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Abstract

Objectives—Body mass index (BMI) is a well-known measure of obesity with a multitude of

genetic and non-genetic determinants. Identifying the underlying factors associated with BMI is

difficult because of its multifactorial etiology that varies as a function of geoethnic background

and socioeconomic setting. Thus, we pursued a study exploring the influence of the degree of

Native American admixture on BMI (as well as weight and height individually) in a community

sample of Native Americans (n=846) while accommodating a variety of socioeconomic and

cultural factors.

Methods—Participants’ degree of Native American (NA) ancestry was estimated using a

genome-wide panel of markers. The participants also completed an extensive survey of cultural

and social identity measures: the Indian Culture Scale (ICS) and the Orthogonal Cultural

Identification Scale (OCIS). Multiple linear regression was used to examine the relation between

these measures and BMI.

Results—Our results suggest that BMI is correlated positively with the proportion of NA

ancestry. Age was also significantly associated with BMI, while gender and socioeconomic

measures (education and income) were not. For the two cultural identity measures, the ICS

showed a positive correlation with BMI, while OCIS was not associated with BMI.

Conclusions—Taken together, these results suggest that genetic and cultural environmental

factors, rather than socioeconomic factors, account for a substantial proportion of variation in BMI
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in this population. Further, significant correlations between degree of NA ancestry and BMI

suggest that admixture mapping may be appropriate to identify loci associated with BMI in this

population.
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INTRODUCTION

Admixed populations in the Americas, including Native American populations, African

American populations, and Hispanic American populations, have emerged as predominant

sub-populations in North America over the past several centuries (Seldin et al. 2011). Since

there is known to be disease prevalence and incidence rate differences across different

populations, the degree to which the genetic background and admixture contribute to disease

phenotypes is an important question for genetic analyses. For example, identifying genes

that influence phenotypes that may have arisen in a particular population and are propagated

through admixture is not trivial. This is due to the fact that the ancestral backgrounds of

participants in genetic association studies can influence the detection of specific genetic

variants since there may be possible differences in the frequencies of those variants across

different populations. In some cases, associated variants might even be specific to a

population, while in others the genetic background of an individual could moderate the

effect of that variant through subtle or overt interaction effects (Patterson et al. 2004;

Williams et al. 2000; Winkler et al. 2010; Yang et al. 2011b). In genome-wide association

studies, these phenomena can lead to false positive and false negative results (Lander and

Schork 1994; Price et al. 2010). In this light, association studies pursued in the Americas to

identify gene variants of relevance to disease must either accommodate the genetic

backgrounds of the individuals participating in the study – for example through admixture

mapping – or exploit analytical methods that correct for genetic background diversity

(Freedman et al. 2004; Patterson et al. 2004; Price et al. 2010). A first step in determining

the influence of admixture and genetic background on a phenotype is to explore the

relationship between ancestral background and phenotypic expression. However, this is not

trivial, given confounding between genetic and environmental (e.g., diet) factors between

individuals, and the concern that different methods for assessing genetic background have

been developed whose relative merits have not been well-studied.

Historically, and prior to the widespread use of genotyping, many studies exploring the

relevance of genetic background and/or ancestry, relied on self-reported ancestry. However,

self-reported ancestry has several limitations, the most important being that often an

individual may not know their exact ‘percentage’ ancestry from different ethnic groups

(Klimentidis et al. 2009a). Genotyping individuals with a set of specific ancestry

informative markers (AIMs) and then using statistical methods to quantify proportion of

ancestry from a particular ancestral population can also be problematic due to the limited

ancestries that are targeted in a panel of AIMs and the small number of markers that are

typically used. With the advent of next generation sequencing, more precise admixture

estimation methods are possible, since, rather than relying on self-reported ancestry, or a
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handful of ancestry informative markers (AIMs), the entire genome can be interrogated for

signs of contributions from multiple ancestral populations simultaneously. Given these facts,

we sought to explore the relationship between Native American ancestry estimates obtained

from whole genome sequencing and a global epidemiologically-meaningful phenotype,

obesity, as measured by body mass index (BMI).

Obesity is an important disease entity of great relevance to global population health, is

highly heritable (Angeli et al. 2011; Ma et al. 2010; Peterson et al. 2011), and has been

shown to be on the rise in a number of populations (Finucane et al. 2011; Stevens et al.

2012). In addition, phenotypic manifestations of obesity are known to vary across

populations (Kopelman 2000; Yusuf et al. 2005) with particularly high rates noted among

specific Native American tribes (Story et al. 2003). Obesity has also been linked to many

medical disorders, such as diabetes, cardiovascular disease, cancer, and hypertension that

vary in prevalence across populations (Finucane et al. 2011). Given the variations in

prevalence across ethnic groups and substantial evidence that both BMI and height have

strong heritable components (Maes et al. 1997; Silventoinen and Kaprio 2009; Yang et al.

2010), many studies have been pursued to determine if there is a unique genetic component

to obesity in admixed populations such as Native Americans, African Americans, and

Mexican Americans (Angeli et al. 2011; Ehlers and Wilhelmsen 2007; Klimentidis et al.

2009b; Ma et al. 2010; Nassir et al. 2012; Peterson et al. 2011; Williams et al. 2000). In fact,

difficulties in assessing associations between specific gene variants and BMI may be due to

limitations in the methods used to estimate admixture, as noted above.

In light of the emergence of obesity as a global public health epidemic and the fact that it is

highly heritable, it is notable that studies exploring the relations between BMI and degree of

admixture have been inconsistent, with some studies reporting positive correlations with

BMI and some negative (Klimentidis et al. 2009b; Tang et al. 2006; Williams et al. 2000). In

order to account for the more subtle factors that may influence the relationship between

degree of admixture and BMI, we considered the use of whole genome sequence data from

697 individuals from a Native American (NA) population. Heritability estimates were

generated by several different methods that utilized the pedigree information or the genotype

data. We calculated the percentage of NA ancestry using different technologies and

strategies (i.e., genotyping with exome chip, and low coverage whole genome sequencing).

We also considered cultural and socioeconomic measures in order to uncover other factors

that may play a role in BMI and that may confound the detection of an association between

degree of genetic admixture and BMI. We believe our study is the most comprehensive to

explore relations between BMI and admixture from both genetic and cultural standpoints in

a NA population.

MATERIALS AND METHODS

Sample Ascertainment

Participants were recruited from eight geographically contiguous NA reservations, with a

total population of about 3,000 individuals, using a combination of a venue-based method

for sampling hard-to-reach populations (Kalton and Anderson 1986; Muhib et al. 2001), as

well as a respondent-driven procedure (Heckathorn 1997) as previously described (Ehlers et
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al. 2004; Gilder et al. 2004). The venues for recruitment included: tribal halls and culture

centers, health clinics, tribal libraries, and stores on the reservations. A 10–25% rate of

refusal was found depending on venue. Refusal rates were higher at tribal libraries and

stores than health clinics and tribal halls/culture centers. Transportation from participants'

homes to The Scripps Research Institute (TSRI) was provided by the study.

To be included in the study, participants had to be a Native American Indian indigenous to

the catchment area, at least 1/16th Native American Heritage (NAH) based on conventional

assessments and documentation of their federal Indian blood quantum, 18 years of age or

older, and be mobile enough to be transported from his or her home to TSRI. The protocol

for the study was approved by the Institutional Review Board (IRB) at TSRI, and the Indian

Health Council, a tribal review group overseeing health issues for the reservations where

recruitment was undertaken.

Potential participants first met individually with research staff to have the study explained

and give written informed consent. During a screening period, participants had blood

pressure and pulse taken, their height and weight measured, and completed a questionnaire

that was used to gather information on demographics, personal medical history, ethnicity,

and drinking history (Schuckit 1985). Each participant also completed an interview with the

Semi-Structured Assessment for the Genetics of Alcoholism (SSAGA) (Bucholz et al. 1994;

Hesselbrock et al. 1999), which was used to make medical and psychiatric diagnoses.

Participants were asked to refrain from alcohol and drug usage for 24 hours prior to the

testing. No individuals with detectable breath alcohol levels were included in the study

dataset. During the screening period, the study coordinator also noted whether the

participant was agitated, tremulous, or diaphoretic and their data were eliminated from

subsequent analyses.

Self-reported ancestry

All subjects were interviewed for their self-reported blood degree of NA ancestry, given as a

percent NA ancestry. Ambiguous values, such as “>50%”, “<50%”, or “don’t know”, were

omitted from the correlation calculations. 527 subjects provided such a self-report-based

percent Native American ancestry value.

Cultural identity

All subjects completed two different cultural identity measures: the Orthogonal Cultural

Identification Scale (OCIS) and the Indian Culture Scale (ICS). Refer to the Supplemental

Materials (Supplemental Tables 1 and 2) for the lists of questions that comprise these two

measures. The Orthogonal Cultural Identification Scale (OCIS) was developed by Oetting

and Beauvais (Oetting and Beauvais 1990; Oetting and Beauvais 1991). This scale’s internal

consistency for subscale scores was high and both concurrent and discriminant validity were

demonstrated in this American Indian population (Venner and Feldstein 2006). The Indian

Culture scale consists of a list of activities associated with Indian culture that the

participants may have engaged in over the last year such as sweat lodges, traditional games,

pow-wows, etc. (Westermeyer and Neider 1986). The OCIS score is a fractional number

between 0 – 4, with 4 representing maximum identification with Native American culture.

Norden-Krichmar et al. Page 4

Am J Hum Biol. Author manuscript; available in PMC 2015 May 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



The ICS score is a whole number between 0 – 24, with 24 representing maximum

identification with American Indian culture. Both cultural identity values were converted to

percentages, so that they could be directly compared to the ancestry estimates. The OCIS

score was available for 828 subjects, and the ICS score was available for 823 subjects.

Pedigree Structure

168 pedigrees containing 834 individuals were used in the genetic analyses. 87 families have

only a single individual with phenotype data. All these individuals were included within

some analyses to the extent that they contribute information about trait means and variance

and the impact of covariates. The family sizes for the remaining families ranged between 2

and 379 subjects (average 4.96). 72 families had informative genetic data. The data includes

208 parent-child, 296 sibling, 94 half sibling, 33 grandparent-grandchild, 452 avuncular, and

748 cousin relative pairs. Several pedigrees contained large numbers of individuals resulting

in distant relative pairs that were by their nature less informative for genetic analyses.

Additionally, several pedigrees included complex loops and were included in the genetic

analyses when possible.

Sample Preparation, Genotyping, and Sequencing

Blood samples were obtained by venopuncture and DNA was isolated from whole blood

using an automated DNA extraction procedure as previously described (Wilhelmsen et al.

2003). The DNA samples were prepared per Affymetrix protocols and the exome chip

genotyping was performed on the Affymetrix Axiom Exome 1A Array according to the

Affymetrix Axiom 2.0 Assay Manual Workflow documentation. Variant quality from the

exome chip was initially assessed according to Affymetrix best practices (Affymetrix 2011).

Duplicates for 56 of the samples were also included in the run, which allowed the removal

of any variant that displayed discordant results for more than three of the replicated samples.

Plink version 1.07 (Purcell et al. 2007) was used to calculate Hardy-Weinberg (HWE) p-

values on a subset of 239 unrelated samples, followed by the removal of variants with an

HWE p < 10−10.

For whole genome sequencing, the DNA libraries were prepared using the Illumina TruSeq

DNA Sample Prep protocol, and paired-end sequencing was performed on Illumina

HiSeq2000 sequencers. The whole genome sequencing coverage ranged from 3X to 12X,

with an average read depth of 7.9. BWA version 0.5.8c (Li and Durbin 2009) was used to

align sequencing reads to the genome. Picard (http://picard.sourceforge.net/) was used for

de-duplicating and sorting the BAM files. GATK was used to realign possible indels and

recalibrate BAM quality scores. Initial variant calls were calculated independently for each

BAM file using the GATK Unified Genotyper and following the best practices for low-

coverage samples (DePristo et al. 2011; McKenna et al. 2010). To verify sample

identification, we compared these initial variant calls to the results of the exome chip

genotyping. To generate the final variant files used in this study, linkage-disequilibrium

(LD) aware variant calling was executed for the whole genome sequencing data using

samtools-hybrid (http://genome.sph.umich.edu/wiki/Samtools-hybrid) (Li et al. 2009),

BEAGLE (Browning and Browning 2007), and Thunder (Li et al. 2011; Li et al. 2010).
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Heritability

The heritability (h2) of each of BMI, weight, and height was calculated using SOLAR

(Almasy and Blangero 1998) leveraging the pedigree information for the NA participants in

this study as described above. The software packages Efficient Mixed-Model Association

eXpedited (EMMAX) (Kang et al. 2010) and Genome-wide Complex Trait Analysis

(GCTA) (Yang et al. 2011a) were used to calculate the genetic marker-based heritability of

BMI, weight, and height with the marker genotype information extracted from the whole

genome sequence (WGS) data obtained on each participant.

SOLAR estimates an h2 parameter by utilizing the self-reported pedigree structure to

partition the trait relative pair covariance for a phenotype into additive genetic and

environmental contributions while also correcting for covariates. Participant's age at the time

of evaluation and sex were evaluated as potential covariates and retained if they accounted

for at least 5% of the total variance. The probability that h2 was greater than zero was

determined using a Student's t-test of regression coefficients for each scale. This test of

significance was used to evaluate the potential genetic transmission of the traits examined in

the present report.

GCTA estimates heritability by modeling the effects of all genotyped SNPs as random

effects in a mixed linear model based on the genomic similarity of the individuals. EMMAX

also computes a pairwise relatedness matrix from the genotyped markers. It then uses a

variance component model to estimate the pseudo-heritability, which is the fraction of

phenotypic variance explained by the relatedness matrix. For both GCTA and EMMAX, a

cutoff at MAF >= 0.01 was applied to variants arising from the sequencing data, resulting in

6,358,436 markers used for the heritability estimates. The covariates used in GCTA analyses

were gender, age, age squared, and European, African, and Native American ancestry

proportions. The covariates used in EMMAX were gender, age, age squared, and Native

American ancestry.

Ancestry estimate using ADMIXTURE with Affymetrix exome data

The Affymetrix Exome1A exome chip, containing 247,222 markers, was run with DNA

from the Native American subjects. Genotyping calls were quality filtered and converted to

PLINK format (Purcell et al. 2007). The quality-filtered PLINK files were input into the

unsupervised clustering program ADMIXTURE (Alexander et al. 2009), to cluster the study

participants into 3 populations, representing Native American, Caucasian European, and

other (collectively) ethnicities. The ethnicity label assigned to each of the 3 clusters

generated by ADMIXTURE was determined by comparison to the self-reported ancestry

and the results from the Ancestry Estimator ANC4 program (see below). With

ADMIXTURE we were able to calculate ancestry estimates for 727 of the subjects who had

appropriate data.

Ancestry estimates using the Ancestry Estimator program (ANC4) with whole genome
sequencing data

Following variant calling and imputation, the genotyping calls from the whole genome

sequencing data were extracted at loci used in the ANC4 program (Libiger and Schork

Norden-Krichmar et al. Page 6

Am J Hum Biol. Author manuscript; available in PMC 2015 May 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



2012). ANC4 calculates the percentage ancestry for each individual for the following 4

ethnicities: European, African, Native American, and East Asian. ANC4 is a supervised

clustering program which uses input from genotype data on 364,470 loci collected on

reference individuals from global populations (European, African, Native American, and

East Asian), included by permission from a recent Native American population history study

(Reich et al. 2012). There were 8,650 markers that overlapped in the Affymetrix Exome 1A

array and the ANC4 reference panel. 697 subjects had whole genome sequencing data

suitable for estimation with this program.

Correlation between ancestry methods and cultural identity measures

In order to assess simple correlations between individual ancestry/degree of admixture

estimates and other variables collected on the study participants, custom R code was written.

Scatterplots of the correlations were also generated.

Multiple linear regression

Custom R code was also written to calculate and plot multiple linear regression analyses in

which BMI, height, and weight were taken as dependent variables with percentage Native

American ancestry from the three estimation methods, as well as the two cultural identity

scales, taken as independent variables. The following additional covariates were also

included in the regression analyses as independent variables: age, age squared, gender,

number of years of school, and gross income. Interaction effects between age and the

ancestry measures, and gender and the ancestry measures were also tested in the regressions.

Notably, it is possible that correlations between NA ancestry and BMI could be spuriously

induced if significant relations between degree of NA ancestry and the genetic similarity of

individuals resulting from the nesting of participants within families were present, because

the heritability of a trait and NA ancestry would thus be confounded. To address this

possibility, we performed two additional analyses to determine if there was a significant

relationship between the percentage of NA ancestry and the genetic relatedness of the

subjects due to family membership. First, to estimate the amount of variation in the pedigree

relationship that is explained by NA ancestry, we used the GAMOVA program (Nievergelt

et al. 2007) with the ANC4 ancestry values as a quantitative trait against the distance matrix

derived from the kinship coefficients of the subjects derived from the pedigree information.

In the second analysis, we conducted a principal coordinate analysis of the kinship distance

matrix using the matlab function ‘cmdscale’. The resulting dimensions were regressed

against BMI and ancestry to determine their significance. The significant dimensions were

then used as covariates in the multiple linear regression of BMI against percent NA ancestry

to observe their effect on the correlation.

RESULTS

Demographics of the Native American population

The demographics for the full sample of individuals (N=846) that were included in the BMI

correlations are shown in Table 1. The smaller subsets of individuals which had exome data

only (N=727), sequencing data only (N=697), self-reported ancestry only (N=527),

Norden-Krichmar et al. Page 7

Am J Hum Biol. Author manuscript; available in PMC 2015 May 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Orthogonal Cultural Identity Scale data only (N=828), or Indian Cultural Scale data only

(N=823) are described in Supplemental Table 3, which contains the demographic

information for the subsets grouped by available data. In the full (n=846) sample set, the

subjects exhibited a mean age of 31 (range 18 – 82) years of age, with 42% of the sample

being male. Participants had a mean of 11.6 years of education (SD=1.6), and a mean

income of $20,000-$29,000. Using self-reported ancestry, 48% of the participants reported

at least 50% Native American heritage based on their federal Indian blood quantum. The

mean BMI was 32 (SD=8, range 16 - 71), with 0.4% underweight, 19% normal weight, 26%

overweight, and 54% obese, as defined by the WHO guidelines (Keil and Kuulasmaa 1989).

Heritability of BMI, weight, and height in the NA population

Heritability (h2) of BMI, weight, and height were calculated to be 0.47, 0.47, and 0.58,

respectively, using SOLAR and leveraging the pedigree information available on the Native

American individual in this study (Ehlers and Wilhelmsen 2007). The genotype data (MAF

>= 0.01) extracted from the whole genome sequence information on each study participant

was used with the software EMMAX (Kang et al. 2010) to calculate the whole genome

genotype-based heritability as well and BMI, weight, and height were estimated to have

heritabilities of 0.38, 0.41, and 0.54, respectively. To contrast different methods of

estimating heritability further, we used the whole genome genotype data and the marker-

based heritability estimation method incorporated into the program GCTA (Yang et al.

2011a) and estimated the heritability of BMI, weight, and height to be 0.39, 0.41, and 0.57,

respectively. The p-values and standard error values have been added as Supplemental Table

4. The different methods for calculating heritability exhibited some differences in overall

estimates, but not overly so.

Correlation between genotype-based ancestry methods and cultural identity measures

The ancestry estimates for each individual calculated by ANC4 based on the sequencing

data were sorted by increasing percentage Native American ancestry over all the individuals,

and then plotted as a histogram (Figure 1). The other ancestry and cultural measures were

sorted by subject identification number in order to align with the ANC4 histogram (Figure

1). The ancestry measures show the same basic trends when plotted in this way, but the

differences between the cultural measurements are noticeable. The results of performing

pairwise Pearson’s and Spearman’s correlations between the measurements (Table 2 and

Figure 2) show a very high correlation between the ancestry estimates from the unsupervised

program ADMIXTURE and a supervised method, ANC4 (r = 0.89). There is also a

significant correlation between the calculated ancestry estimates and the self-reported

ancestry (r = 0.66). Surprisingly, there was no significant correlation between the ancestry

estimates and the cultural identity measures, and low correlation between the two cultural

measures. This suggests that the genotype-based ancestry measures and the cultural identity

measures are essentially capturing different aspects of the NA community biosocial milieu.

Additionally, correlations were performed between the ancestry and cultural measures and

the number of years of school and gross income. The number of years of school and income

do not correlate to the ancestry and cultural measures, or to each other (Supplemental Figure

1, Supplemental Table 5).
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To validate the accuracy of the ancestry estimates, we further examined the results from 14

mother-father-offspring trios in the population. Using the principle that a child should

exhibit a Native American ancestry percentage that is approximately equal to the average of

the two parents, we used the ancestry estimates generated by the ANC4 program to calculate

the expected admixture percentage for the child in each trio. The difference of the expected

proportion of NA ancestry based on the parents’ admixture percentages and the generated

ancestry estimate was calculated across all 14 trios. The average degree of Native American

ancestry for the parents in the trios was 0.58 +/− 0.21, and ranged from 0.24–1.00 (i.e., 24%

to 100% Native American ancestry). The average deviation from the expected ancestry was

found to be 0.02 across all trios. There was no significant difference between the observed

and expected ancestry proportions (paired t-test, p = 0.11). We note that the ancestry of the

parents across the trios covered most of the range of Native American ancestry percentages

in the entire sample, strengthening the validity of our findings.

Multiple linear regression analyses

The results for the multiple linear regression analyses treating BMI, height, and weight as

dependent measures and estimated percentage Native American ancestry and the cultural

identity measures (as well as important covariates discussed in the Methods section) as

independent variables can be found in Figures 3–5 and Tables 3–5.

For all ancestry estimates, there was a significant positive correlation with BMI (self-

reported ancestry p-value = 5.54E-05, Admixture p-value = 1.46E-04, ANC4 p-value =

1.56E-06) and weight (self-reported ancestry p-value = 2.12E-04, Admixture p-value =

2.0E-02, ANC4 p-value = 1.22E-04), and a significant negative correlation to height (self-

reported ancestry p-value = 0.47, Admixture p-value = 5.94E-06, ANC4 p-value =

8.00E-03). The Indian Culture Scale exhibited a significant association with BMI (ICS p-

value = 1.25E-03) and weight (ICS p-value = 3.07E-03), but not to height (ICS p-value =

0.45). In contrast to the other measures, the Orthogonal Culture Identity Scale did not show

any significant correlation to BMI (OCIS p-value = 0.59), weight (OCIS p-value = 0.49), or

height (OCIS p-value = 0.72).

To estimate the effect size of the association of ancestry with BMI, the unscaled estimates

from the multiple linear regression models for the self-reported, ADMIXTURE, and ANC4

ancestry multiple linear regressions were averaged together to obtain a value of 5.6 units of

BMI increase for a change from 0 to 100% in Native American ancestry. Rescaling the

effect size, this corresponds to an increase in BMI of 0.56 units for every 10% increase in

Native American ancestry.

From the GAMOVA analysis of ancestry against kinship, relatedness of the subjects was

found to be significantly associated with degree of NA ancestry (p-value = 0.001), but it

does not explain a substantial amount of the degree of NA ancestry variance (r2 = 0.006).

Similarly, the inclusion of the significant dimensions generated from the principal

coordinate analysis of the kinship coefficients as covariates into the multiple linear

regression analysis of BMI and ANC4 ancestry estimates, showed that the ancestry retained

a highly significant correlation to BMI (p-value < 0.001). These results suggest the relation
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between BMI and NA ancestry is independent of genetic similarity due to family relatedness

in this population sample.

The socioeconomic measures assessing the number of years of school and gross income

were found not to be significantly associated with BMI, height, or weight. Age and age

squared, however, were significantly associated with BMI, height, and weight, but did not

exhibit a significant interaction effect with the ancestry or the cultural identity terms on

BMI, height or weight. Gender was also a significant predictor of height and weight, but

also did not exhibit a significant interaction with the ancestry or the cultural identity

measures on height or weight.

In order to test for collinearity between the variables, we tested for correlations between all

pairs of predictors (i.e., age, gender, BMI, years of school, and gross income). In all cases,

the correlation between the pairs of predictors was very low (r < 0.25), which indicates that

we did not find evidence of collinearity in our sample.

To test if there were different constructs at play between self-reported ancestry and

genotype-derived ancestry, we constructed two models for each of the genotype-derived

ancestries (ADMIXTURE and ANC4). One model was the existing model (without self-

reported ancestry), and the other model had self-reported ancestry as a covariate. We

performed an ANOVA between the two models for each genotype-derived ancestry. For

both ADMIXTURE and ANC4, the addition of self-reported ancestry was not significant

(ANOVA results for ADMIXTURE and ANC4 models: p=0.10 and p=0.76, respectively).

DISCUSSION

Demographics

The prevalence of obesity, as defined by a BMI greater than 30 kg/m2 (Keil and Kuulasmaa

1989), is 54% in the community we studied, as compared to a prevalence of 29% in North

America, and 9.8–13% globally (Finucane et al. 2011). Overall, 80% of the subjects are

classified as overweight or obese, with a BMI greater than 25 kg/m2, with only 19% in the

normal weight BMI range of 18–25 kg/m2. Previous studies have indicated that obesity in

Native American communities is widespread, and that there is variation across the different

tribes (Story et al. 1999; Story et al. 2003). According to data available from the Indian

Health Service Clinical Reporting System for American Indian and Alaska Native adults, the

overall prevalence rate for obesity is 54%, and the prevalence for overweight or obese is

81% (Indian Health Service 2011). These values are in agreement with the percentages for

obesity (54%) and overweight or obese (80%) which were observed in this study population.

Heritability

Similar to previous studies, we found a high heritability for BMI, height, and weight in the

NA community we studied. Using three different methods (SOLAR, EMMAX, and GCTA),

heritability for BMI was 0.38–0.47, heritability for weight was 0.41–0.47, and heritability

for height was 0.54–0.58. These values are consistent with other heritability estimates for

BMI from twin studies that considered ethnicities of all types, which ranged from 0.50–0.90

(Maes et al. 1997; Silventoinen and Kaprio 2009), and from a Brazilian family study
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reporting a BMI heritability of 0.51 (de Oliveira et al. 2008). Heritability estimates for

height in unrelated individuals have been reported as 0.45 (Yang et al. 2010). We noted that

our heritability estimates for height may be inflated due to unknown and undocumented

relatedness among the individuals in our study population.

Correlation between ancestry methods and cultural measures

We explored the relationship between genotype-based ancestry estimates and self-reported

ancestry and found moderate evidence for such associations, but this is not surprising

because of the inherent limitations in granularity and accuracy of self-reported measures

(Klimentidis et al. 2009a). We believe that the supervised genotype-based ancestry estimates

provided by the ANC4 program are more accurate than those from the ADMIXTURE

program. We find that ADMIXTURE overestimates the ancestry at high percentages of NA

ancestry, and underestimates the ancestry at the low percentages of NA ancestry. Refer to

Figure 1 for a graphical representation of this phenomenon, where there are a larger number

of subjects estimated by ADMIXTURE to be 0% or 100% NA ancestry, than are estimated

by ANC4.

The cultural identity measures did not correlate well to each other, or to the ancestry

measures. Self-reported ethnicity and cultural identity have been found in other studies to be

uncorrelated to admixture determined by genotyping (Klimentidis et al. 2009a). The two

cultural measures are also measurements of different aspects of cultural identity, so it is not

surprising that they are not well correlated to each other.

Correlations between morphological phenotypes and ancestry and cultural measures

All NA ancestry estimate measures (self-report, ADMIXTURE, ANC4) exhibited a

significant positive correlation with BMI. Regression of height and weight on percent Native

American ancestry identified a negative and positive correlation, respectively. Age was

highly significant predictor of BMI, height and weight, as was gender with height and

weight, but with a lower level of statistical significance. Socioeconomic measures, such as

number of years of school and gross income, were not significantly associated with BMI,

height or weight.

The correlations of the morphological measurements to the two cultural identity

measurements exhibited a mix of supporting and conflicting correlations to those shown by

the ancestry estimates. The Indian Culture Scale (ICS) showed a positive correlation with

BMI and weight. The Orthogonal Cultural Identification Scale (OCIS) was not correlated

with BMI, weight, or height. These results are not surprising, since the two cultural identity

measurements are not well correlated to each other, or to the ancestry estimates (Figures 1

and 2, Table 2). Cultural identity has not been found to be a reliable estimate of genetic

admixture (Klimentidis et al. 2009a), so correlations with cultural identity should be viewed

with caution. It is interesting, however, that the ICS demonstrated a positive correlation to

BMI, which suggests that cultural factors may play a role in body mass.

A number of other studies have shown contrasting results for ancestry-percentage-based

correlations with BMI in an admixed population. These conflicting results may be due to

differences in the ethnic backgrounds of the participants, the number of subjects, the
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covariates included, and the methods of estimating admixture. As an example, in a study of

African American and Hispanic American post-menopausal women, there was a positive

correlation to BMI for the African American women, but there was no correlation with BMI

for the Hispanic American women (Nassir et al. 2012). Further, the authors of that study

found a high positive correlation with waist-to-hip ratio (WHR) and Native American

ancestry in the Hispanic women, which suggests that WHR may be more diagnostic of

adiposity in post-menopausal women. Although the authors pursued a large study group of

African American and Hispanic American women, the admixture was estimated with

genotyping of only 92 AIMs, and it included post-menopausal women, instead of sampling

men and women at a range of ages. Several studies found a positive correlation between

Native American ancestry and BMI (Klimentidis et al. 2009b; Williams et al. 2000), while

another study found a negative correlation (Tang et al. 2006). The present study attempted to

reconcile these discrepant findings by utilizing genetic data obtained from whole genome

sequencing to precisely estimate ancestry proportions and examine the relations of NA

ancestry to BMI.

We also addressed another potential confounding factor in correlations of ancestry with BMI

in admixed populations, which is the influence of the relatedness of the subjects in the study.

Using several different methods to estimate the effect of relatedness, we found that the

relation between NA ancestry and BMI was independent of familial relatedness.

We treated gross income and number of years of education as a proxy for socioeconomic

status (SES). We found that SES factors were not significantly correlated with BMI in our

population. These findings are similar to other studies that included these SES covariates,

where little or no significant effect was found (Klimentidis et al. 2009b; Nassir et al. 2012).

Although SES factors may have an influence on access to health care, studies of SES have

found inconsistent relationships between SES and adiposity, for example, in children in

developed countries (Shrewsbury and Wardle 2008).

It has been suggested that the increase in BMI in Native Americans is related to the shift

from traditional food and activity levels to contemporary occidental high fat, high calorie

diet and a more sedentary way of life (Story et al. 2003). However, some studies have found

that diet did not have a significant association with the observed correlation of BMI to

genetic ancestry (Nassir et al. 2012), and other studies have found no relationship between

activity level and BMI (Klimentidis et al. 2009b). Additionally, it has been found that self-

reported dietary intake questionnaires may be inaccurate or underestimate the caloric intake

(Hebert et al. 2003). Diet and physical activity levels were not accessed in the present study.

While we acknowledge that diet, physical activity, environmental and socioeconomic status

factors may all contribute to BMI, we chose to focus this study on the genetic component of

BMI. By utilizing an ancestry estimation technique (Libiger and Schork 2012) that employs

supervised clustering to a reference panel from 4 global populations using ~300K markers,

we were able to confidently infer individual ancestry percentages in our population. We

validated the ancestry estimates by comparison to exome chip data with the ADMIXTURE

program, and by further examination of the ancestry estimates of the trios in the data set. We

found a positive correlation between degree of Native American ancestry and BMI, in which
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covariates of socioeconomic factors were not significant. We also found one cultural

measurement scale to be positively correlated to BMI, while another was not. Taken

together, these results suggest that genetic and cultural environmental factors contribute to

BMI in this population, rather than socioeconomic factors. The difficulty of finding a

specific gene variant associated with BMI may be due to admixture in a population,

confounding effects of genealogy, social identity measures and other biosocial factors,

although our study suggests there might be potential for using admixture-mapping

approaches to uncover genes associated with BMI. Because excessive BMI is linked to

major medical disorders such as diabetes and cardiovascular disease, identifying factors that

contribute to elevated BMI may be important in informing prevention and intervention

programs in this high-risk population.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Percentage of Native American ancestry and cultural identity
Ancestry was estimated by 3 methods: self-reported ancestry, the ADMIXTURE program

with exome chip data, and the program ANC4 with the whole genome sequencing data. The

percentage of Native American identification was estimated using 2 cultural scales:

Orthogonal Cultural Identity Scale (OCIS) and Indian Culture Scale (ICS). The ANC4

ancestry estimates were sorted in order of increasing percentage of Native American

ancestry. All the other ancestry or cultural measures were sorted by subject identification

number, in order to align with the ANC4 plot.
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Figure 2. Correlation plot between ancestry estimates and cultural measures
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Figure 3. Regression of BMI and %NA ancestry and cultural measures
Covariates: age, age squared, gender, number of years of education, and income. Significant

correlations were present for self-reported ancestry (p-value=5.54E-05), ADMIXTURE with

the exome chip data (p-value= 1.46E-04), ANC4 with the sequencing data (p-

value=1.56E-06), and Indian Culture Scale (ICS) (p-value=1.25E-03).
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Figure 4. Regression of Height (in inches) and %NA ancestry and cultural measures
Covariates: age, age squared, gender, number of years of education, and income. Significant

correlations were present for ADMIXTURE with the exome chip data (p-value=5.94E-06)

and ANC4 with the sequencing data (p-value=8.00E-03).

Norden-Krichmar et al. Page 20

Am J Hum Biol. Author manuscript; available in PMC 2015 May 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 5. Regression of Weight (in pounds) and %NA ancestry and cultural measures
Covariates: age, age squared, gender, number of years of education, and income. Significant

correlations were present for self-reported ancestry (p-value=2.12E-04), ADMIXTURE with

the exome chip data (p-value=2.0E-02), ANC4 with the sequencing data (p-

value=1.22E-04), and Indian Culture Scale (ICS) (p-value=3.07E-03).
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Table 1

Demographics for Native American study participants.

Full sample
(n=846)

Males (n=351)
[42%]

Females (n=495)
[58%]

Age [range, mean(sd)] 18-82, 31.2 (13.2) 18-80, 29.8 (12.6) 18-82, 32.3 (13.6)

NA heritage >= 50% (self-reported) 48% 50% 46%

Education [range in years, mean(sd)] 3-17, 11.6 (1.6) 6-16, 11.5 (1.4) 3-17, 11.6 (1.7)

Income [mean(sd)] 3.27 (2.1) $20,000-$29,999/yr 3.4 (2.2) 3.2 (2.1)

Proportion in income category

  Unreported 70/846 = 8% 37/351 = 11% 33/495 = 7%

  1= $1,000-$9,999/yr 172/846 = 20% 62/351 = 18% 110/495 = 22%

  2=$10,000-$19,999/yr 178/846 = 21% 74/351 = 21% 104/495 = 21%

  3=$20,000-$29,999/yr 137/846 = 16% 55/351 = 16% 82/495 = 17%

  4= $30,000-$49,999/yr 85/846 = 10% 39/351 = 11% 46/495 = 9%

  5=$40,000-$49,999/yr 53/846 = 6% 14/351 = 4% 39/495 = 8%

  6=$50,000-$74,999/yr 82/846 = 10% 40/351 = 11% 42/495 = 8%

  7=$75,000-$99,999/yr 36/846 = 4% 13/351 = 4% 23/495 = 5%

    8=$100k-$149,999/yr 19/846 = 2% 11/351 = 3% 8/495 = 2%

  9=$150,000 or more/yr 14/846 = 2% 6/351 = 2% 8/495 = 2%

BMI [range, mean(sd)] 15.9-71.0, 31.9 (8.1) 15.9-59.1, 31.0 (7.1) 16.7-71.0, 32.6 (8.7)

  % with BMI < 18 (underweight) 4/846 = 0.5% 2/351 = 0.6% 2/495 = 0.4%

  % with BMI 18-25 (normal weight) 160/846 = 19% 66/351 = 19% 94/495 = 19%

  % with BMI 25-30 (overweight) 221/846 = 26% 109/351 = 31% 112/495 = 23%

  % with BMI > 30 (obese) 461/846 = 54% 174/351 = 50% 287/495 = 58%

  % with BMI 30-35 (Obesity Class I) 210/846 = 25% 89/351 = 25% 121/495 = 24%

  % with BMI 35-40 (Obesity Class II) 126/846 = 15% 47/351 = 13% 79/495 = 16%

  % with BMI > 40 (Obesity Class III) 125/846 = 15% 38/351 = 11% 87/495 = 18%
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Table 3

Multiple regression analyses results for BMI as the outcome variable using all predictors.

Unscaled
Estimate

Scaled
Estimate

Predictor +/− Std Error +/− Std Error p-value

Self-Reported Ancestry Model

  (N=502, r2=0.102, DF=501, p=6.54E-10 )

    Self-Reported Ancestry 5.15 +/− 1.27 1.39 +/− 0.34 5.54E-05 *

    Gender 1.05 +/− 0.70 0.52 +/− 0.34 0.13

    Age 0.58 +/− 0.13 7.61 +/− 1.70 9.05E-06 *

    Age squared −0.01 +/− 0.00 −6.27 +/− 1.67 1.93E-04 *

    #Years of school 0.13 +/− 0.21 0.21 +/− 0.33 0.53

    Gross income 0.26 +/− 0.17 0.56 +/− 0.36 0.12

ADMIXTURE Ancestry Model

  (N=664, r2=0.114, DF=663, p=3.21E-15 )

    ADMIXTURE Ancestry 4.10 +/− 1.07 1.08 +/− 0.28 1.46E-04 *

    Gender 0.55 +/− 0.58 0.27 +/− 0.29 0.35

    Age 0.57 +/− 0.11 7.50 +/− 1.44 2.67E-07 *

    Age squared −0.01 +/− 0.00 −5.69 +/− 1.46 1.03E-04 *

    #Years of school 0.10 +/− 0.18 0.15 +/− 0.29 0.60

    Gross income 0.04 +/− 0.14 0.08 +/− 0.29 0.79

ANC4 Ancestry Model

  (N=635, r2=0.122, DF=634, p=9.76E-16 )

    ANC4 Ancestry 7.53 +/− 1.55 1.45 +/− 0.30 1.56E-06 *

    Gender 0.34 +/− 0.60 0.17 +/− 0.30 0.58

    Age 0.57 +/− 0.11 7.59 +/− 1.41 9.45E-08 *

    Age squared −0.01 +/− 0.00 −5.89 +/− 1.40 2.75E-05 *

    #Years of school 0.25 +/− 0.19 0.39 +/− 0.30 0.20

    Gross income 0.20 +/− 0.15 0.43 +/− 0.31 0.16

Orthogonal Cultural Identity Scale Model

  (N=762, r2=0.088, DF=761, p=3.79E-13 )

    Orthogonal Cultural Identity Scale 0.86 +/− 1.59 0.15 +/− 0.28 0.59

    Gender 0.90 +/− 0.57 0.44 +/− 0.28 0.12

    Age 0.61 +/− 0.10 8.02 +/− 1.36 6.20E-09 *

    Age squared −0.01 +/− 0.00 −6.23 +/− 1.36 5.09E-06 *

    #Years of school 0.05 +/− 0.18 0.08 +/− 0.29 0.78

    Gross income 0.02 +/− 0.14 0.05 +/− 0.29 0.87

Indian Culture Scale Model

  (N=756, r2=0.106, DF=755, p=3.77E-16 )

    Indian Culture Scale 4.88 +/− 1.50 0.92 +/− 0.28 1.25E-03 *

    Gender 0.85 +/− 0.57 0.42 +/− 0.28 0.13
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Unscaled
Estimate

Scaled
Estimate

Predictor +/− Std Error +/− Std Error p-value

    Age 0.62 +/− 0.10 8.23 +/− 1.36 2.36E-09 *

    Age squared −0.01 +/− 0.00 −6.24 +/− 1.36 5.02E-06 *

    #Years of school 0.04 +/− 0.18 0.06 +/− 0.29 0.83

    Gross income 0.04 +/− 0.14 0.08 +/− 0.29 0.77

*
Denotes p-values less than 0.05. Interaction between ancestry and age was not significant. Interaction between ancestry and gender was not

significant.
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Table 4

Multiple regression analyses results for Height (in inches) as the outcome variable using all predictors.

Unscaled
Estimate Scaled Estimate

Predictor +/− Std Error +/− Std Error p-value

Self-Reported Ancestry Model

  (N=502, r2=0.536, DF=501, p<2.2E-16)

    Self-Reported Ancestry −0.31 +/− 0.42 −0.08 +/− 0.11 0.47

    Gender −5.43 +/− 0.23 −2.68 +/− 0.11 <2E-16 *

    Age −0.01 +/− 0.04 −0.14 +/− 0.57 0.80

    Age squared 0.00 +/− 0.00 −0.22 +/− 0.56 0.70

    #Years of school −0.05 +/− 0.07 −0.07 +/− 0.11 0.50

    Gross income 0.01 +/− 0.06 0.03 +/− 0.12 0.80

ADMIXTURE Ancestry Model

  (N=664, r2=0.544, DF=663, p<2.2E-16)

    ADMIXTURE Ancestry −1.68 +/− 0.37 −0.44 +/− 0.10 5.94E-06 *

    Gender −5.30 +/− 0.20 −2.62 +/− 0.10 <2E-16 *

    Age −0.02 +/− 0.04 −0.31 +/− 0.50 0.54

    Age squared 0.00 +/− 0.00 0.02 +/− 0.50 0.97

    #Years of school 0.04 +/− 0.06 0.06 +/− 0.10 0.57

    Gross income 0.03 +/− 0.05 0.06 +/− 0.10 0.53

ANC4 Ancestry Model

  (N=635, r2=0.543, DF=634, p<2.2E-16 )

    ANC4 Ancestry −1.41 +/− 0.53 −0.27 +/− 0.10 8.00E-03 *

    Gender −5.45 +/− 0.21 −2.69 +/− 0.10 <2E-16 *

    Age −0.01 +/− 0.04 −0.19 +/− 0.48 0.70

    Age squared 0.00 +/− 0.00 −0.02 +/− 0.48 0.96

    #Years of school 0.03 +/− 0.07 0.05 +/− 0.10 0.60

    Gross income 0.03 +/− 0.05 0.06 +/− 0.10 0.59

Orthogonal Cultural Identity Scale Model

  (N=762, r2=0.529, DF=761, p<2.2E-16 )

    Orthogonal Cultural Identity Scale 0.19 +/− 0.53 0.03 +/− 0.09 0.72

    Gender −5.40 +/− 0.19 −2.66 +/− 0.09 <2E-16 *

    Age −0.01 +/− 0.03 −0.14 +/− 0.45 0.75

    Age squared 0.00 +/− 0.00 −0.16 +/− 0.45 0.73

    #Years of school 0.04 +/− 0.06 0.06 +/− 0.10 0.52

    Gross income 0.04 +/− 0.05 0.08 +/− 0.10 0.41

Indian Culture Scale Model

  (N=756, r2=0.528, DF=755, p<2.2E-16 )

    Indian Culture Scale −0.38 +/− 0.50 −0.07 +/− 0.09 0.45

    Gender −5.37 +/− 0.19 −2.65 +/− 0.09 <2E-16 *
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Unscaled
Estimate Scaled Estimate

Predictor +/− Std Error +/− Std Error p-value

    Age −0.01 +/− 0.03 −0.15 +/− 0.46 0.74

    Age squared 0.00 +/− 0.00 −0.18 +/− 0.45 0.69

    #Years of school 0.05 +/− 0.06 0.09 +/− 0.10 0.37

    Gross income 0.05 +/− 0.05 0.10 +/− 0.10 0.31

*
Denotes p-values less than 0.05. Interaction between ancestry and age was not significant. Interaction between ancestry and gender was not

significant.
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Table 5

Multiple regression analyses results for Weight (in pounds) as the outcome variable using all predictors.

Unscaled
Estimate Scaled Estimate

Predictor +/− Std Error +/− Std Error p-value

Self-Reported Ancestry Model

  (N=502, r2=0.130, DF=501, p=3.97E-13 )

    Self-Reported Ancestry 29.79 +/− 7.98 8.01 +/− 2.15 2.12E-04 *

    Gender −26.96 +/− 4.38 −13.29 +/− 2.16 1.56E-09 *

    Age 3.60 +/− 0.81 47.63 +/− 10.70 1.04E-05 *

    Age squared −0.04 +/− 0.01 −41.57 +/− 10.52 8.83E-05 *

    #Years of school 0.47 +/− 1.32 0.74 +/− 2.08 0.72

    Gross income 1.92 +/− 1.08 4.04 +/− 2.27 0.08

ADMIXTURE Ancestry Model

  (N=664, r2=0.132, DF=663, p<2.2E-16)

    ADMIXTURE Ancestry 15.47 +/− 6.88 4.09 +/− 1.82 0.02 *

    Gender −28.42 +/− 3.71 −14.01 +/− 1.83 6.99E-14 *

    Age 3.42 +/− 0.70 45.30 +/− 9.25 1.22E-06 *

    Age squared −0.03 +/− 0.01 −36.05 +/− 9.34 1.25E-04 *

    #Years of school 0.88 +/− 1.18 1.39 +/− 1.87 0.46

    Gross income 0.37 +/− 0.88 0.79 +/− 1.86 0.67

ANC4 Ancestry Model

  (N=635, r2=0.156, DF=634, p<2.2E-16 )

    ANC4 Ancestry 38.47 +/− 9.95 7.41 +/− 1.92 1.22E-04 *

    Gender −31.03 +/− 3.86 −15.30 +/− 1.90 4.51E-15 *

    Age 3.56 +/− 0.68 47.10 +/− 9.02 2.40E-07 *

    Age squared −0.04 +/− 0.01 −37.97 +/− 8.95 2.55E-05 *

    #Years of school 1.73 +/− 1.24 2.73 +/− 1.95 0.16

    Gross income 1.42 +/− 0.93 2.99 +/− 1.97 0.13

Orthogonal Cultural Identity Scale Model

  (N=762, r2=0.116, DF=761, p<2.2E-16 )

    Orthogonal Cultural Identity Scale 7.01 +/− 10.10 1.24 +/− 1.79 0.49

    Gender −26.78 +/− 3.62 −13.21 +/− 1.79 3.83E-13 *

    Age 3.76 +/− 0.65 49.74 +/− 8.66 1.36E-08 *

    Age squared −0.04 +/− 0.01 −40.66 +/− 8.62 2.84E-06 *

    #Years of school 0.51 +/− 1.16 0.81 +/− 1.83 0.66

    Gross income 0.43 +/− 0.87 0.91 +/− 1.83 0.62

Indian Culture Scale Model

  (N=756, r2=0.130, DF=755, p<2.2E-16 )

    Indian Culture Scale 28.39 +/− 9.56 5.33 +/− 1.80 3.07E-03 *

    Gender −27.01 +/− 3.61 −13.32 +/− 1.78 2.05E-13 *
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Unscaled
Estimate Scaled Estimate

Predictor +/− Std Error +/− Std Error p-value

    Age 3.85 +/− 0.65 50.98 +/− 8.65 5.64E-09 *

    Age squared −0.04 +/− 0.01 −40.83 +/− 8.63 2.65E-06 *

    #Years of school 0.48 +/− 1.15 0.76 +/− 1.81 0.68

    Gross income 0.59 +/− 0.86 1.24 +/− 1.81 0.49

*
Denotes p-values less than 0.05. Interaction between ancestry and age was not significant. Interaction between ancestry and gender was not

significant.
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