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The covariate-balancing propensity score (CBPS) extends logistic regression to simultaneously optimize covar-

iate balance and treatment prediction. Although the CBPS has been shown to perform well in certain settings, its

performance has not been evaluated in settings specific to pharmacoepidemiology and large database research. In

this study, we use both simulations and empirical data to compare the performance of the CBPS with logistic re-

gression and boosted classification and regression trees. We simulated various degrees of model misspecification

to evaluate the robustness of each propensity score (PS) estimation method. We then applied these methods to

compare the effect of initiating glucagonlike peptide-1 agonists versus sulfonylureas on cardiovascular events

and all-cause mortality in the US Medicare population in 2007–2009. In simulations, the CBPS was generally

more robust in terms of balancing covariates and reducing bias compared with misspecified logistic PS models

and boosted classification and regression trees. All PS estimation methods performed similarly in the empirical ex-

ample. For settings common to pharmacoepidemiology, logistic regression with balance checks to assess model

specification is a valid method for PS estimation, but it can require refitting multiple models until covariate balance is

achieved. The CBPS is a promising method to improve the robustness of PS models.

cardiovascular disease; covariate balance; diabetes; epidemiologic methods; propensity score; regression;

simulation

Abbreviations: ASAMD, average standardized absolute mean difference; bCART, boosted classification and regression trees;

bCART2, boosted classification and regression trees with an interaction depth of 2; bCART4, boosted classification and regression

trees with an interaction depth of 4; CBPS, covariate-balancing propensity score; GLP-1, glucagonlike peptide-1; IPTW, inverse

probability treatment weighting; MLE, maximum likelihood estimation; MSE, mean squared error; PS, propensity score; SMR,

standardized mortality ratio.

The propensity score (PS), defined as the conditional prob-
ability of treatment given a set of observed covariates, has
been shown to effectively balancemeasured covariates across
treatment groups in comparative observational studies (1).
The popularity of PSs in epidemiology and medical research
has been due primarily to their ability to balance a large num-
ber of covariates across treatment groups by conditioning or
weighting on a single score (1, 2). In practice, the true PS
function is unknown and must be estimated from the avail-
able data. PS estimation has often been viewed as prediction

modeling because misspecified or biased predictions of the
true PS, in general, result in estimated scores that fail to bal-
ance measured covariates (1, 3–5). The primary goal of PSs,
however, is to balance all measured risk factors for the out-
come across treatment groups to control for confounding
and the role of prediction modeling when estimating PSs is
unclear.

The topic of prediction modeling in PS estimation has
been discussed in terms of variable selection for PS models.
Westreich et al. (6) emphasized that the purpose of PSs is not
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to predict treatment assignment, but to balance covariates in
order to control for confounding, and that variable selection
for PS models should not be approached with the objective
of predicting treatment. Both theory and previous studies
have shown that the inclusion of variables affecting only
treatment (instrumental variables), although improving the
predictive performance of the estimated PS model, does not
improve the balance of risk factors for the outcome (7–9).
The potential disconnect between the prediction of treatment
assignment and obtaining covariate balance has led to the rec-
ommendation and practice of using measures of covariate
balance to evaluate estimated PS models (9, 10). It is com-
mon practice to fit a PS model, check covariate balance,
and then reestimate the PS model using different functional
forms and interactions until an acceptable degree of balance
is achieved (11).
Despite the recognition that variable selection for PS

models should not take a predictive modeling approach, it
is unclear what role prediction modeling should play in
the actual estimation process for PSs once covariates have
been selected for the PS model. For example, traditional
methods of estimating PSs have primarily included paramet-
ric models—in particular, logistic regression (12–14). Al-
though measures of covariate balance are often used when
deciding the functional forms of the covariates in the logistic
PS model, measures of covariate balance have typically not
been used when estimating model parameters. Parameters in
the logistic PS model have been estimated primarily by
using maximum likelihood estimation (MLE), which is de-
signed to find parameter estimates that maximize an as-
sumed likelihood function rather than maximize covariate
balance.
If the logistic model (likelihood function) is correctly spec-

ified, then MLE estimates for the logistic PS model will also
result in estimated PSs that balance covariates across expo-
sure groups (1, 2). In practice, however, some degree of
model misspecification is likely to occur. Whenmisspecifica-
tion does occur, parameter estimates that maximize the fit of
the data, or minimize prediction error, may not correspond
with parameter estimates that maximize covariate balance.
Understanding the role of prediction modeling in settings
where the PS model is misspecified can provide insight
into how PS estimation should be approached.
Recently, various authors have proposed PS estimation

methods that focus on minimizing the imbalance of covari-
ates when estimating parameters of parametric PS models
(15–17). In particular, Imai and Ratkovic (15) proposed a
simple extension of logistic regression, termed the covariate-
balancing propensity score (CBPS). This method replaces
MLE with a generalized method of moments estimation to si-
multaneously optimize prediction of treatment assignment
and covariate balance. Although the CBPS has been shown
to perform well in some specific settings (15), it has not
been applied in pharmacoepidemiologic settings and large
database research because of its recent introduction.
In this paper, we briefly describe for a general epidemio-

logic audience the concept and application of using balance
criteria to estimate parameters of parametric PS models. We
focus on Imai and Ratkovic’s proposed method of the CBPS
because it is easy to implement with software provided in the

R statistical computing environment (15).We then evaluate the
performance of the CBPS compared with logistic regression
and boosted classification and regression trees (bCART)
using simulations and empirical data. For the empirical ex-
ample, we use Medicare data to compare the effectiveness
of glucagonlike peptide-1 (GLP-1) agonists with that of sul-
fonylureas in reducing cardiovascular disease events and all-
cause mortality in an older patient population. We include
bCART in the comparison because bCART and other non-
parametric methods have been proposed to reduce the poten-
tial for PS model misspecification (10, 18–20). Previous
studies have shown bCART to perform particularly well for
PS estimation in certain settings compared with other non-
parametric methods and misspecified logistic PS models
(10, 19, 20).

METHODS

Conceptual overview

The general concept of the CBPS method is to make the
estimation of PS models more robust with regard to covariate
balance compared with MLE. Under MLE, parameter esti-
mates that best fit the data (i.e., best predict treatment assign-
ment) are found by choosing values that maximize a specified
likelihood function. In contrast, the CBPS method incorpo-
rates a balance condition when estimating parameters of the
logistic PS model. Parameter values are chosen that simulta-
neously optimize the balance condition in addition to the
specified likelihood function.
When estimating the average treatment effect in the popu-

lation, the balance condition (i.e., function) is defined as

1
N

XN
i¼1

Ti

ð1þ expð�XiβÞÞ�1 �
ð1� TiÞ

1� ð1þ expð�XiβÞÞ�1

 !
~Xi ¼ 0:

ð1Þ

In equation 1, Ti represents a dichotomous treatment (Ti = 1 if
treated; Ti = 0 otherwise), Xi a set of baseline covariates,
(1 + exp(−Xiβ))

−1 is the assumed functional form of the PS,
and ~Xi represents a function of Xi specified by the researcher.
In the simplest case, ~Xi can be set to be equal to Xi, in which
case equation 1 reduces to the average difference of the covar-
iates across treatment groups after weighting by the inverse of
the probability of receiving the treatment actually received. ~Xi

can also be specified as the standardized covariate values and
can include both first- and higher-order terms (e.g., both Xi

and Xi
2) to balance higher-order moments of the covariate

distributions (15). In general, equation 1 can be interpreted
as the average difference of a function of the covariates
across treatment groups after inverse probability of treat-
ment weighting.
When estimating the treatment effect in the treated, the bal-

ance condition is specified as

1
N1

XN
i¼1

Ti � ð1� TiÞð1þ expð�XiβÞÞ�1

1� ð1þ expð�XiβÞÞ�1

 !
~Xi ¼ 0; ð2Þ
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where N1 is the number of treated individuals. Equation 2
can be interpreted as the average difference of a function
of the covariates after standardized mortality ratio (SMR)
weighting.

The CBPS method replaces MLE with a generalized meth-
od of moments framework that uses an iterative computa-
tional procedure to find estimates for β that best optimize
the likelihood condition (i.e., specified likelihood function)
and the balance condition (i.e., specified balance function) si-
multaneously. We refer the reader to the work by Imai and
Ratkovic (15) for a more rigorous description of the CBPS
method and the generalized method of moments estimation.

Simulation study

We simulated treatment assignment using a similar struc-
ture to that described by Setoguchi et al. (18) and Lee et al.
(19). Simulations consisted of a dichotomous treatment (T ), 6
binary covariates (X1, X3, X5, X6, X8, and X9), and 4 standard-
normal covariates (X2, X4, X7, and X10). We considered 7 sce-
narios (scenarios A through G described below), in which the
true treatment selection model (i.e., the true PS model) varied
with respect to linearity (i.e., higher-order terms) and additiv-
ity (i.e., interaction terms). Setoguchi et al. (18) originally
constructed these scenarios to reflect the complexities of
treatment assignment that are likely to occur in practice.
Each of the simulated scenarios is described below. We
used the same parameter values for βi as used by Setoguchi
et al. (18) and Lee et al. (19). These values were chosen on the
basis of the coefficients from actual claims data modeling the
propensity of statin use (18).

A. Additivity and linearity (main effects only):

logitðE½T jX1 � X7�Þ ¼ β0 þ β1X1 þ β2X2 þ β3X3 þ β4X4

þ β5X5 þ β6X6 þ β7X7

B. Mild nonlinearity (1 quadratic term):

logitðE½T jX1 � X7�Þ ¼ β0 þ β1X1 þ β2X2 þ β3X3 þ β4X4

þ β5X5 þ β6X6 þ β7X7 þ β2X
2
2

C. Moderate nonlinearity (3 quadratic terms):

logitðE½T jX1 � X7�Þ ¼ β0 þ β1X1 þ β2X2 þ β3X3 þ β4X4

þ β5X5 þ β6X6 þ β7X7

þ β2X
2
2 þ β4X

2
4 þ β7X

2
7

D. Mild nonadditivity (4 two-way interaction terms):

logitðE½T jX1 � X7�Þ ¼ β0 þ β1X1 þ β2X2 þ β3X3 þ β4X4

þ β5X5 þ β6X6 þ β7X7

þ β1ð0:5ÞX1X3 þ β2ð0:7ÞX2X4

þ β4ð0:5ÞX4X5 þ β5ð0:5ÞX5X6

E. Mild nonadditivity and nonlinearity (4 two-way interaction
terms and 1 quadratic term):

logitðE½T jX1 � X7�Þ ¼ β0 þ β1X1 þ β2X2 þ β3X3 þ β4X4

þ β5X5 þ β6X6 þ β7X7 þ β2X
2
2

þ β1ð0:5ÞX1X3 þ β2ð0:7ÞX2X4

þ β4ð0:5ÞX4X5 þ β5ð0:5ÞX5X6

F. Moderate nonadditivity (10 two-way interaction terms):

logitðE½T jX1 � X7�Þ ¼ β0 þ β1X1 þ β2X2 þ β3X3 þ β4X4

þ β5X5 þ β6X6 þ β7X7

þ β1ð0:5ÞX1X3 þ β2ð0:7ÞX2X4

þ β3ð0:5ÞX3X5 þ β4ð0:7ÞX4X6

þ β5ð0:5ÞX5X7 þ β1ð0:5ÞX1X6

þ β2ð0:7ÞX2X3 þ β3ð0:5ÞX3X4

þ β4ð0:5ÞX4X5 þ β5ð0:5ÞX5X6

G.Moderate nonadditivity and nonlinearity (10 two-way inter-
action terms and 3 quadratic terms):

logitðE½T jX1 � X7�Þ ¼ β0 þ β1X1 þ β2X2 þ β3X3 þ β4X4

þ β5X5 þ β6X6 þ β7X7 þ β2X
2
2

þ β4X
2
4 þ β7X

2
7 þ β1ð0:5ÞX1X3

þ β2ð0:7ÞX2X4 þ β3ð0:5ÞX3X5

þ β4ð0:7ÞX4X6 þ β5ð0:5ÞX5X7

þ β1ð0:5ÞX1X6 þ β2ð0:7ÞX2X3

þ β3ð0:5ÞX3X4 þ β4ð0:5ÞX4X5

þ β5ð0:5ÞX5X6

We also conducted a second set of simulations in which we
used a probit model rather than a logistic model to simulate
treatment assignment (i.e., replacing the logit function with

0.2

0.9

X1

X5

X6 T Y

X7

X8

X9

X10

X2 X3 X4

0.2

0.9

Figure 1. Simulated causal structure consisting of a dichotomous
treatment (T ), 6 binary covariates (X1, X3, X5, X6, X8, and X9),
4 standard-normal covariates (X2, X4, X7, and X10), and a continuous
outcome (Y ). The arrows represent causal effects. Each arc repre-
sents a correlation between the covariates, and the number above
each arc represents the correlation coefficient.
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the probit function in the scenarios described above). The rea-
son for adding this second set of simulations is that, in most
practical settings, parametric models are only approximations
of the true functional form underlying the data. Therefore, we
followed the example of Brookhart et al. (7) by using a probit
model to simulate treatment assignment to reflect settings
where there is some misspecification in the functional form
of the logistic PS model.
Figure 1 illustrates the simulated causal structure, and equ-

ation 3 describes the outcome model. Similar to the methods
of Lee et al. (19) and Austin (21), we defined the outcome as
a linear combination of T and Xi, where i = 1–4, 8–10.
The covariates X5 through X7 are not directly related to the out-
come.

E½Y jXi� ¼ α0 þ α1X1 þ α2X2 þ α3X3 þ α4X4 þ α5X8

þ α6X9 þ α7X10 � 0:4T : ð3Þ

In equation 3, we used the same parameter values for
α1 through α7 as were used by Setoguchi et al. (18) and
Lee et al. (19). We then simulated the outcome for each indi-
vidual from a normal distribution with a mean of E[Y|Xi]
(equation 3) and standard deviation of 1. Although binary
outcomes are more common in pharmacoepidemiology, we
chose to simulate a continuous outcome to simplify the anal-
ysis and to avoid issues with the noncollapsibility of the odds
ratio (22). Because the PS models the relationship between
covariates and treatment, we do not believe that the interpre-
tation of the results when comparing various PS estimation
methods will be substantially affected by using a continuous
instead of a binary outcome.
As in the simulation structure used by Setoguchi et al. (18)

and Lee et al. (19), correlations were induced between some
of the covariates to be more reflective of practical settings
(Figure 1). Lee et al. (23) provide a description and code
for how these correlations were induced.

Table 1. Unadjusted Distribution and SMR-Weighted Differences of Covariates Across New Users of GLP-1

Agonists and Sulfonylureas Within the Medicare Population, 2007–2009

Baseline Covariate

Unadjusted Distribution, %
Absolute Standardized Difference After

SMR Weightinga

GLP-1 Agonists
(n = 725)

Sulfonylureas
(n = 35,886)

Logisticb bCART2 bCART4 CBPSc

Mean age, years 72.6 76.8 0.004 0.025 0.025 0.000

Female sex 34.3 38.9 0.001 0.027 0.009 0.000

Race

White 86.3 76.3 0.001 0.017 0.009 0.000

Black 6.9 12.4 0.000 0.034 0.024 0.000

Hispanic 3.4 4.9 0.021 0.036 0.025 0.000

Asian 1.4 3.6 0.000 0.019 0.016 0.000

Other 1.4 1.9 0.001 0.034 0.026 0.000

Medications

ACE inhibitor 36.3 38.7 0.000 0.030 0.020 0.000

Angiotensin receptor blocker 20.1 14.2 0.000 0.030 0.028 0.000

Anticholesteremic 2.9 2.8 0.002 0.003 0.005 0.000

Antidepressant 32.1 26.7 0.002 0.031 0.025 0.000

β Blocker 40.4 45.7 0.001 0.029 0.018 0.000

β2 Agonist 11.6 10.7 0.000 0.008 0.014 0.000

Bile acid sequestrant 1.9 1.1 0.001 0.024 0.020 0.000

Calcium channel blocker 25.9 30.0 0.001 0.028 0.016 0.000

Cholesterol absorption inhibitor 6.6 4.0 0.001 0.029 0.024 0.000

Fibrate 10.9 7.4 0.004 0.030 0.020 0.000

Glycoside 4.0 8.5 0.003 0.027 0.007 0.000

Loop diuretic 33.0 29.3 0.004 0.029 0.023 0.000

Metformin 59.7 50.7 0.002 0.024 0.016 0.000

Niacin 3.4 1.4 0.001 0.035 0.056 0.000

Nonloop diuretic 44.1 41.8 0.003 0.013 0.004 0.000

Progestin 0.3 1.3 0.000 0.041 0.029 0.000

Statin 64.7 56.3 0.001 0.032 0.023 0.000

Thiazolidinedione 28.6 16.3 0.004 0.019 0.023 0.000

Table continues
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In each simulated study, we estimated the PS using logistic
regression, bCART, and the CBPS. The logistic and CBPS
models included only main effects for each of the covariates
X1–X10 to reflect practical situations in which the true func-
tional relations between covariates and treatment are unknown.
For bCART, we used a maximum of 50,000 iterations with an
iteration stopping point that minimized the mean of the
Kolmogorov-Smirnov test statistic. We used 2 different param-
eter settings for the interaction depth. Because the scenarios in
this simulation involve, at most, 2-way interactions, we used
boosted classification and regression trees with an interaction
depth of 2 (bCART2). In practice, the optimal interaction depth
is unknown. Therefore, we also followed the recommendation
of McCaffrey et al. (10), using boosted classification and re-
gression trees with an interaction depth of 4 (bCART4). The
bCART models were implemented using the twang package
within the R statistical programming environment (24).

We implemented the PSs using both SMR weighting and
inverse probability of treatment weighting (IPTW). For SMR
weighting, weights were defined as 1 for individuals receiv-
ing treatment and PS / (1 − PS) (i.e., the odds of receiving
treatment) for those not assigned to treatment. For IPTW,
weights were defined as the inverse of the PS for individuals
receiving treatment and 1 / (1− PS) for those not receiving
treatment. Because there is no treatment-effect heterogeneity
built into the simulation structure, the average treatment
effect in the treated and the average treatment effect in

the population are equivalent. Therefore, both SMR weight-
ing and IPTW should result in similar effect estimates when the
PS is correctly specified. For each set of weights, we estimated
the treatment effect using aweighted least squares regression of
Y on T. We calculated the bias, defined as the expected value of
the difference between the effect estimate and the true effect, by
taking the mean of this difference over all simulation runs. The
mean squared error (MSE)was calculated by taking themeanof
the squared bias over all simulation runs. To evaluate precision,
we estimated the standard error using the empirical standard de-
viationof thedistributionof the treatment effect estimates across
all simulation runs. We evaluated covariate balance by calcul-
ating the average standardized absolute mean difference
(ASAMD) of the covariates across treatment groups. Because
the data are simulated and the true PSs are known, we directly
evaluated the mean prediction error for each PS model by cal-
culating the absolute difference between the predicted PS and
the true PS for each individual and then taking the mean of
these differences across the entire population.

Empirical example: GLP-1 agonists versus sulfonylureas

We evaluated the performance of the described PS models
using a 20% random sample of linkedMedicare parts A (hos-
pital), B (outpatient), and D (pharmacy) data. This sample
included Medicare beneficiaries with fee-for-service enroll-
ment in all 3 plans for at least 1 month during the calendar

Table 1. Continued

Baseline Covariate

Unadjusted Distribution, %
Absolute Standardized Difference After

SMR Weightinga

GLP-1 Agonists
(n = 725)

Sulfonylureas
(n = 35,886)

Logisticb bCART2 bCART4 CBPSc

Tests

Blood test 6.1 4.7 0.001 0.025 0.009 0.000

Electrocardiography 41.1 42.4 0.001 0.009 0.005 0.000

Lipid panel 77.9 63.1 0.001 0.034 0.028 0.000

Diagnoses

Cardiovascular heart failure 21.2 26.3 0.002 0.032 0.023 0.000

COPD 20.3 21.0 0.001 0.006 0.005 0.000

Depression 16.1 15.8 0.002 0.023 0.014 0.000

Diabetic complication 66.9 62.8 0.004 0.013 0.011 0.000

Gastrointestinal disorder 1.0 0.7 0.004 0.025 0.024 0.000

Infection 44.8 45.2 0.002 0.018 0.013 0.000

Nephropathy 9.8 6.3 0.002 0.016 0.020 0.000

Neuropathy 26.6 15.2 0.005 0.027 0.028 0.000

Retinopathy 20.0 12.2 0.005 0.026 0.025 0.000

Abbreviations: ACE, angiotensin-converting enzyme; bCART2, boosted classification and regression trees with

interaction depth of 2; bCART4, boosted classification and regression trees with interaction depth of 4; CBPS,

covariate-balancing propensity score; COPD, chronic obstructive pulmonary disease; GLP-1, glucagonlike peptide-1;

SMR, standardized mortality ratio.
a For binary covariates, we calculated the absolute standardized difference, not the absolute standardized percent

differences.
b Logistic model with main effects only.
c CBPS with main effects only.
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year between 2007–2009 (25). We compared new users of
any GLP-1 agonist with new users of sulfonylureas in reduc-
ing combined coronary heart disease, cardiovascular disease,
and all-cause mortality. The defined outcome included

diagnostic codes for nonfatal myocardial infarction, angina,
coronary revascularization, peripheral arterial disease, heart
failure, stroke, and all-cause mortality. Our design decisions
arose from the goal of simply demonstrating the PS methods
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Figure 2. Simulation results when treatment assignment was simulated using a logistic model. Propensity scores were implemented using stan-
dardized mortality ratio weighting in plots A, C, E, and G. Propensity scores were implemented using inverse probability treatment weighting in plots
B, D, F, and H. The logistic and covariate-balancing propensity score (CBPS) models contained only main effects for each of the covariates. Sce-
nario A, additivity and linearity; scenario B, mild nonlinearity; scenario C, moderate nonlinearity; scenario D, mild nonadditivity; scenario E, mild
nonadditivity and nonlinearity; scenario F, moderate nonadditivity; scenario G, moderate nonadditivity and nonlinearity. ASAMD, average standard-
ized absolutemean difference; bCART2, boosted classification and regression trees with interaction depth of 2; bCART4, boosted classification and
regression trees with interaction depth of 4; MSE, mean squared error.
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under study, rather than producing a definitive comparison of
GLP-1 agonists versus sulfonylureas.

New users were defined as individuals who began taking a
GLP-1 agonist or sulfonylurea after having no prescription

for any GLP-1 agonist or sulfonylurea during a 6-month
washout period (i.e., allowing both cohorts to be taking other
antidiabetic treatments, including metformin). We included
all individuals who were continuously enrolled in Medicare
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Figure 3. Simulation results when treatment assignment was simulated using a probit model. Propensity scores were implemented using stan-
dardized mortality ratio weighting in plots A, C, E, and G. Propensity scores were implemented using inverse probability treatment weighting in plots
B, D, F, and H. The logistic and covariate-balancing propensity score (CBPS) models contained only main effects for each of the covariates. Sce-
nario A, additivity and linearity; scenario B, mild nonlinearity; scenario C, moderate nonlinearity; scenario D, mild nonadditivity; scenario E, mild
nonadditivity and nonlinearity; scenario F, moderate nonadditivity; and scenario G, moderate nonadditivity and nonlinearity. ASAMD, average stan-
dardized absolutemean difference; bCART2, boosted classification and regression treeswith interaction depth of 2; bCART4, boosted classification
and regression trees with interaction depth of 4; MSE, mean squared error.
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for at least 12 months prior to drug initiation. All demo-
graphic and clinical covariates were defined during the 12
months prior to drug initiation. Individuals who had dual ini-
tiation of both a GLP-1 agonist and a sulfonylurea on the
same day were excluded. The logistic PS model and the
CBPS model included main effects for each of the covariates
listed in Table 1. For the bCART models, we included the
same parameter conditions described previously. The esti-
mated PSs were implemented using SMR weighting. Because
the true PSs are unknown, we evaluated the predictive per-
formance for each of the PS models by calculating the mean
absolute difference between the predicted PS value and the ob-
served treatment status for each individual using 5-fold cross-
validation to avoid rewarding models that overfit the data.
The effect of initiating GLP-1 agonists versus sulfonyl-

ureas in the weighted pseudopopulation was estimated using
Cox proportional hazards models. Individuals were censored
if they lost any part ofMedicare coverage during follow-up or
switched to or augmented treatment with the comparator drug
during follow-up (i.e., as-treated analysis).

RESULTS

Simulation study

We present results for the simulation studies in Figures 2
and 3. Results are also provided inWeb Tables 1–4, available
at http://aje.oxfordjournals.org/. Figures 2 and 3 show that the
CBPS performed best in terms of covariate balance for each
of the scenarios. When treatment assignment was simulated
using a logistic model, the ASAMDs for the CBPS model
ranged from approximately 0.014 to 0.028 when PSs were

implemented using SMR weighting and from 0.013 to
0.025 when PSs were implemented using IPTW (Figure 2).
In these scenarios, the bCART models generally resulted in
the greatest imbalance in the covariates. For example, the
ASAMDs for the bCART2 model ranged from approxi-
mately 0.063 to 0.070 for SMR weighting and 0.091 to
0.108 for IPTW (Figure 2). Similar patterns were observed
when treatment assignment was simulated using a probit
model (Figure 3).
The CBPS model was the most consistent in terms of re-

ducing both the bias and MSE in the estimated treatment ef-
fects. Figure 2 shows that the CBPS resulted in the lowest
percent bias in 4 of the 7 scenarios for SMR weighting (sce-
narios B, D, E, and F), with percent bias ranging from 0.1% to
2.4%, and in 3 of the 7 scenarios for IPTW (scenarios C, F,
and G), with percent bias ranging from 0.6% to 3.2%.
Figure 2 further shows that the CBPS resulted in the low-

est MSE in 4 of the 7 scenarios when PSs were implemented
using SMR weighting (scenarios A, B, C, and G), with the
MSE ranging from 0.056 to 0.081, and in all 7 scenarios
when PSs were implemented using IPTW, with the MSE
ranging from 0.05 to 0.07 (Figure 2). Both the logistic
regression and bCART models were less consistent in re-
ducing the percent bias and MSE and were more sensitive
to the method of weighting. Similar patterns were observed
for scenarios in which the true PS followed a probit model
(Figure 3).
In terms of predictive performance, Figure 2 shows that the

bCART PS models were more stable across the 7 scenarios,
with the mean prediction errors ranging from 0.075 to 0.086
for bCART2 and 0.085 to 0.091 for bCART4. The CBPS
model generally resulted in a slightly higher prediction
error than the logistic model, with the mean prediction errors
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ranging from approximately 0.04 to 0.18 for both SMR
weighting and IPTW. Similar patterns were again observed
when treatment assignment was simulated using a probit
model (Figure 3).

To better understand the correspondence between the pre-
diction of treatment assignment and covariate balance on the
one hand and bias and MSE on the other, we aggregated the
results from each of the simulations and plotted the percent
bias and MSE against the ASAMD and mean prediction
error (Figure 4). The ASAMD had a significant positive
correlation with both percent bias (r = 0.82, P < 0.001)
and MSE (r = 0.48, P < 0.001). The mean prediction error
was not strongly related to bias (r = 0.13, P = 0.14) or MSE
(r =−0.03, P = 0.78).

Empirical example: GLP-1 agonists versus

sulfonylureas

Results for the empirical study comparing new users of
GLP-1 agonists with new users of sulfonylureas are shown
in Tables 1 and 2. In Table 1, we present the distribution of
each of the covariates across treatment groups and standard-
ized differences after SMR weighting. In Table 2, we present
the estimated hazard ratios, standard errors, 95% confidence
intervals, and overall covariate balance.

For this example, each of the PS estimation methods re-
sulted in covariates being approximately balanced across
treatment groups. Although the differences were small, the
CBPS model resulted in the best covariate balance (ASAMD
< 0.000), followed by the logistic model (ASAMD = 0.002)
and the bCART models (for bCART4, ASAMD = 0.02; for
bCART2, ASAMD = 0.025).

The estimated treatment effect and precision were similar
for each of the PS methods. Both the logistic and CBPSmod-
els resulted in a hazard ratio of approximately 0.76 with a
standard error of 0.14. The bCART2 and bCART4 models
resulted in hazard ratios of approximately 0.77 and 0.78, re-
spectively, with a standard error of 0.14 for both models.
Each of the models also resulted in similar performance in
terms of the estimated prediction error (Table 2).

DISCUSSION

In this study, we used simulations and an empirical exam-
ple to examine the performance of the CBPS relative to logis-
tic regression and bCART when estimating PSs in situations
where the logistic model assumptions are misspecified. For
the scenarios assessed in the simulation, the CBPS method
outperformed the other methods in terms of covariate bal-
ance. Although the CBPS model resulted in the lowest
ASAMD for each scenario, no single method performed
best in all scenarios in terms of bias in the estimated treatment
effect. Many measures of covariate balance, including the
ASAMD, do not take into account the strength of a particular
variable’s confounding. Further, the simulation structure re-
flects practical settings in which confounders induce bias in
both directions. This can result in confounding bias canceling,
even when covariates are not balanced across treatment
groups. Therefore, the reduction in ASAMD did not always
correspond with the greatest reduction in bias, although there
was a strong correlation between the 2, and the CBPS gener-
ally performed well in terms of reduced bias compared with
the logistic and bCART models.

We chose a simulation structure for treatment assignment
that has been used in a number of previous studies (18, 19,
21, 26) and was originally constructed to include parameter
values and covariate ranges that reflect those in pharmaco-
epidemiologic studies (18). As with any simulation, how-
ever, the observed results are specific to the scenarios
considered, and one should avoid generalizing results to set-
tings that have not been evaluated. Further, when the PS
model is misspecified, results can be sensitive to the method
of PS implementation, as illustrated in this study. Therefore,
the observed results are specific not only to the causal sce-
narios assessed, but also to the methods of implementation
that were considered in this study (SMR weighting and
IPTW).

In the empirical example, the initial imbalance was modest
(ASAMD = 0.13), and it was possible to balance all of the
covariates well, regardless of the PS estimation method used.
This may be due to the proper implementation of study

Table 2. Comparing GLP-1 Agonists Versus Sulfonylureas on Time to Cardiovascular Event or All-Cause Mortality

Within the Medicare Population, 2007–2009

Propensity
Score Model

Hazard
Ratio

Standard
Error

95% CI ASAMD
Prediction

Errora

Unadjusted 0.719 0.102 0.589, 0.879 0.133

Logisticb 0.762 0.138 0.581, 0.999 0.002 0.038

bCART2 0.766 0.139 0.584, 1.005 0.025 0.038

bCART4 0.782 0.140 0.595, 1.029 0.020 0.037

CBPSc 0.763 0.138 0.582, 1.001 0.000 0.038

Abbreviations: ASAMD, average standardized absolute mean difference; bCART2, boosted classification and

regression trees with interaction depth of 2; bCART4, boosted classification and regression trees with interaction

depth of 4; CBPS, covariate-balancing propensity score; CI, confidence interval; GLP-1, glucagon-like peptide-1.
a Prediction error was estimated by calculating the absolute difference between the predicted propensity score and

observed treatment status using 5-fold cross-validation.
b Logistic model with main effects only.
c CBPS with main effects only.
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design (e.g., active comparator, new user design and other re-
striction criteria) and the fact that covariates were primarily
dichotomous. In settings with greater initial imbalance on
important confounders, including continuous ones, larger
performance differences may emerge. Small differences in
percent bias due to model misspecification may well be
outweighed by other biases (e.g., residual, information, mea-
surement, misclassification, etc.), which cannot be addressed
through PS models. This result supports the notion that, in
pharmacoepidemiology and large database research, the
greatest gains in the validity of effect estimates are likely
achieved through state-of-the art study design rather than dur-
ing the analytical phase (27).
Previous studies have shown that improving the predictive

performance of a PS model through variable selection (e.g.,
including instrumental variables) does not necessarily corre-
spond with improved confounding control (6–8). Results
from this study showed that even when PS models controlled
for the same set of covariates, there was not a strong corre-
spondence between improved prediction of treatment assign-
ment and improved confounding control.
By incorporating balance into the estimation process, the

CBPS method does not approach PS parameter estimation
with the objective of minimizing prediction error. In theory,
incorporating covariate balance into PS estimation can pro-
vide a more robust method for estimating PSs in terms of
covariate balance and bias. Researchers could improve co-
variate balance by refitting the logistic model using different
functional forms of the covariates. In pharmacoepidemi-
ology and large database research, however, refitting the
logistic PS model until an acceptable degree of balance is
achieved can be difficult. Because the CBPS estimates pa-
rameters in a way that minimizes covariate imbalance di-
rectly rather than minimizing prediction error, the CBPS
can help to simplify the process of achieving covariate bal-
ance by avoiding the iterative process of refitting the logistic
PS model. In principle, the CBPS can balance not only co-
variate means (as demonstrated in this paper), but also other
distributional characteristics (15).
Similar to other parametric PS models, the CBPS method

does not address variable selection. Ideally, one would esti-
mate PSs that balance only risk factors for the outcome (7).
Therefore, regardless of the PS estimation method used, we
stress the importance of using study design and subject matter
expertise to gain an understanding of the underlying causal
structure before performing PS analysis (28).Within the CBPS
and generalized method of moments framework, one could
potentially improve bias reduction by placing more weight on
balancing covariates with strong effects on the outcome. More
research is needed in the area of automated weight/variable se-
lection, as well as implementation of weights within the CBPS
method.
It is unlikely that any single PS estimation method is op-

timal in every setting. More work is needed to better under-
stand the performance of bCART and the CBPS over a wide
variety of parameter constellations common to pharmaco-
epidemiology. We conclude that logistic regression with
balance checks to assess model specification is a viable
PS estimation method, but the CBPS seems to be a promis-
ing alternative.
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