.2857G>T (p.Glu593*) which is associated with Hereditary Breast Ovarian Cancer 

syndrome; and an apparently novel frameshift variant in MSH6, c.1170delT (p.Phe391fs) 

which is associated with Lynch syndrome. Both truncating variants were considered likely 

pathogenic given their suspected effect on the protein. When questioned further about family 

history of cancer at results disclosure, he reported that his paternal grandfather had a history 

of colon cancer at an older age (Figure 1).

DISCUSSION

This study demonstrates the high diagnostic yield, feasibility and acceptability of exome 

sequencing for retinal dystrophy patients in the clinical ophthalmology setting. In our study, 

exome sequencing was widely accepted by a heterogeneous clinic population, with ~90% of 

those approached choosing to participate. Patients who chose not to participate also declined 

clinically available genetic testing.

The informed consent process for exome sequencing was manageable in a clinic setting. 

Several participants were not naïve to basic genetic information, which allowed for a brief 

review and then focused discussion on the differences between traditional genetic testing 

and exome sequencing along with possible results they might receive. The discussion was 

lengthier than for traditional clinical testing since it was necessary to explain the nature of 

the genetic testing as part of a research study. During the consent process, none of the 

participants expressed concern about the possibility of learning medically actionable 

incidental findings. However, several participants requested examples of possible results to 

conceptualize what a medically actionable incidental finding might entail. Several 

participants expressed that learning this type of information would allow them to be 

proactive with their health care in the future.

Just over half of the participants were found to have a definitive or possible molecular 

etiology defined as the cause of their retinal dystrophy, consistent with reports using 

massively parallel sequencing gene panels in a research setting.7-10 Previously reported 

pathogenic variants were identified in several participants, which aided interpretation of 

exome sequencing results. Novel variants were interpreted as likely pathogenic, if they were 

expected to result in a truncated protein. Novel missense variants, which are not expected to 

truncate proteins, and variants within genes that were not a definitive fit for the participant's 
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phenotype were more difficult to assess, and were reported back to the participants as 

variants of unknown significance.

Participants 4 and 7 each had three ABCA4 gene variants identified with potential clinical 

significance. Each participant had two known pathogenic mutations and one variant that had 

been previously reported as a pathogenic mutation and as a variant of unknown 

significance.20-24 Since exome sequencing analysis cannot determine the phase of the three 

variants, these results are consistent with autosomal recessive disease provided at least one 

pathogenic variant is on each allele. Participant 26 had only one known previously reported 

pathogenic variant identified in the ABCA4 gene, c.1927G>A (p.Val643Met).20,25 Since 

ABCA4 mutations are associated with autosomal recessive RP, the identification of one 

mutation does not fully explain the participant's diagnosis. A current known limitation of 

exome sequencing is the inability to identify larger deletions and duplications and possibly 

smaller indels.26,27 Therefore, it is possible that this participant has a mutation on the other 

ABCA4 allele that was not detected by this methodology. Alternatively, he could be a carrier 

for this form of RP and have an unrelated molecular cause of his RP, or the variant could be 

erroneously classified as a pathogenic variant. We classified this variant as having uncertain 

significance due to its minor allele frequency.

Mutations within the USH2A gene are typically associated with Usher syndrome or 

autosomal recessive non-syndromic RP. Participant 19 with RP had one known pathogenic 

mutation c.2276G>T (p.Cys759Phe)28 and one possible splice site variant c.12295-3T>A, 

previously reported as a variant of unknown significance.29 However, a similar non-

canonical splicing variant, USH2A c.7595-3C>G, has been described as pathogenic.28 

Participant 12 with late onset RP had two missense variants of unknown significance, c.

7130A>G (p.Asn2377Ser) and c.11927C>T (p.Thr3976Met), which have both previously 

been reported.28-30

Participant 25 had an extensive X-linked family history of RP (Figure 1). A known 

pathogenic mutation in the RPGR gene, c.2323_2324delGA (p.Arg775fs) was identified.31 

After enrollment of this patient, eyeGENE (Program through the National Eye Institute) also 

confirmed this exact mutation by Sanger sequencing.

Approximately one-third of patients with autosomal recessive Stargardt disease have only 

one identifiable mutation in the ABCA4 gene.23,32 Participant 10 previously had testing that 

identified a single known pathogenic mutation in the ABCA4 gene, c.161G>A 

(p.Cys54Tyr).32 Exome sequencing identified the known ABCA4 mutation and revealed a 

variant of unknown significance in the PROM1 gene, c.1345G>A (p.Val449Met), which has 

been associated with autosomal dominant Stargardt disease. To our knowledge, this variant 

has not previously been reported. It is highly evolutionarily conserved and was predicted as 

deleterious by Condel, supporting its pathogenicity.19 However, parental samples were 

collected after results disclosure and revealed that both the ABCA4 and PROM1 variants 

were inherited from the participant's unaffected father making the pathogenicity of the 

PROM1 variant unlikely.
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Participant 18 had two apparently novel frameshift mutations in USH2A, c.

923_924insGCCA (p.His308fs) and c.12152_12153insTT (p.Glu4051fs), which explained 

his clinical diagnosis of Usher syndrome type 2.

Three participants in this cohort had an unclear clinical diagnosis at the time of enrollment, 

and exome sequencing helped identify a probable cause in one. Participant 16 was an 11 

year old male with retinal features consistent with a rare diagnosis of pigmented paravenous 

chorioretinal atrophy or an RP-like syndrome. Exome sequencing identified the two 

missense variants in the RDH12 gene, c.697G>C (p.Val233Leu) and c.869T>G 

(p.Val290Gly). The Val233Leu variant was previously reported in an individual with 

retinopathy who had a frameshift mutation on the other allele.33 To our knowledge, the 

Val290Gly has not previously been reported.

Two participants had results suggesting a different inheritance pattern than inferred by their 

family history. Participant 1 is a 34 year old male with a personal history of RP and no 

known family history who was found to have a previously reported pathogenic variant in the 

RHO gene, RHO c.1040C>T (p.Pro347Leu).34 Mutations within the RHO gene are 

associated with autosomal dominant RP, which is not consistent with this participant's 

family history. However, de novo dominant mutations have been reported in the RHO 

gene.33,34

Participant 24 is a 55 year old male with a personal and family history of Stargardt disease 

who was found to have an apparently novel heterozygous variant in the PRPH2 gene, c.

457A>G (p.Lys153Glu). The PRPH2 gene is associated with autosomal dominant Stargardt 

disease. Two of the participant's siblings were reported to have the same phenotype (Figure 

1). Neither the parents nor any other relatives carry a clinical diagnosis of Stargardt disease, 

and thus, an autosomal recessive form of this condition was expected. Interestingly, his 

mother reportedly was diagnosed with age related macular degeneration (AMD). The 

mother also likely has this variant and has been diagnosed with AMD due to the later onset 

of symptoms in this family. The mother was not available for testing.

One rationale for using exome sequencing versus massively parallel sequencing gene panels 

is to determine the mutation(s) within a gene that typically caused a syndromic form of a 

retinal disease. For example, there are reports of individuals with non-syndromic RP having 

mutations in at least three genes originally described as associated with Bardet-Biedl 

syndrome (BBS): BBS1, TTC8 and ARL6, an autosomal recessive disease characterized by 

truncal obesity, postaxial polydactyly, cognitive impairment, genitourinary malformations, 

renal dysfunction and cone-rod dystrophy or RP.35-37

Participant 9 is a 22 year old female diagnosed initially with Stargardt disease around 10 

years of age. However, when she was evaluated in the Ophthalmic Genetics clinic, her 

electroretinogram demonstrated normal cone and rod photoreceptor function, and her exam 

revealed bilateral macular atrophy consistent with a macular dystrophy. She was found to 

have two missense variants in the BBS9 gene, which is associated with BBS. Thus, this 

participant appears to have non-syndromic cone-rod dystrophy possibly caused by BBS9 

mutations. We were unable to locate a previous report linking BBS9 pathogenic variants 
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with non-syndromic cone-rod dystrophy, and thus, would represent an expansion of the 

phenotype if these variants are indeed pathogenic.

Variants of unknown significance were identified in seven participants. These participants 

were informed that these variants could be disease causing or simply human variation. Some 

variants of unknown significance are more likely to be pathogenic than others, and this 

information was also shared with participants. For instance, the USH2A variant of unknown 

significance in Participant 19 is likely pathogenic, since this individual has a second known 

pathogenic variant within the same gene that fits the phenotype. Alternatively, participants 

with one variant of unknown significance identified along with two known pathogenic 

variants within a gene that fits the phenotype suggests that the variant of unknown 

significance is less likely to be pathogenic; as in the case of Participants 4 and 7. Participants 

9, 12 and 16 had two variants of unknown significance within genes that fit their phenotype 

which are usually inherited in an autosomal recessive fashion. These variants rose to the 

level of suspicion to report to participants; however, they could undoubtedly be distractions 

rather than disease causing variants. Participant 26 had one only variant of unknown 

significance within a gene that fits the phenotype, which suggests that he has a deletion on 

the other allele that was undetected, he is simply a carrier for that form of RP and has other 

disease causing variants, or that this variant is not disease causing, contrary to previous 

reports in the literature. Each of these possible scenarios were discussed with participants.

All participants with variants of unknown significance were offered family studies, which, 

to date, one family has accepted. Parental testing in Participant 10 allowed the downgrade a 

variant of unknown significance in the PROM1 gene to a likely benign variant. If the 

PROM1 variant was pathogenic, we would have expected that this variant would have been 

de novo, given that both parents were unaffected and pathogenic variants in this gene are 

associated with autosomal dominant Stargardt disease.

Exome sequencing, with analysis focused on genes with known associations with retinal 

disorders, can be considered a “virtual” massively parallel sequencing gene panel, 

significantly decreasing the number of variants to analyze. However, unlike employing an 

actual gene panel, exome sequencing allows flexibility to reanalyze data as new gene 

candidates are identified without the need to develop a new physical test dependent upon 

gene capture. This will facilitate the identification of novel gene candidates and reanalysis of 

exome data as additional retinal disease genes are described in participants with as of yet 

negative results and in participants with variant(s) of unknown significance. Thus, for the 

time being, a whole-exome approach is readily justifiable as a diagnosis is sought in those 

with likely genetic retinal pathology. However, as the pace of gene discovery plateaus, there 

may well come a point at which a captured panel of genes is scrutinized, given the superior 

analytic performance of such panels due to increased depth of coverage and the lack of 

concerns about secondary findings in that context.

Participant 4 had medically actionable incidental findings in both the BRCA2 and MSH6 

genes. The lack of personal or significant family history was surprising and illustrates the 

complexity of returning medically actionable results. During results disclosure, it was 

emphasized that these were novel variants that have not been directly associated with 
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disease, although most known pathogenic mutations within these two genes are rare or 

private to families. It was also important to note that previous testing of these two genes has 

largely been in individuals with a personal and/or family history of cancer. Therefore, as 

larger numbers of unaffected individuals are tested in the general population through exome 

sequencing, current estimates of penetrance rates of well-known diseases may be found to 

be inflated. However, in the meantime, it was recommended that the participant's relatives 

be tested for these presumed pathogenic mutations, in accordance with the National 

Comprehensive Cancer Network screening guidelines.

This project was designed as a pilot study. Thus, the sample size is small; however, the yield 

of exome sequencing for this cohort is similar to other published studies carried out in a 

research setting. Glöckle et al. reported a diagnostic yield of 50-80% (depending on the 

phenotype) using massively parallel sequencing gene panels within an unselected set of 

participants with retinal dystrophies.10 Audo et al. reported a 57% detection rate in patients 

with a variety of retinal dystrophies using a massively parallel sequencing gene panel of 254 

known and candidate genes.9

In this study, relatives were not enrolled at the onset, in order to more closely simulate a 

clinical ophthalmology setting. Not enrolling relatives limits the ability to determine the 

phase of variants identified in genes associated with autosomal recessive disorders, or 

determine whether heterozygous variants in genes associated with dominant conditions are 

de novo versus incompletely penetrant. However, more often than not, informative family 

members do not attend clinic appointments with patients. In the clinical ophthalmology 

setting, family studies are initiated only when testing does not point to a clear causality. The 

same approach was used in this study. However, many informative relatives were 

unavailable. This is consistent with any clinic patient with genetic testing, and is a limitation 

that is not unique to retinal dystrophy patients nor exome sequencing.

The pace of progress in ophthalmic genetics has been exponential over the last decade; it is 

critical for ophthalmologists to understand emerging diagnostic technologies, such as exome 

sequencing, which may have widespread clinical applications in the very near future. With 

genetic therapies on the horizon, an accurate molecular diagnosis will be a prerequisite for 

patients seeking enrollment in clinical trials, confirmation of clinical diagnoses and 

prognostic information for patients and their family members. In this study, exome 

sequencing was highly acceptable to the cohort and implementation was manageable in a 

clinical ophthalmology setting. Such broad testing proved useful in participants with a 

history of features overlapping among different retinal dystrophies and in participants with 

no clear clinical diagnosis. Using one test for heterogeneous disorders reduces the need to 

rely exclusively on family history information for characterizing an individual's disease, and 

exome sequencing may increase diagnostic yield by allowing review of potentially 

pathogenic variants within genes that are associated with retinal disorders with somewhat 

different but similar phenotypes. Exome sequencing is emerging as a powerful tool in 

determining the molecular etiology for participants with a variety of heterogeneous retinal 

dystrophies, even in the clinical ophthalmology setting.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Selected pedigrees of participants with a variety of retinal dystrophies evaluated by 
whole exome sequencing
(Top Left) Participant 4 with BRCA2 and MSH2 mutations with only paternal grandfather 

with a history of cancer. (Top Right) Participant 24 with PRPH2 mutation with two sisters 

with Stargardt disease and mother with diagnosis of age related macular degeneration. 

(Bottom Right) Participant 25 with RPGR mutation with family history consistent with X-

linked inheritance.
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Table 1

Summary of participants' clinical diagnoses and presentation, family history and previous record of genetic 

testing

Participant Age at Enrollment Clinical Diagnosis Age of Onset Family History Previous Testing Results

1 34 yr retinitis pigmentosa Early teens No not applicable

2 60 yr cone dystrophy 20's No not applicable

3 9 yr retinal dystrophy NOS + hearing 
loss

Hearing loss 
-congenital 

Retinal 
dystrophy - 

~5

Yes - AD not applicable

4 46 yr cone-rod dystrophy Early 20's No not applicable

5 48 yr cone dystrophy congenital Yes - XL not applicable

6 60 yr retinitis pigmentosa 29 yr No not applicable

7 26 yr Stargardt disease 16 yr Yes - AR not applicable

8 43 yr retinal dystrophy NOS 41 yr No not applicable

9 23 yr macular dystrophy 10 yr No not applicable

10 41 yr Stargardt disease 6 yr No ABCA4 c.161G>A (p.Cys54Tyr)

11 7 yr familial exudative vitreoretinopathy ~6 yr Yes - AD Negative 4 adFEVR panel + NDP gene

12 68 yr retinitis pigmentosa ~62 yr No not applicable

13 52 yr cone-rod dystrophy ~42 yr No not applicable

14 64 yr retinitis pigmentosa 34 yr Yes - AR not applicable

15 22 yr retinitis pigmentosa 15 yr No not applicable

16 12 yr retinal dystrophy NOS 11 yr No Negative 13 recessive retinitis 
pigmentosa gene panel

17 48 yr retinitis pigmentosa ~38 yr No not applicable

18 23 yr Usher syndrome type 2 hearing loss - 
1 yr retinitis 
pigmentosa - 

13 yr

Yes - AR not applicable

19 36 yr retinitis pigmentosa 35 yr No not applicable

20 30 yr retinitis pigmentosa 30 yr Yes - AD RP1 c.2029C>T

21 26 yr Leber Congenital Amaurosis Congenital Yes - AD not applicable

22 29 yr retinitis pigmentosa 15 yr Yes - AD Negative RHO, RDS, RP1 (c.
1500-3200), PRPF31, PRPF8 (exon 

42), PRPF3 (exon11), NR2E3 (c.
150-210), TOPORS (c.1975-2820), 
IMPDH1 (exon 10), RP2, RPGR, 

SNRNP200

23 9 yr retinitis pigmentosa 6 yr Yes - AD not applicable

24 54 yr Stargardt disease Mid 30's Yes - AR not applicable

25 11 yr retinitis pigmentosa 9 yr Yes - XL RPGR c.2323_2324delGA (p.Arg775fs)

26 44 yr retinitis pigmentosa ~42 yr No not applicable

Abbreviations: NOS, not otherwise specified; AD, autosomal dominant; XL, X-linked; AR, autosomal recessive
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