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The comparative new-user design is a principled approach to learning about the relative risks and benefits of

starting different treatments in patients who have no history of use of the treatments being studied. Vandenbroucke

and Pearce (Am J Epidemiol. 2015;182(10):826–833) discuss some problems inherent in incident exposure de-

signs and argue that epidemiology may be harmed by a rigid requirement that follow-up can only begin at first ex-

posure. In the present counterpoint article, a range of problems in pharmacoepidemiology that do not necessarily

require that observation begin at first exposure are discussed. For example, among patients who are past or current

users of a medication, we might want to know whether treatment should be augmented, switched, restarted, or dis-

continued. To answer these questions, a generalization of the new-user design, the treatment decision design,
which identifies cohorts anchored at times when treatment decisions are being made, such as the evaluation of

laboratory parameters, is discussed. The design aims to provide estimates that are directly relevant to physicians

and patients, helping them to better understand the risks and benefits of the different treatment choices that they are

considering.

pharmacoepidemiology; study design

Editor’s note: Counterpoints to this article appear on
pages 826 and 834, and a response appears on page 846.

The benefits of studying new medication users have been
recognized in pharmacoepidemiology for many years (1–3).
With the so-called “new-user design,” patients are followed
from the date the medication is started, allowing for the full
time course of risk to be characterized. The new-user design
makes it possible to study early effects of medications, such
as hypersensitivity reactions, that would not be seen among a
sample of prevalent users. It also can be used to study long-term,
cumulative exposure outcomes, providing that time-varying
confounding and selection bias are appropriately addressed
(4). By using a comparative new-user design, which com-
pares new users of different medications that have common
indications, one can also minimize many common sources
of confounding bias (5), such as confounding by indication
(6) and confounding by frailty and functional status (7, 8). Re-
maining differences between the groups can be reduced by
restriction and adjustment for baseline covariates (9, 10). The
new-user design also enforces appropriate temporal ordering

of confounders, treatment, and outcome, protecting the re-
searcher against accidental adjustment for variables affected
by treatment (11). In some early examples of studies using
a comparative new-user design, Ray et al. (12) studied the
risk of hip fracture among new users of statins versus other
lipid-lowering agents, and Wang et al. (13) studied mortality
risk in new users of atypical versus conventional antipsychot-
ics in the elderly. In recent years, studies like these have pro-
liferated, and the perceived robustness of the comparative
new-user design has led to suggestions that it could be pro-
ductively used for semiautomated medical product safety
surveillance (9).
The increasing formulation of research questions in epide-

miology in terms of potential outcomes highlights a further
advantage of the comparative new-user design: its similarity
to a parallel group, randomized controlled trial (14). Typical
intention-to-treat analyses of both randomized controlled tri-
als and comparative new-user designs are explicitly attempt-
ing to estimate a similar parameter: the effect of initiating
different treatments on subsequent outcome risk, a parameter
with clear clinical and policy relevance. In a randomized con-
trolled trial, an intention-to-treat analysis assesses the effect
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of assignment to use a therapy, which is generally highly cor-
related with the actual use of a therapy. In the new-user cohort
design, a similar analysis assesses the effect of initiating
therapy.

In this issue of the American Journal of Epidemiology,
Vandenbroucke and Pearce (15) discuss some problems in-
herent in incident exposure designs, including the need to
discard many patients who may be long-term users of the
medication. They suggest that the field of epidemiology may
be harmed by the increasingly stated belief that studies must
follow only those patients who are observed from the start of
exposure. In this paper, we describe a range of problems in
pharmacoepidemiology that do not necessarily require obser-
vation to begin at the first exposure and also are not answered
by comparing outcome risks among patients initiating differ-
ent treatments. We then discuss a generalization of the new-
user design that can answer these questions.

THE TREATMENT DECISION DESIGN

As it is commonly applied, the new-user design tells us
about the relative risks and benefits of starting (and poten-
tially remaining on) different treatments in patients who
have no history of use of any of the treatments under study.
However, physicians and patients are confronted with a much
broader set of decisions about treatments that must be made.
For example, among patients who are past or current users of
a medication, they would like to know whether treatment
should be augmented, switched, restarted, or discontinued,
or, for medications that are dosed, they would like to know
whether doses of a current treatment should be increased, de-
creased, or held. For medications that are used intermittently
or as needed over the course of a lifetime, such as nonsteroi-
dal antiinflammatory medications or antibiotics, physicians,
patients, and regulators may be interested in the safety and ef-
fectiveness of a course of therapy in older adults who may
have previously used the medications under study. Assuming
that it is not possible to enroll children and follow them over
their life course, this effect could not be estimated if we lim-
ited ourselves to studying only new users of medications.

To learn about the risks and benefits of these treatment de-
cisions, we could do randomized experiments in which we
would identify eligible patients with varying treatment histo-
ries and then subject the clinical decision of interest to ran-
domization, assigning each patient to one of K well-defined
interventions. If patients are adherent to assigned treatment,
we can estimate features of the distributions of the counter-
factuals Y(k), k = 1, . . ., K and contrasts between the coun-
terfactual distributions, such as the difference in risk between
2 different assigned treatments, E[Y(k)]− E[Y(k′)], k ≠ k′.

However, when such experiments cannot be done, because
of cost, ethics, or other reasons,we need to determine howbest
to estimate a similar parameter or causal effect using observa-
tional data. To do this, we first need to identify, as closely as
possible, the instances in which the treatment decisions are
being made among eligible patients. Because the range of
clinical options may depend on a patient’s treatment history
(e.g., one would not reinstitute a treatment that has failed in
the past), some amount of treatment history will be needed to
identify eligible patients. If the interventions corresponding

to the different treatment decisions are well defined and
can be clearly identified in the data, we can obtain estimates
of the causal contrasts described previously, provided the
other assumptions necessary for causal inference hold, in-
cluding positivity, conditional exchangeability, and no in-
terference (16, 17).

In addition to providing meaningful and easily interpretable
effect estimates, a treatment decision design shares another
advantage with the classic new-user design. By anchoring
our study on the time when a treatment decision is made, be-
ginning follow-up immediately following the treatment deci-
sion and defining potential confounders by using data prior to
the index date, one achieves correct temporal ordering of con-
founders, treatment, and outcome and therefore prevents in-
advertent adjustment for variables affected by the treatment
decision. Appropriately applied, the design also avoids the
inclusion of immortal person-time, a common source of bias
in nonexperimental studies (18, 19).

However, a treatment decision design possesses some lim-
itations not shared by the more restrictive new-user design.
First, the treatment choice may be confounded by a patient’s
past use of the treatment that may be unobserved by the re-
searcher. For example, if a patient experienced an allergic re-
action to penicillin as a child, he or she would be channeled
away from penicillin later in life. In a comparative safety
study of antibiotics in older adults, this channeling would po-
tentially confound study results if patients with allergies were
at increased risk of the study outcome. Second, if the full
treatment history is not observed, it will not be possible to
study long-term cumulative effects without further assump-
tions. An additional complication of a treatment decision de-
sign is the need to identify in data times when treatment
decisions are made among eligible patients. In many cases,
this will require clinical and other subject matter knowledge
about how and when clinical decisions are made.

Below, some actual and hypothetical examples of treat-
ment decision designs that do not necessarily involve new
medication users are considered. These include a discussion
on how one identifies patients in whom treatment decisions
are being made and some advantages and limitations of these
particular approaches.

Example 1: Assessing the effects of a dose or treatment

change following a laboratory test

Physicians often order laboratory tests for the explicit pur-
pose of making decisions about treatment. For patients on
medications in which doses are often adjusted, physicians
may be interested in the safest effective dose for a given pa-
tient at a particular point in time. Dose-ranging trials can be
conducted to help answer these questions. Such trials involve
assigning a randomly selected dose to an eligible patient and
then observing what happens. We can potentially mimic
these experiments in observational data by identifying pa-
tients receiving laboratory testing for the purpose of making
decisions about dosing.

For example, intravenous iron is provided to hemodialysis
patients to replenish iron lost through the dialysis procedure
and other causes of bleeding. Iron treatment decisions are
largely driven by laboratory measures of iron storage and
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availability. By identifying the times when these labora-
tory values are received by physicians and examining the
treatment decisions that occur subsequently, we can mimic
an iron dose-ranging study conducted to assess short- to
intermediate-term effects of iron treatment decisions on out-
comes of interest (Figure 1) (20, 21). This would require that
the researcher has available all pretreatment variables that in-
fluence the treatment decision and are independent predictors
of the outcome. With data on only what treatments were ad-
ministered, the observational study would differ structurally
from the trial. To determine the treatment decisions, the re-
searcher would need to observe the treatment provided over
several dialysis sessions. The study would therefore have to
require patient survival and continued use of dialysis through
some exposure assessment period, potentially leading to se-
lection bias (22).
Laboratory values may also be used to identify times when

physicians make decisions about the initiation and intensifi-
cation of treatment for chronic disease. For example, if one
would like to examine the effects of intensification of oral
antidiabetic therapy, it would be reasonable to construct a
treatment decision cohort anchored on the date of a hemo-
globin A1c (HbA1c) test, a laboratory measure used to assess
adequacy of glucose control. With access to electronic health
records data, it may be possible to directly identify the treat-
ment decision that was made following the evaluation of the
laboratory value. However, if only health-care utilization data
are available, pharmacy refill data would need to be used as
a proxy for the actual treatment decisions (Figure 2). Non-
adherence to the new prescription could lead to misclassifica-
tion of the treatment decision.

Example 2: Using restriction to identify patients for whom

treatment decisions are being made—the effect of

perioperative use of statins

There has been speculation that perioperative use of statins
may reduce the risk of acute kidney injury among patients un-
dergoing cardiac surgery. One study attempted to assess the
effects of statins on postsurgical acute kidney injury by exam-
ining outcomes among patients with a history of use of statins
before surgery versus those without a recent history of use
(23). Prevalent user studies such as this suffer from several
limitations. First, confounding control is not straightforward.
Any presurgery variables that we might want to include in a
regression model, for example, low-density lipoprotein lev-
els, may have been affected by past statin use, and therefore
their adjustment may block any effect of statin exposure that
they mediate. Second, selection effects may induce spurious
associations between statin use and unmeasured risk factors
for the outcome. For example, if statins affect the need for
surgery, conditioning on surgery creates associations be-
tween statin exposure and other variables related to the need
for surgery or decision to undergo surgery. Third, prevalent
users will be enriched with long-term adherers who may be in
better overall health (24, 25). Finally, the state of being a cur-
rent statin user does not correspond to any particular interven-
tion; physicians cannot assign patients to this status. This is
essentially a problem of a poorly defined intervention (26). If
we were to observe a decreased risk among patients on a stat-
in, we could start a patient on a statin, hoping that the patient
would have a risk similar to our prevalent users. That inter-
vention, however, does not align with the actual exposure that
was studied.
If we consider the problem from the perspective of a treat-

ment decision design, many of these problems are diminished.
It is clear that physicians face 2 basic decisions related to the
use of statins before cardiac surgery. 1) Should I start a patient
on a statin who is not currently taking a statin? 2) Should my
patient who is a currently taking a statin stop treatment before
surgery or remain on treatment? Even with only prescription
refill data, we could reasonably address the first question by
using sample restriction (Figure 3). Wewould first identify pa-
tients undergoing planned surgery and then restrict the study to
patients without a recent history of use of statins up until a few
weeks (or days) before surgery. Among these patients, we
could compare outcomes among those who fill a prescription
for a statin before surgery with those who do not (27). The

Blood drawn, iron test ordered

Follow-up periodConfounders
assessed

Lab result available to physician, 
treatment decision made, follow-up begins

Figure 1. Design schematic of a nonexperimental iron dose-ranging
study.

HbA1c test

Confounders
assessed

Follow-up begins

Follow-up periodTreatment
intensification

decision
assessment

period

Figure 2. Design schematic of a nonexperimental study of oral anti-
diabetic treatment intensification. HbA1c, hemoglobin A1c.

Admission

No statin use,
confounders assessed

Surgery, follow-up begins

Statin treatment
decision

assessment
period

Acute kidney
injury

assessment

Figure 3. Design schematic of a nonexperimental study of perioper-
ative statin use.
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exposure would be much closer to the actual intervention that
could be prescribed by the physician. However, there are sec-
ondary issues related to the intervention that are not well de-
fined, such as when to start the statin (1 week vs. 1 day
before surgery) and the potency of the prescribed statin.
These represent different dimensions of treatment and, in an
observational study, we could either redefine the exposure to
capture these different dimensions or assume “treatment ver-
sion irrelevance,” that is, that the different forms of the inter-
vention are equivalent (28). Also, because we would be using
prescription claims as proxies for the treatment decision, there
againmay be somemisclassification of the actual treatment de-
cision. With only prescription refill data, we would not be able
to identify patients in whom treatment was discontinued, so it
would not be possible to assess the effect of stopping statins
among patients who are current users.

Example 3: An observational analogue of a randomized

withdrawal trial—diuretic use among patients starting

dialysis

Diuretics are effective and widely used medications for hy-
pertension and volume control. Because urine output often
decreases rapidly following dialysis initiation, patients start-
ing dialysis often have diuretic therapy withdrawn. However,
patients, particularly those that continue to suffer from vol-
ume overload, might benefit from continued use of diuretic
therapy while on dialysis (29, 30). One could assess the ben-
efits of continuing diuretics versus stopping after the start of
dialysis by using a randomized withdrawal trial. In such a
trial, patients who are users of diuretics at the time of dialysis
initiation would be randomly assigned to either continue or
stop treatment. This trial could potentially be mimicked in
nonexperimental data by comparing outcomes among pa-
tients who stop treatment with those who continue after the
start of dialysis. If the existence of pharmacy claims were
used to determine treatment continuation, one would not
know precisely when the decision to stop treatment was
made and would therefore need to assess exposure in some
period following the start of dialysis (Figure 4). Like the non-
experimental iron dose-ranging study described previously,
this observational study would need to require that patients
survive some period of time after the start of dialysis so
that the treatment decision could be ascertained. Some

unmeasured confounding would be expected here, as sicker
patients may be more likely to discontinue treatment.

DISCUSSION

I agree with Vandenbroucke and Pearce (15) that it is not
always necessary to study patients from the start of exposure.
However, in pharmacoepidemiology, it is valuable to begin
follow-up on patients at times when treatment decisions are
made. A treatment decision design generalizes the new-user
design and allows the researcher to address a broader range of
questions under additional assumptions. The design aims to
provide estimates of the effects of different clinical decisions
among patients who may not necessarily be new users of
medications.We have considered some potential applications
of this design that illustrate the use of the approach but also
reveal some implementation challenges.

For researchers using such designs, the first challenge is to
identify in the data instances in which the treatment decisions
are being made. For decisions that follow laboratory testing
or other clinical measures, this will often be straightforward.
When one is comparing 2 or more active treatments that have
been recently started (or restarted), it may be reasonable to
assume that the treatment decision occurred prior to the start
of therapy. For example, if one wanted to compare the safety
of different classes of antibiotics in patients with atrial fibril-
lation, one could anchor the start of follow-up on the date the
antibiotic prescriptions were initially filled (assuming the
treatment decision occurred just before the fill date). How-
ever, for treatment decisions that involve “no treatment” as
an option and are based onpatient-reported symptoms, such as
insomnia, depression, or pain, researchers will have to infer
times at which the decision was likely to have been made. It
might be reasonable to anchor the study on the date of a phy-
sician office visit in which certain diagnosis codes were or
were not reported, effectively establishing an index date
when a treatment indication was initially reported.

For some studies, it may also be challenging to determine
the actual treatment decision that was made. In such cases,
it will need to be inferred from proxy information such as
pharmacy claims, which are evaluated during an exposure as-
sessment period. To avoid bias from immortal person-time,
follow-up might need to start after the exposure assessment
period ends. Longer exposure assessment periods will in-
crease the risk of selection bias; shorter exposure assessment
periods may lead to greater misclassification of the treatment.
Sensitivity analysis could be used to explore this trade-off. It
is important to note that, when the treatment decision is in-
ferred from the actual treatment taken, one is not attempting
to study the effect of a treatment decision, for example, pre-
scribing a patient a particular medication, but rather the effect
of the treatment itself, at least initially. Given the high rate of
primary nonadherence to many prescription medications
(31), the difference between these 2 treatment effects may
often be substantial.

If a treatment decision design is not explicitly focusing on
new users or patients for whom the relevant medical history is
available, researchers will have to be aware of potential con-
founding by previous use of the treatments under study. It

Start of dialysis

Diuretic use required,
confounders assessed

Follow-up begins

Follow-up periodDiuretic
withdrawal
decision

determined

Figure 4. Design schematic of a nonexperimental analogue of a
randomized withdrawal study of diuretics among patients starting
hemodialysis.

Incident and Prevalent Exposures and Causal Inference 843

Am J Epidemiol. 2015;182(10):840–845



also must be recognized that such designs may not be optimal
for examining long-term or cumulative exposure effects.
It is also worth noting that treatment decision designs have

been used in many previous studies. For example, a common
study design involves examining the effects of medication
use after hospitalization (32). Although these studies may in-
clude patients who used these medications prior to the hospi-
talization, it may be reasonable to assume that physicians and
patients make explicit decisions about which medications to
continue or initiate after discharge.
The treatment decision design attempts to create cohorts

anchored on times when treatment decisions are being made.
The design generalizes the new-user design and expands
the scope of problems that can be considered by researchers,
and therefore partly addresses one of the limitations cited by
Vandenbroucke and Pearce (15). Yet assessing the long-term
effects of treatment is no easier with such an approach and
remains a challenging problem. Despite some limitations
and practical challenges, the treatment decision design may
help to improve the validity estimates by avoiding many com-
mon sources of bias. The design also aims to provide esti-
mates that are directly relevant to physicians and patients,
helping them to better understand the risks and benefits of
the different treatment choices that they are considering.
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