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The epidemiologist primarily studies transitions between states of health and disease. The purpose of the present

article is to define a foundational parameter for such studies, namely risk. We begin simply and build to the setting in

which there is more than 1 event type (i.e., competing risks or competing events), as well as more than 1 treatment

or exposure level of interest. In the presence of competing events, the risks are a set of counterfactual cumulative

incidence functions for each treatment. These risks can be depicted visually and summarized numerically. We use

an example from the study of human immunodeficiency virus to illustrate concepts.

causal inference; cohort study; semi-Bayes method; semiparametric inference; survival analysis

Abbreviation: AIDS, acquired immunodeficiency syndrome.

The epidemiologist chiefly studies transitions between
states of health and disease in populo (1) using observational
(or cohort) studies. Therefore, in awell-defined study popula-
tion, we are concerned with the time between 2 events, name-
ly the origin and an outcome event of interest. The purpose of
the present article is to define a foundational parameter for
such epidemiologic studies, namely risk. In epidemiology,
risk has been defined as “the probability of an event during a
specified period of time” (2, p. 10). Below, we define risk as a
function of time, allowing for competing risks (hereafter re-
ferred to as competing events) and more than 1 treatment (or
exposure level) of interest. We conclude with a brief discus-
sion of several points that are somewhat nuanced, including
identification conditions, generalizability, risks versus hazards
and rates, and competing events versus censored observations.

RISK

We begin with the simple setting in which there is no treat-
ment and only a single type of event, which is the outcome of
interest (i.e., there are no competing events). By “no treat-
ment,” we mean the natural history or natural course (3),
which is the observed or factual experience of the sample
of n participants. To fix ideas, suppose we are interested in
the t-year risk of mortality (from any cause) after initiation
of antiretroviral therapy among adults infected with human
immunodeficiency virus in a developed country like the

United States. This is the population-average risk of all-cause
mortality.
In this setting, the risk F, considered as a function of time t,

is the cumulative distribution function for the time to death,
also known as the complement of the survival function. The
notation R was used in the companion paper (4). This risk is
written formally as

FðtÞ ¼ PðT � tÞ;

where T is a random variable denoting time from the origin
to the event and P(·) is the probability function. We define
probabilities as proportions in a hypothetical, arbitrarily
large population from which our observed n participants
are assumed to be a random sample (5). This risk F is a 1-
dimensional function of time (i.e., the function has domain
t = [0, ∞)) and is bounded by 0 and 1 (i.e., the function has
a range of 0≤ F(t) ≤ 1). The specific values of t for which we
present numerical summaries depend on the scientific context
(e.g., 5-year all-cause mortality risk).

RISK WITH COMPETING EVENTS

Next consider the more complex setting in which there
is more than 1 event type, denoted by J, with possible levels
j ∈ {1, 2, . . ., m}. For the time being, we will continue to
consider the (descriptive) natural course. To revisit our
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example, instead of the population-average risk of all-cause
mortality after therapy initiation, suppose we are interested
in the population-average risks of a diagnosis of acquired im-
munodeficiency syndrome (AIDS) ( j = 1) or death from any
cause without an AIDS diagnosis ( j = 2) after initiation of
therapy. In the presence of competing events, the outcome
becomes the pair of event time and event type. We note
that AIDS and all-cause death are not mutually exclusive
competing events because a person infected with human
immunodeficiency virus can die with or without AIDS; how-
ever, the definition of “death without an AIDS diagnosis” in-
duces mutually exclusive competing events.

The set of risks F(t, j), 1 for each level j, are now defined by
the subdistribution functions, also known as the cumulative
incidence functions (6), and written formally as

Fðt; jÞ ¼ PðT � t; J ¼ jÞ;

where T and J denote the time to the first event of any type
and the event type, respectively. The risk F(t, j) is now a func-
tion with 2-dimensional domain [0, ∞) × {1, 2, . . ., m},
where m denotes the number of possible competing events.

Them events are competing in the sense that if 1 occurs, the
others are precluded (7–9). The preclusion of a competing event
is distinct from right censoring of an event; in the former case,
the competing event can no longer occur, whereas in the latter
case, the censored event can occur but cannot be observed. The
risks F(t, j) can equivalently be written as a function of the
cause-specific hazard functions λ(t, j), namely Fðt; jÞ ¼R t
0 λðu; jÞSðuÞ du, where SðtÞ¼exp � R t

0

Pm
j¼1 λðu; jÞ du

n o
¼

1� FðtÞ is the overall survival function. In this form, it is
clear that the risk of 1 event type j depends on the cause-
specific hazards for the competing events through the overall
survival function.

The risks as defined above can essentially be viewed as a
set of m 2-dimension functions. A natural extension of the
complement of the survival function is Figure 1A in the arti-
cle by Cole et al. (4). (Figure 1A refers to thosewho report not
using injection drugs, but for our purposes let us ignore that
detail for the time being.) In that figure, the m event type–
specific (estimated) risks are “stacked.” By stacked, we mean
that the jth event-specific risk is given by the vertical distance
between the jth and ( j − 1)th stacked risks, where the first
stacked risk is simply the risk for j = 1.

The specific values of t for which we present numerical
summaries depend on the scientific context. However, if there
is more than 1 event type, there is no single summary measure
of risk at a given time t. To summarize the risks in a single
measure at time t, one must combine the m event types in
somemanner (10). Such a combination can be achieved using
expected utility (11), which is a way to assign preferences to
the different competing events. Specifically, expected utility
may take as inputs the m event-specific risk functions F(t, j)
and a user-defined utility 0≤ u( j)≤ 1 assigned to each event
type j, according to its importance (12, p. 158). Expected util-
ity therefore combines them event-specific risk functions into
a single weighted sum at each time t, or

Pm
j¼1 Fðt; jÞuð jÞ: For

example, when an equal utility of u( j) =1 is placed on each of
the m event types, the resultant expected utility is equivalent

to the distribution function F(t), which corresponds to the
widely used “composite endpoint” (i.e., the top/dotted stacked
line in Figure 1A of Cole et al. (4)). For our example, this
composite endpoint would be the complement of AIDS-free
survival, with the components in the composite being the
competing events of AIDS diagnosis and all-cause mortality
while free of AIDS. Such composite endpoints are often used
in the presence of competing events. Alternatively, when a
utility of 1 is placed on only 1 particular event type j (and util-
ities of 0 on all other events), the resultant expected utility re-
duces to the cumulative incidence function for that event type.
For our example, this could be the cumulative incidence func-
tion for AIDS (or the bottom/solid line in Figure 1A) or the
cumulative incidence function for death without AIDS. In prin-
ciple, the utilities can be extended to be time-varying u(t, j). De-
termination of utilities is context-dependent and is a key area in
which epidemiologists can ally productivelywith policy experts.

RISK WITH TREATMENTS

Now consider the setting in which we are interested in con-
trasting the risks across levels of a treatment denoted asAwith
possible levels a, where the value of A is fixed at the origin.
To extend our human immunodeficiency virus example, say
we are interested in the causal effect on total mortality of in-
jection drug use (a = 1) or no such use (a = 0) at therapy ini-
tiation. From here on, we refer to potential outcomes (i.e.,
factual and counterfactual outcomes) and causal effects, rather
than solely observed or factual outcomes (13). In the absence
of competing events, these risks are then a set of counterfac-
tual cumulative distribution functions, 1 for each level a, or
formally

FaðtÞ ¼ PfTa � tg;

where Ta is a random variable denoting time from the origin
to the event when an individual receives treatment level a.
The function Fa(t) has a 2-dimensional domain [0, ∞) ×
{0, 1, . . ., k − 1}, where k denotes levels of treatment
indexed by a. Causal risk differences (and ratios) for a cho-
sen time t may be defined as functions of Fa(t) and Fa0 ðtÞ,
where a′ is an alternate treatment (or reference) level. For
example, the risk ratio function for a binary treatment is
RR(t) = Fa=1(t)/Fa=0(t) (e.g., Figure 3 in the article by Cole
et al. (4)). The choice of the treatment reference level a′ is
context-dependent. However, no choice need be made be-
tween the risk difference or ratio, as both may be presented
compactly side-by-side (e.g., Table 3 in Cole et al. (14)).

RISK WITH COMPETING EVENTS AND TREATMENTS

Finally, suppose we are interested in the relationships be-
tween injection drug use (a = 1) or no such use (a = 0) at ther-
apy initiation and AIDS diagnosis ( j = 1) or death from any
cause without an AIDS diagnosis ( j = 2). The risks are now
defined as the set of counterfactual cumulative incidence
functions, or formally

Faðt; jÞ ¼ PðTa � t; Ja ¼ jÞ;
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where Ta and Ja are random variables denoting time from the
origin to the first of m possible events and the event type, re-
spectively, when an individual receives treatment level a. The
above risks are a function with 3-dimensional domain, specif-
ically [0, ∞) × {1, 2, . . ., m} × {0, 1, . . ., k− 1}, represent-
ing time t, event type j, and treatment a. Again a visual
representation is helpful. The panels of Figures 1 and 2 in
Cole et al. (4) provide a visual display of the risk of each of
the m = 2 event types, with 1 panel for each treatment level.
When there is more than 1 event type, there is no single sum-
mary measure of risk at a given time t for a given treatment
level a, and expected utility may again be helpful.

DISCUSSION

We have concentrated on defining risk as a central param-
eter in cohort studies of the timing between an origin and out-
comes of interest, which is the prototypical study design for
epidemiologic research (15). However, these same risk pa-
rameters are of central interest in other epidemiologic study
designs (e.g., case-cohort, case-control), which have long
been viewed as designs that strategically sample from an ex-
plicit or implicit cohort. Of course, there are scenarios in
which epidemiologists are concerned with the evolution of
a biomarker (or biomarkers) as the outcome of interest rather
than the risk. Although we did not address such scenarios, ap-
proaches similar to those above for risk can be applied.
To identify the general risksFa(t, j), wemustmake assump-

tions that are untestable in the observed data (Appendix 2 in
Cole and Hernán (16)). Alternate sets of identification as-
sumptions may be possible. The following is a set that we
find useful. First, we assume no interference (17) and either no
versions of treatment (18) or treatment-variation irrelevance
(19). No interference means that the potential outcomes of 1
participant do not depend on the treatment values of other
participants. This assumption can be relaxed. Treatment-
variation irrelevance means that for a fixed treatment level
a (e.g., injection drug use), additional variations of the treat-
ment a (e.g., daily vs. weekly use) do not affect the potential
outcomes. This assumption can be relaxed (e.g., by sharpen-
ing the treatment definition). Second, we assume negligible
measurement/information bias (20). Third, with respect to
confounding, we may (rightly or wrongly) assume uncondi-
tional exchangeability or conditional exchangeability with
positivity. Conditional exchangeability with positivity as-
sumes that treatment was received at random, independent
of potential outcomes, conditional on a vector of measured
confounders W and also that there are treated and untreated
individuals at every level of the measured confounders.
Fourth, if we have selection (due to late entries, drop outs,
or missing data), then we extend the conditional exchange-
ability assumption to assume selection at random conditional
on measured covariates. Fifth, if we use 1 or more parametric
models to account for components of the conditional ex-
changeability assumption, then we must assume that these
models are correctly specified. Each of these identification as-
sumptions, along with the assumed population sampling
model, is not testable in observed data. However, some of
these assumptions are, in principle, empirically testable. By
empirically testable, we mean that another experiment or

observational study can be envisaged (even if infeasible or
unethical) that could be used to alter our belief that the as-
sumption is correct. In the absence of an empirical test,
bounds for the logically possible range of findings are calcu-
lable (21–23). Such bounds are often so wide as to be largely
uninformative, and in such cases the sensitivity of findings to
each of these assumptions can be explored as a function of an
unknown bias parameter (24–27). Results from sensitivity
analyses can be synthesized, for example by using multiple
bias modeling (28).
Under the above assumptions, asymptotically consistent

nonparametric estimation of the counterfactual risks can be
accomplished. The above assumptions (including uncon-
ditional exchangeability) likely hold in large randomized ex-
periments with no (or minimal) drop out and perfect (or
near-perfect) compliance. Therefore, the Aalen-Johansen es-
timator (29) (which can be viewed as a generalization of the
Kaplan-Meier estimator under competing events) can be used
for nonparametric inference. However, in broken experiments
or pseudoexperiments (i.e., observational studies), many of the
assumptions described above will not hold. In particular, we
oftenmust assume conditional exchangeability as stated above.
In practice, then, we often wish to standardize the crudeAalen-
Johansen estimator to the total study population under the
joint treatment plan of a specified treatment level and no se-
lection bias due to missing data (e.g., loss to follow-up). By
joint treatment plan, we mean more than 1 set of treatments,
as exemplified by factorial randomized experiments. In real-
istic epidemiologic settings with multiple and continuous
covariates, standardization can be accomplished using the g-
formula or inverse-probability weighting of a marginal struc-
tural model (13). In the latter case, the estimator is then a
semiparametric inverse probability of treatment-and-selection–
weighted survival curve (30, 31), perhaps extended to allow
for competing events (6) and left truncation (32, 33).
Both the g-formula and inverse-probability–weighted esti-

mators can be sensitive to the specification of the parametric
models used to construct the estimators. Moreover, standard
inverse-probability–weighted approaches for estimating the
risks are not semiparametric efficient (34). Doubly robust
and more efficient estimators of the risks are available by
drawing on the theory of semiparametric inference, including
augmented inverse-probability weighting (35, 36) and tar-
geted minimum-loss estimation (37).
Epidemiologists often must combine information about

risks from multiple studies (38, 39) or add a current estimate
to the existing knowledge base while acknowledging the dan-
gers of combining heterogeneous estimates. When combining
is appropriate (40), semi-Bayes methods (41) are a reasonable
approach to combine estimates (42) and may be viewed as an
extension of inverse-variance weighting (43). Such “semi-
Bayes semiparametric”methods will also be desirable when-
ever the parameters in a structural model would benefit from
penalization (44).
Defining and identifying the risks in the study population

and estimating a risk difference or ratio in the study sample is
not sufficient for valid inference if the population implied by
the study sample and the target population differ on factors
for which there is treatment-effect heterogeneity (or there are
differences in treatment versions or interference patterns (45)).
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Inverse-probability weights might be useful in addressing
generalizability under treatment-effect heterogeneity (46),
although one must be cautious in such generalization (47).

In the present article, we have focused on the risk rather
than the hazard because of the hazard’s conditional nature.
The hazard at time t is the instantaneous rate of the outcome
at time t conditional on being at risk at time t. This condition-
ing on survival causes the hazard ratio to be a noncollapsible
parameter (48, 49). The value of a noncollapsible parameter
depends on the set of covariates that are conditioned on by
design or analysis, even in the absence of systematic errors
(i.e., confounding, selection, and measurement/information
bias). Summarizing a knowledge base built from a set of non-
collapsible parameter estimates is more complicated than
summarizing a knowledge base built from analogous collaps-
ible parameter estimates because differences in noncollapsi-
ble estimates may be due to noncollapsibility in addition to
random and systematic errors. Related, we also prefer the
risk to the incidence density because the incidence density
can be defined as a hazard averaged over a period of time
and therefore inherits the complications due to noncollapsi-
bility (50, 51). Also, there are additional complications for
the incidence density due to time averaging (52).

When faced with competing events, sometimes epidemiol-
ogists treat competing events the same as drop out by right
censoring such events. This ad hoc approach only provides a
reasonable approximation to the risk defined above when all
competing events are rare. When competing events are not
rare, absolute risks will not be consistently estimated by cen-
soring the competing events.

G-methods (53, 54) can be used when the treatment of in-
terest is time-fixed or time-varying. G-methods, developed
by Robins et al. (53, 54), are quantitative methods to estimate
causal effects for fixed and static or dynamic time-varying
treatments or exposures; they include the aforementioned
g-formula (14), g-estimation of structural nested models (55),
and inverse-probability–weighted estimation of marginal
structural models (56). Modifiable risk factors are often time-
varying treatments. The risks defined above can be general-
ized to compare time-varying treatment plans, in which case
the assumptions required for inference would also need to be
generalized (54). In conclusion, our definition of risk is not
new (53, 57), but a deepened appreciation of risk and the im-
plications discussed above is beneficial for epidemiology.
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