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Cohort studies are often enriched for a primary exposure of interest to improve cost-effectiveness, which presents
analytical challenges not commonly discussed in epidemiology. In this paper, we use causal diagrams to represent
exposure-enriched cohort studies, illustrate a scenario wherein the risk ratio for the effect of a secondary exposure
on an outcome is biased, and propose an analytical method for correcting for such bias. In our motivating example,
maternal smoking (2) is a cause of fetal growth restriction (X), which subsequently affects preterm birth (Y) (i.e.,
Z - X — Y); strong positive associations exist between both Z, X and X, Y; and enrichment for X increases its
prevalence from 10% to 50%. In the X-enriched cohort, unadjusted and X-adjusted analyses lead to bias in the
risk ratio for the total effect of Zon Y. After application of inverse probability weights, the bias is corrected, with a
small loss of efficiency in comparison with a same-sized study without X-enrichment. With increasing interest in
conducting secondary analyses to reduce research costs, caution should be employed when analyzing studies
that have already been enriched, intentionally or unintentionally, for a primary exposure of interest. Causal diagrams
can help identify scenarios in which secondary analyses may be biased. Inverse probability weights can be used to

remove the bias.

bias (epidemiology); cohort studies; directed acyclic graph; epidemiologic methods; oversampling

Abbreviations: Cl, confidence interval; IP, inverse probability.

Cohort studies are a central design in epidemiologic re-
search, partly because they can allow for the assessment of
a variety of exposure-outcome relationships. However, co-
hort studies are often enriched for a primary exposure of in-
terest by design in order to improve cost-effectiveness (1). In
general, enrichment entails oversampling 1 or more levels of
the primary exposure and is sometimes referred to as “over-
sampling” or “exposure-dependent sampling” (2, 3).

Exposure enrichment may occur either by design or unin-
tentionally. Examples of cohort studies intentionally exposure-
enriched include registries of prenatal medication use
alongside an unexposed reference population (4—6) and co-
hort studies of cancer patients and cancer-free controls (7,
8). While these studies can enhance comparability of classi-
fication procedures by including an internal reference group
(9), the primary exposure distribution in the study cohort has
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been distorted. Matched cohort studies are also effectively
exposure-enriched, as the ratio of exposed observations to
unexposed observations is fixed by design. Although match-
ing in cohort studies can effectively remove confounding at
the design stage (10), the exposure enrichment remains in
place. Studies can also oversample certain subpopulations
unintentionally, thereby enriching the prevalence of specific
exposures. Traditionally this has been an issue for all obser-
vational studies, but it has recently been a heightened concern
with the advent of studies using Web-based recruitment,
which could oversample populations with higher socioeco-
nomic status due to their increased Internet access (11).
Exposure enrichment presents analytical challenges not
commonly discussed in epidemiology. Chief among these is
how to properly analyze exposure-enriched studies so as not
to introduce bias when effects of secondary exposures are
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evaluated. By “secondary exposure,” we are referring to
any exposure for the outcome of interest other than the pri-
mary (enriched) exposure of interest. Our objectives in this
paper are to use causal diagrams (12) to represent primary
exposure-enriched cohort studies, illustrate a scenario where-
in the risk ratio for the average treatment effect of a secondary
exposure is biased, and propose an analytical method for cor-
recting for such bias. We will concentrate on a particular type
of secondary exposure for which bias arises.

MOTIVATING EXAMPLE
Scenario

To illustrate a secondary exposure analysis in a primary
exposure-enriched cohort study design, we introduce a simple
scenario in which a secondary exposure Z (maternal smok-
ing) is a cause of primary exposure X (fetal growth restriction),
which is a cause of Y (preterm birth). Figure 1A depicts such
a scenario, where maternal smoking has an indirect causal ef-
fect on preterm birth through fetal growth restriction but has
no direct effect on preterm birth and is therefore not a con-
founder of the fetal growth restriction—preterm birth associa-
tion (assume for illustration purposes that this is the case).
Given this scenario, consider a hypothetical cohort of preg-
nant women with a marginal population prevalence of fetal
growth restriction (defined dichotomously) of 10%. Suppose,
in the population under study, that maternal smoking has a
prevalence of 50%, with a 16% prevalence of fetal growth re-
striction among mothers who smoke and a 4% prevalence
among mothers who do not smoke (Z, X risk ratio =4). The
population risk of preterm birth is 13%, with the risk being
4 times higher among pregnant women with fetal growth
restriction (40%) than among those without fetal growth re-
striction (10%) (Z, X risk ratio = 4). Therefore, the secondary
exposure has a strong direct causal effect on the primary ex-
posure, and the primary exposure has a strong direct causal
effect on the outcome. The expected frequencies of maternal
smoking, fetal growth restriction, and preterm birth in a sim-
ple random sample of this population (n = 1,000) are pre-
sented in Table 1 (left side).

Table 1 (right side) shows the expected frequencies of
these same factors in a 50% primary exposure-enriched sam-
ple of the same size (n = 1,000): Exposure enrichment results
in a 5-fold enrichment of fetal growth restriction from its mar-
ginal prevalence of 10% in the population to 50% in the study

Z—>X—>Y

Z—>X—>Y

Figure1. Causaldiagrams forthe example cohort study. A) Random
sample; B) primary exposure-enriched sample. S, selection into the
study; X, primary exposure (fetal growth restriction); Y, outcome (pre-
term birth); Z, secondary exposure (maternal smoking).
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Table 1. Hypothetical Data From the Example Cohort Study?®

Primary Exposure-
Enriched Sample

Y=0 Y=1 Total Y=0 Y=1 Total

Random Sample

X=1
Z=1 48 32 80 240 160 400
Z=0 12 8 20 60 40 100
Subtotal 60 40 100 300 200 500
X=0
Z=1 378 42 420 210 23° 233
Z=0 432 48 480 240 27° 267
Subtotal 810 90 900 450 50 500
Total 870 130 750 250

& X, primary exposure (fetal growth restriction); Y, outcome (preterm
birth); Z, secondary exposure (maternal smoking).

® Rounded from 23.3.

¢ Rounded from 26.6.

sample. Figure 1B depicts this exposure enrichment, in which
the box around the indicator S denotes selection into the pri-
mary exposure-enriched cohort study, affected only by fetal
growth restriction status.

Methods

Naive epidemiologic analysis of the average treatment
effect of maternal smoking on preterm birth might proceed
identically in Figures 1A and 1B; but if Figure 1B repre-
sents reality, then this analytical approach can result in
bias. To demonstrate bias in the risk ratio under the study
design shown in Figure 1A, we simulated a source popula-
tion based on the distributions of maternal smoking, fetal
growth restriction, and preterm birth in the expected random
sample shown on the left side of Table 1. We then drew
50,000 samples of 1,000 participants under the 2 study de-
signs (random sampling and 50% primary exposure-enriched
sampling) and estimated the mean risk ratio, the mean stan-
dard error, and the Wald-type confidence interval coverage
of the estimates using log binomial regression. Coverage
was defined as the percentage of drawn samples with a 95%
confidence interval that contained the true risk ratio, as de-
termined from the risk ratio for Z, Y calculated from the
expected frequencies for a random sample from Table 1
(left side).

RESULTS
Naive epidemiologic analysis

For the random-sample study design, the total effect of ma-
ternal smoking on preterm birth is modest, with a risk ratio of
1.33 (95% confidence interval (CI): 0.96, 1.84); this repre-
sents the true (casual) effect of Z on Y (Table 2). As expected
from the causal diagram shown in Figure 1A, the effect of
maternal smoking on preterm birth is null, and therefore bi-
ased, after adjustment for fetal growth restriction. In the 50%
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Table 2. Risk Ratios From the Example Cohort Study for Causal Systems Based on Figure 12

Random sample
Unadjusted (true effect) 1.33 0.96, 1.84 0.167 95
X-adjusted 1.00 0.72,1.40 0.169 61
Primary exposure-enriched sample
Unadjusted 1.60 1.24,2.05 0.128 70
X-adjusted 1.00 0.79,1.28 0.123 39
Weighted® 1.33 0.90, 1.96 0.198 95

Abbreviations: Cl, confidence interval; RR, risk ratio; SE, standard error.
2 X, primary exposure (fetal growth restriction); Y, outcome (preterm birth); Z, secondary exposure (maternal

smoking).

b 95% Cls were calculated using mean log RR = (1.96 x mean log SE) and then exponentiated for tabular display.

¢ SE of the log RR.

9 Coverage was based on sampling of 50,000 simulations, each of size 1,000.

¢ Robust variance estimate.

exposure-enriched design, the unadjusted analysis of the
effect of maternal smoking on preterm birth, which is condi-
tioned on S by design, is also biased. Specifically, the risk
ratio is 1.60 (95% CI: 1.24, 2.05), which is larger than the true
total effect of 1.33. Additionally, as expected based on the
causal diagram shown in Figure 1B, in the exposure-enriched
design the risk ratio for the effect of maternal smoking on pre-
term birth adjusted for fetal growth restriction is null and
therefore biased. Consequent to these biased estimates of
effect is poor coverage of the true (causal) effect of Zon Y
by the 95% confidence interval (Table 2).

Proposed solution

In our example, by conditioning on selection into the 50%
enriched sample by design, the prevalences of maternal
smoking, fetal growth restriction, and preterm birth all in-
crease to an extent that the relationship between maternal
smoking and preterm birth is artificially inflated (see Appendix
for a proof illustrating this bias). This may seem counterintu-
itive, as conditioning on a descendent proxy would typically
bias results toward the null with respect to the total causal
effect (13). However, in situations such as our example—
where all depicted relationships are positive, primary expo-
sure enrichment goes from 10% to 50%, and conditioning is
achieved by restriction to a certain subpopulation (S=1)—
then conditioning on a descendent proxy of X changes the
distribution of all variables and can lead to upward bias.
The direction and magnitude of bias appears to be a function
of the direction and size of component effects, as well as the
level of enrichment. Further study is needed to fully explore
these relationships.

To correct this bias due to enrichment, we then apply sta-
bilized inverse probability (IP) weights to the 50% exposure-
enriched sample to create a reweighted sample with expected
frequencies of maternal smoking, fetal growth restriction, and
preterm birth identical to the random sample. The IP weights
are defined as w = P(S=1)/P(S = 1|X = x), where the

denominator addresses bias and represents the sampling frac-
tion given x and the numerator addresses efficiency and scales
the weights so that the weighted sample sums to the observed
sample size (n = 1,000). In our 50% enrichment example, the
sampling fraction for observations with X = 1 was 500/(0.1N)—
that is, 500 exposed observations were selected among the
10% of the source population N with fetal growth restriction.
The sampling fraction for observations with X =0 was 500/
(0.9N)—that is, 500 unexposed observations were selected
among the 90% of the source population without fetal growth
restriction. Then the inverse of each sampling fraction was
taken and multiplied by the scaling factor (1,000/N) so that
sample weights summed to 1,000. Importantly, the actual
size of the source population isn’t necessary for calculating
w, because N cancels. However, the proportion of the source
population with the primary exposure is required. See Appen-
dix Table 1 for details regarding stratum-specific IP weight
calculations.

The IP-weighted risk ratio, which corrects for the exposure
enrichment, is unbiased for the total effect of maternal smok-
ing on preterm birth and results in a confidence interval
which is slightly wider (95% CI: 0.90, 1.96) than that from
the random sample (95% CI: 0.96, 1.84) (Table 2). Robust
standard errors or bootstrapping is required to provide appro-
priate estimates of precision for IP-weighted estimates (14).

DISCUSSION

Estimation of the total effect of a secondary exposure in a
cohort study enriched for a primary exposure can result in
bias. This situation may be encountered in cohort studies
that are secondarily analyzed for causes of the primary expo-
sure. This bias is a consequence of controlling for an interme-
diate variable (or by study design its descending proxy, such
as S in Figure 1B) and is a type of overadjustment bias (13),
also referred to as “virtual collider bias” (15-18) due to un-
measured exogenous factors affecting the intermediate. As a
result of primary exposure enrichment, the study cohort no
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—
Z—>X—Y

Figure2. Causal diagram for the example cohort study representing
the primary exposure-enriched sample with the addition of a direct
effect of the secondary exposure on the outcome. S, selection into
the study; X, primary exposure (fetal growth restriction); Y, outcome
(preterm birth); Z, secondary exposure (maternal smoking).

longer represents the source population for the secondary
analysis. IP weights based on sampling fractions can correct
for this bias. When implementing exposure-enriched cohort
studies, secondary analyses should be considered in the de-
sign phase so that sampling fractions can be estimated, which
will allow for the appropriate application of IP weights.

The simple scenario we present can be further complicated
if the secondary exposure also has a direct effect on the out-
come, as shown in Figure 2. In this scenario, the unadjusted
risk ratio in the exposure-enriched sample can be biased
when estimating the total effect of the secondary exposure
on the outcome, because the indirect effect operating through
the primary exposure has been altered by design. Adjustment
for the primary exposure will completely block the indirect
effect, potentially leading to a total effect estimate that is bi-
ased toward the null. This is similar to the scenario depicted
in Figure 1B; however, in that scenario, adjusting for the pri-
mary exposure completely nullified the effect of secondary
exposure on the outcome, since the only path depicted was
indirect.

In addition, there may also exist U, an unmeasured con-
founder of the primary exposure—outcome relationship, which
is depicted in Figure 3. In this scenario, adjustment for X not
only blocks the indirect path from Z to Y but also opens up a
biasing path between Z and Y (via U) because of conditioning
on X, which is a collider on the path Z— X — U —Y. For many
primary exposure-enriched studies, key confounders of the
primary exposure—outcome relationship will have been well-
measured, so that bias due to unmeasured confounders is prob-
ably minor; however, this diagram points out that confounders
of the primary exposure—outcome relationship may also need
to be included in the analysis of a secondary exposure.

There are, of course, scenarios other than the ones we pre-
sent above. For instance, the secondary exposure may operate

—
Z—X—Y

Ny

Figure 3. Causal diagram for the example cohort study representing
the primary exposure-enriched sample with the additions of a direct ef-
fect of the secondary exposure on the outcome and a confounder of
the primary exposure and the outcome. S, selection into the study;
X, primary exposure (fetal growth restriction); Y, outcome (preterm
birth); Z, secondary exposure (maternal smoking).
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through mechanisms that are completely independent of the
primary exposure, and in such cases accounting for the pri-
mary exposure enrichment by IP weights will be unnecessary.
The secondary exposure could also share a common cause
with the primary exposure, making the primary exposure a
potential confounder of the secondary exposure—outcome
relationship. However, given that one never knows the true
underlying diagram, one may wish to explore the impact of
accounting for selection by use of IP weights in a sensitivity
analysis.

In practice, exposure enrichment is achieved through study
selection procedures. These include both the sampling frame
designation and the study participation rates. Various meth-
ods are available for oversampling rare exposures using a
multistage screening approach (2). When descriptive sta-
tistics for a specific population are the objective, the study
cohort is often reweighted so that it is representative of the en-
tire sampling frame. This can be accomplished by using IP
weights (19) to rescale the sample observations. Here, we ad-
vocate the use of these IP weights for etiological analyses as
well when the exposure of interest is a cause of the exposure
which was used to enrich the study. IP weights have been
similarly proposed for reweighting of case-control studies
when additional outcomes are of interest (20); however, IP
weighting may not be as efficient as some recently developed
methods (21). These new methods have yet to be translated to
the cohort study setting in which a secondary exposure is of
interest. Alternative epidemiologic methods of selection bias
correction may also be useful for removing bias in studies
with exposure-enriched designs, such as the application of
selection ratios (based on conditional selection probabilities)
(22), probabilistic bias analysis (23), doubly robust estima-
tion (24), and Heckman-type selection models (25).

Here, we present an example in which the study cohort is
not representative of the source population for the secondary
exposure. The value of representativeness in epidemiologic
research has been questioned recently, with Rothman et al.
(26) going so far as to say that representativeness should be
avoided for the sake of enhancing internal validity. Here we
have demonstrated an example in which an altered primary
exposure distribution leads to incorrect inference about the
magnitude of association between a secondary exposure and
an outcome. Because secondary analyses are widespread as
a cost-savings strategy in epidemiology, caution should be
used when examining predictors or indications for a primary
exposure that may itself have been enriched through study se-
lection procedures.
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APPENDIX

Here we present a mathematical proof of potential bias
in the Z-Y relationship when analysis is restricted to S =1
(S =selection into the study; Y =outcome; Z=secondary
exposure). This potential bias may arise in situations where
the relationship between Z and Y in a subpopulation is not
equivalent to that in the whole population. For a detailed
mathematical derivation of how the conditional covariance
of Zand Y given S can result in bias, see the eAppendix “Con-
ditional Covariance of E and D Given M” in the paper by
Schisterman et al. (13).

Since f(ylz) equals

fOlzS=DPES =1)+f(y|z,S=0)P(S=0) (Al)

and the expected value is defined as
/yf(y\Z)dy = /yf(ylz,S = 1)P(S = 1)dy
+ /yf(yILS = 0)P(S = 0)dy,
then
/yf(yIZ)dy =P(S= 1)/yf(y|z,S = l)dy
+P(S=0) [0z s =0, (A2)
Since

B0l = [ 012y (A3)

E(ylz75=1)=/yf(y\275=1)dy (A4)

E@ms:m:/ﬁ@ms:m@7 (AS)
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by substituting equations A3—AS5 into equation A2, we
have

E(y|z) =P(S=1E(y|z,S=1)+P(S=0)E(y|z,S =0).

Therefore, only when P(S=0)=0 does E(ylz) equal
E(y|z,S = 1); otherwise, E(y|z)#E(y|z,S = 1).

Appendix Table 1. Example Cohort Study Data and Calculation of
the Inverse Probability Weight®

z X Rsandom Exposure-Enriched IP We!i)ght,
ample Sample w

0 O 0 432 240 9/5
0 O 1 48 27° 9/5
0 1 0 12 60 1/5
0 1 1 8 40 1/5
1 0 0 378 210 9/5
1 0 1 42 23¢ 9/5
1 1 0 48 240 1/5
1 1 1 32 160 1/5
Total 1,000 1,000

Abbreviation: IP, inverse probability.

& S, selection into the study; X, primary exposure (fetal growth
restriction); Y, outcome (preterm birth); Z, secondary exposure
(maternal smoking).

® The IP weight w was calculated as P(S =1)/P(S=1|X = x),
where P(S=1) is estimated as n/N and P(S = 1| X = x) is estimated
as ny/(pxN), and where n, and py are the number sampled with X=x
and the probability of X = x, respectively.

° Rounded from 26.6.

9 Rounded from 23.3.
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