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The method of maximum likelihood is widely used in epidemiology, yet many epidemiologists receive little or no

education in the conceptual underpinnings of the approach. Here we provide a primer on maximum likelihood and

some important extensions which have proven useful in epidemiologic research, and which reveal connections be-

tween maximum likelihood and Bayesian methods. For a given data set and probability model, maximum likelihood

finds values of the model parameters that give the observed data the highest probability. As with all inferential sta-

tistical methods, maximum likelihood is based on an assumed model and cannot account for bias sources that are

not controlled by the model or the study design. Maximum likelihood is nonetheless popular, because it is computa-

tionally straightforward and intuitive and because maximum likelihood estimators have desirable large-sample proper-

ties in the (largely fictitious) case in which themodel has been correctly specified. Here, wework through an example to

illustrate the mechanics of maximum likelihood estimation and indicate how improvements can be made easily with

commercial software.We then describe recent extensions and generalizations which are better suited to observational

health research and which should arguably replace standard maximum likelihood as the default method.

epidemiologic methods; maximum likelihood; modeling; penalized estimation; regression; statistics

Abbreviations: CI, confidence interval; LASSO, least absolute shrinkage and selection operator; LR, likelihood ratio; ML, maximum

likelihood; MSE, mean squared error.

Statistics is largely concerned with methods for deriving
inferential quantities (such as estimates of unknown parame-
ters) from observed data. Maximum likelihood (ML) may be
the most widely used class of such methods in the health sci-
ences. While brief descriptions of ML principles appear in
some epidemiology textbooks (see Modern Epidemiology
(1), chapter 13) and there are detailed descriptions in statistics
textbooks, it is our experience that many epidemiologists have
only a vague understanding of ML and other likelihood-based
methods and their limitations. Here, we describe ML in
enough detail to work through a simple example and discuss
some key limitations of classical ML.We also describe exten-
sions that can be used to address these limitations, including
profile and penalizedML, and explain how the latter connects
ML and Bayesian methods.

MODELS AND ML

For outcomes such as prevalence and incidence, a proba-
bility model is a formula that yields the probability of each

observed value as a function of parameter values and mea-
sured covariates. Ideally, one should use a model that can rea-
sonably approximate reality. By “reality” we mean the data
distribution that would be produced by the mechanisms that
generated the observed data (where the mechanisms include
all sources of bias and departures from protocols, as well as
intended design features). In practice, however, most analy-
ses use models that are software defaults, such as logistic re-
gression for proportions (risk or prevalence) and log-linear
regression for incidence rates.
In most ML-based software, logistic model-fitting assumes

binomial variation of the case count, while Poisson model-
fitting assumes Poisson variation for the case count, leaving
only the covariates to include in the model (and their form) to
the investigator. Reality tends to be much more complicated
than the resulting models, which usually depend on a rather
small numberof parameters. For purposes of illustration, how-
ever, we will maintain the fiction that the probability model is
an adequate representation of reality.
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The method of ML finds values of the model parameters,
called ML estimates, which make the observed data most
probable under the chosen model. In frequentist likelihood
theory, the parameters are fixed constants that govern the dis-
tribution of the observations, and probabilities are viewed as
hypothetical long-run frequencies (hence the term “frequent-
ist”). We emphasize, however, that the ML estimates are usu-
ally not the most probable values of the parameters, because
parameter probabilities are not part of likelihood theory. In
Bayesian theory, parameters as well as data are treated as ran-
dom variables, and thus Bayesian methods may be used to
derive parameter probabilities (2, 3); however, our focus
here will be frequentist methods.

AN EXAMPLE OF ML ANALYSIS

Consider a cohort study of incident diarrhea during a 10-
day follow-up period among 30 infants, all colonized with
Vibrio cholerae (see Modern Epidemiology (1), chapter
14). Our scientific objective is to estimate the 10-day risk
of diarrhea among infants with low levels of antibiotics in
maternal breast milk (X = 1) relative to infants with high lev-
els (X = 0), as shown in Table 1. The cohorts are distin-
guished only by their values for X, and the data are the
numbers falling ill, yx, out of the total nx, when X = x. Assum-
ing that diarrhea occurs independently across cohort mem-
bers and that the risk of diarrhea is px when X = x, the
probability of seeing yx cases in the cohort with X = x is
given by the binomial formula

nx
yx

� �
pyxx ð1� pxÞðnx�yxÞ;

where
nx
yx

� �
is the number of ways yx cases can be chosen

from nx infants without regard to order (e.g., 6 choose

2 ¼ 6
2

� �
¼ 15).

Now consider the logistic regression model px = expit(β0 +
β1x), where expit(u) = eu/(1 + eu) is the logistic function. In
this model, eβ0 ¼ p0=ð1� p0Þ is the odds of being a diar-
rhea case in the unexposed group and eβ1 is p1/(1− p1)/{p0/

(1 − p0)}, the odds ratio associated with a 1-unit increase in
exposure x. The likelihood at β0, β1 is defined as the probabil-
ity that we would have seen the observed case numbers y0, y1
if the parameter values were truly β0, β1:

Lðβ0; β1; y0; y1Þ ¼
Y
x¼0;1

nx
yx

� �
pyxx ð1� pxÞðnx�yxÞ:

If we denote the parameter list or vector (β0, β1) by β and the
outcome list (y0, y1) by y, we can compactly write this like-
lihood function as L(β; y). For example, at β0 = −1, β1 = 1, we
get β = (−1,1), p0 = expit(−1) = e−1/(1 + e−1) = 0.269, p1 =

expit(−1 + 1) = e0/(1+e0) = 0.500, and Lðβ; yÞ ¼ 16
7

� �

0.2697 0.7319
14
12

� �
0:5120:52 ¼ 0:000386.

In finding β to maximize the likelihood, we can ignore fac-

tors like
nx
yx

� �
that do not depend on the unknown parame-

ters. Additionally, the mathematics are easier if we instead
work with the natural logarithm of the likelihood, which
we will denote by g(β):

gðβÞ ¼ lnfLðβ; yÞg ¼
X
x¼0;1

yxlnð pxÞ þ ðnx � yxÞlnð1� pxÞ:

TheML estimate of β, denoted β̂, contains the values β̂0 and β̂1
for β0 and β1 that maximize (make as large as possible) L(β; y),
or equivalently that maximize g(β). One way to find β̂ is to
differentiate g(β) with respect to β. The resulting derivative
is called the score function and is denoted g′(β). The ML es-
timate β̂ ¼ ðβ̂0; β̂1Þ is a solution to g′(β) = 0, which is called
the score equation for β. Because the first derivative of a func-
tion is its slope, we are seeking a point β̂ that makes the slope
of g(β) zero in all directions. This point can occur at a mini-
mum of the function or at a maximum, as well as at other
points; nonetheless, in typical regression analyses using gen-
eralized linear models (including linear, log-linear, logistic,
and proportional hazards models), there will be only 1 solu-
tion to the score equation, β̂ (although some of the parameter
estimates in β̂may go to infinity), and the likelihood will be at
a maximum at this solution.

Sometimes anML estimate is a simple function of the data,
known as a “closed-form solution.” In our example, β̂0 is the
sample log odds ln{y0/(n0 − y0)} = ln(7/9) =−0.251 and β̂1 is
the sample log odds ratio:

β̂1 ¼ ln
y1ðn0 � y0Þ
y0ðn1 � y1Þ

� �
¼ ln 12 ×

9
ð7 × 2Þ

� �
¼ 2:043;

with standard error

ŝ1 ¼ 1
y1

þ 1
ðn0 � y0Þ þ

1
y0

þ 1
ðn1 � y1Þ

� �1=2

¼ 0:915

(1, p. 249). Nonetheless, mostML estimatesmust be found by
means of iterative procedures. An appealing feature of ML is
that estimates are unaffected by the choice of parameterization

Table 1. Distribution of 30 Infants According to Diarrhea Status

During a 10-Day Follow-up of Breastfed Infants Colonized With Vibrio
cholerae, Bangladesh, 1980–1981a

Antibiotic Levelb
Diarrhea

Cases (y = 1)
No Diarrhea

(y = 0)
Total

Low (x = 1) 12 2 14

High (x = 0) 7 9 16

Total 19 11 30

a Cohort study of incident diarrhea during a 10-day follow-up among

30 infants, all colonized with Vibrio cholerae (source: Modern Epi-
demiology (1), chapter 14). The maximum likelihood estimate of the

odds ratio (exp(β1) in the logistic model) is {12 × 9/(7 × 2)} = 7.71.
b Marker for level of antibiotics in maternal breast milk.
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(see Theory of Point Estimation (4), section 6.2), so that (for
example) we would have obtained the same ML estimate for
the log odds ratio had we taken the proportions exposed
among cases and controls as our model parameters.
An important fact originally established for ML logistic re-

gression is that all types of case-control data can be analyzed
as if they were cohort data, using “multiplicative intercept”
models. If there is no selection bias, only the resulting inter-
cept estimate is distorted by the case-control sampling. For
further discussion and citations, see Modern Epidemiology
(1, pp. 429–435).

GENERAL ML THEORY

We now expand from the example to the general case. Sup-
pose we are interested in studying the relationship of an out-
come Y to a list (vector) of J covariates X = (X1, . . . , XJ) and
have n observations with identification numbers (indices)
i = 1, 2, . . . , n. Let yi and xi be the value of Y and X for
observation i. Parametric statistical modeling assumes that
if observation i has covariate values x, then each yi represents
a random draw from a probability model f (y|x; β), where β is
a list of unknown parameters; usually, β represents regression
coefficients (β0, β1, . . . , βJ), where β0 is the intercept and βj is
the coefficient of xj. The model f(y|x; β) is a known function
of x and β that returns the probability that Y = y when X = x,
given β.
ML focuses directly on the probability of our observations

as a function of the unknown parameters β; that is, we study
the properties of our model f(y|x; β) as a function of β rather
than a function of Y, holding Y fixed at its observed (data)
value. In other words, the value of the probability model
for observation i, f(yi|xi; β), is treated as a function of the pa-
rameters β rather than as a function of the outcome Y or co-
variates X, and thus is written as L(β; yi, xi). This notation
shift reminds us that we are looking at how f(y|x; β) varies
with β, instead of how it varies with Y. Below, we simplify
L(β; yi, xi) to L(β; yi) and thus leave the covariates implicit.
L(β; yi) is called the likelihood contribution from observation i.
When the individual outcomes yi are independent of (not

associated with) one another given the covariates (as is typi-
cally assumed for noncontagious diseases in unrelated indi-
viduals), the likelihood function is the product of the
individual contributions:

Lðβ; yÞ ¼
Yn
i¼1

Lðβ; yiÞ ¼
Yn
i¼1

f ðyijxi; βÞ;

where the boldface y represents all of the observed outcomes
(y1, y2, . . . , yn). We label L(β; y) a “likelihood function”
rather than a probability model because it is not giving us
probabilities for β. Confusingly, the value of L(β; y) at a par-
ticular value β is sometimes called “the likelihood of β given
the data,” even though it is not a probability for β.
If the model is correct and some technical conditions are

satisfied (see Appendix 1), then the ML estimators are as-
ymptotically unbiased and jointly normal, meaning that as
the sample size n increases the distribution of β̂ can be ap-
proximated by a multivariate normal distribution with mean

equal to the true value of β. Epidemiologists may be more
familiar with exact unbiasedness. The expected value
(mean) of an exactly unbiased estimator equals the true para-
meter value regardless of n, but ML estimators of ratios of
outcomes (such as the risk ratio and odds ratio) are only as-
ymptotically unbiased.
Recall that 2-sided Wald confidence limits for a coefficient

β̂j are obtained by subtracting and adding a multiple (1.96 for
95% confidence) of its standard error ŝj. The ML estimator is
as precise as any other asymptotically unbiased estimator that
can be both constructed from the likelihood alone and used to
center approximately valid Wald confidence intervals. Ap-
pendix 1 describes how standard errors for ML estimates
can be derived by taking the second derivatives of the likeli-
hood function to obtain what is known as the “information”
matrix.
For those more familiar with least-squares regression, ML

may seem very different. Nonetheless, in the case of normal
linear regression, the least-squares estimate is identical to the
ML estimate. In generalized linear modeling, ML regression
can be viewed as an iterative refinement of weighted least
squares in which the inverse-variance weights are updated
and the model is refitted at each iteration using the parameter
estimates from the previous iteration (5). These facts show
that ML attempts to find the parameter values that bring the
fitted model closest to the data points, in the same sense as
does least squares (6).

PROFILE LIKELIHOOD

One useful approach to maximization is to set β1 to a given
value and then find the value of β0 that maximizes the log-
likelihood g(β) given that value of β1. We can repeat this
computation across a range for β1, ðβmin

1 ; βmax
1 Þ, broad enough

to include the maximum and in sufficiently small steps to
have the desired resolution for β1. For each value of β1 in
that grid, we obtain the maximum of g(β) when β1 is set to
that step value. The resulting function g(β1) shows the max-
imum possible log-likelihood for each β1 and is called a pro-
file log-likelihood function for β1; its antilog is the profile
likelihood for β1 and has its maximum at the ML estimate β̂1.
Profile likelihood is often used when accurate interval es-

timates are difficult to obtain using standard methods—for
example, when the log-likelihood function is highly nonnor-
mal in shape or when there is a large number of nuisance pa-
rameters (7). Usually there will be 2 values for β1, β

lower
1 and

βupper1 , where the profile likelihood is e−3.84/2 = 14.7% that of
theML estimate, where 3.84 is the 95th percentile of a 1-degree-
of-freedom χ2 variate. βlower1 and βupper1 are then approximate
95% confidence limits for β1 and are called profile likelihood
or likelihood ratio (LR) limits.When fitting a simple model to
a large data set, Wald limits and LR limits will typically be
similar. In more complex settings or with small sample sizes,
LR can provide more accurate coverage because it does not
depend on normality of the ML estimate β̂1 (8, p. 9). LR lim-
its tend to be asymmetric in such settings. LR limits can be
obtained through the SAS procedure GENMOD (SAS Insti-
tute Inc., Cary, North Carolina) by using the “LRCI” option
in the model statement and in Stata using the “pllf” command
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(StataCorp LP, College Station, Texas) (9). Appendix 2 gives
a method for plotting profile log-likelihoods.

Fitting the logistic model by ML to Table 1, we get
β̂1 ¼ 2:043 and ŝ ¼ 0:915, which yields an odds ratio of
7.71. The Wald 95% confidence interval for the odds ratio
is exp(2.043 ± 1.96 × 0.915) = (1.28, 46.3). The 95% LR
confidence interval is 1.47, 61.1, as can be read off the profile
log-likelihood plot in Figure 1 (or found numerically with the
data used to generate the plot). The lower horizontal reference
line is drawn at 3.84/2 = 1.92 units below the maximum log-
likelihood. The ratio of upper to lower limits is 61.1/1.47 =
41.6 for the LR limits, 15% larger than the ratio 46.3/1.28 =
36.2 for theWald limits, although in other examples the LR lim-
its can be narrower.

Although the LRmethod is preferable to theWald method,
there is a third method for computing confidence limits and P
values from the likelihood function, based on the score func-
tion g′(β) and the expected information (defined in Appendix
1). This score method often has better small-sample proper-
ties than the Wald or LR method (10–12) and is described in
Appendix 3, along with general LR methods.

PENALIZED LIKELIHOOD

Penalization is a method for circumventing problems in the
stability of parameter estimates that arise when the likelihood
is relativelyflat,making determination of theML estimate dif-
ficult bymeans of standard or profile approaches. Penalization
is also known as shrinkage, semi-Bayes, or partial-Bayes es-
timation, although it does not require a Bayesian justification;
instead, it can be viewed as a method for introducing some
tolerable degree of bias in exchange for reduction in the varia-
bility of parameter estimates (13) (seeModern Epidemiology

(1), chapter 21). Penalization can be applied to any estimation
method, although here we focus on penalized likelihood and
its extensions.

A penalized log-likelihood is just the log-likelihood with
a penalty subtracted from it that will pull or shrink the final
estimates away from the ML estimates, toward values m =
(m1, . . . , mJ) that have some grounding in information out-
side of the likelihood as good guesses for the βj in β. Themost
common penalty is the sum of squared differences between
the individual components of β and the individual compo-

nents of m,
PJ
j¼1

ðβj � mjÞ2, known as a quadratic penalty

and denoted here by (β−m)2. The penalized log-likelihood
is then ln{L(β; y)}− r(β−m)2/2, where r/2 is the weight at-
tached to the penalty relative to the original log-likelihood.
We maximize this penalized log-likelihood to obtain the pe-
nalized ML estimate. From this formulation we can see that
the penalty gets bigger rapidly as β gets further away fromm,
and that the effect of the penalty on the final estimate (i.e., the
difference between the ordinary ML estimate and the penal-
ized ML estimate) is directly proportional to r (14).

In frequentist theory, a penalty function is a stabilization
(smoothing) device to improve the repeated-sampling (fre-
quency) performance of an estimator (14). The choice of
penalty may be guided by background information—for ex-
ample, that large values for the parameter are implausible.
To understand the relationship of penalized likelihood to
Bayesian theory, recall that a prior distribution for a given pa-
rameter is a probability distribution that describes our infor-
mation about the parameter, outside of any information
conveyed by the data under analysis (15); the term “prior” re-
fers to this distribution or its density function. Priors with
large variances represent limited or weak background infor-
mation, while priors with small variances represent extensive
background information. If we want our penalized estimates
to accurately incorporate the background information in our
prior, we take −2 times the log of the prior density as the pen-
alty function. This practice is the source of the divisor of 2 in
the above penalized-likelihood formula, and it makes r amea-
sure of the prior information. Specifically, r is the precision
(the inverse of the variance) of the parameters in β in the orig-
inal prior distribution for those parameters. This interpretation
assumes that the parameters in β have independent prior in-
formation with the same precision; this assumption can be re-
laxed using more general formulations as given below.

That both frequency and Bayesian theories can make use
of priors shows that they can be viewed as complementary,
not conflicting (13, 16). From a Bayesian perspective, qua-
dratic log-likelihood penalization corresponds to having in-
dependent normal priors on the coefficients with prior means
mj and prior variance 1/r; thus, cautious priors have small
precision (large variance). From the frequentist perspective,
if the mj are well chosen, the same quadratic penalization is
a method for reducing mean squared error (MSE), which is
the average squared distance between the estimate and the
correct value of β, or MSE = bias2 + s2, where s is the stan-
dard deviation of the estimate.

Penalization will reduce MSE whenever it reduces s more
than it increases bias. In addition, penalization will reduce

Figure 1. Profile log-likelihood for the log odds ratio, β1.
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MSE whenever it reduces bias. In particular, penalization
can reduce bias when the ML estimator is only asymptoti-
cally unbiased (as in logistic regression) and therefore subject
to finite-sample bias (defined in the next section) (17, 18).
The best value of r for penalization is unknown because it de-
pends on how far the chosen value m is from the unknown
correct value of β. However, it will be between the extremes
of using β̂ as our estimate (corresponding to r = 0 and thus
ignoring the penalty function) and using m as our estimate
(corresponding to an r value so large that the likelihood func-
tion and data are essentially ignored); hence, r is often called
the “tuning” parameter, reflecting that the lowest MSE will
ensue when r is carefully tuned between 0 and ∞. If there
are many parameters and the data set is very large relative
to the number of parameters, the best value of r or the vari-
ance 1/r can be estimated using cross-validation or empirical
Bayes methods (14, 19); otherwise, as in our example, one
may do better by examining results for values consonant
with background information (20).
Suppose we think that β = (β0, β1) is not far fromm = (logit

(0.1), ln (2)), where logit(p) = ln{p/(1 − p)}. This informa-
tion may come from the existing literature or consensus of
colleagues. In our example, this penalty implies that we ex-
pect 10% of the infants with high levels of antibiotics to incur
diarrhea and that having low levels of antibiotics doubles the
odds of diarrhea. We must specify how much weight r to
place on the penalty relative to the likelihood. Penalization
will reduce the standard errors but will also add bias to the
extent that m is incorrect, in proportion to r. If the penalty
weight is large relative to the log-likelihood weight (r
much larger than 1), we may incur unacceptable bias. None-
theless, if we are cautious in our choice of prior location m
and precision r, we expect penalization to reduce MSE.
There are many variations possible for penalty functions,

including using a separate weight r = rj for each coefficient
β = βj, which amounts to specifying a separate prior variance
1/rj for each βj (21). More generally, r can be replaced by a

weight matrix R, which can be interpreted as a prior informa-
tion matrix (inverse covariance) for β and which allows prior
correlations among the βj’s (22); the penalized log-likelihood
is then ln{L(β; y)}− (β−m)′ R(β−m)/2. Table 2 provides
results from penalized estimation of the log odds ratio β1 for
Table 1, usingm1 = 0 and r1 ¼ ð0; 1

8 ;
1
4 ;

1
2 ; 1; 2; 4; 8; ∞Þ;

and gives the 95% prior intervals corresponding to each r1.
The 95% prior interval is an interval in which 95% of the
prior probability distribution resides; in the present setting,
this prior distribution is normal and centered at m1. We place
no penalty on the intercept (r0 = 0), although one could easily
do so. The resulting estimates of β1 can be viewed as the re-
sult of shrinking the ML estimate β̂1 toward the prior mean
log odds ratio m1, or information-weighted averaging of
β̂1 and m1.
We used rescaled data augmentation (for details, see

Greenland (2, 3) and Sullivan and Greenland (21)) as well
as the SAS procedure NLMIXED (see Appendix 4) to obtain
penalized estimates; as expected, these estimates were very
close numerically. Various Bayesian and mixed-modeling
software packages can be used instead, including the SAS
procedure GLIMMIX (23). One may also use a profile penal-
ized likelihood approach to obtain confidence intervals that
have coverage closer to their stated 95% probability than
the Wald intervals (21, 22).
Another popular penalty is the sum of absolute deviationsPJ
j¼1 jβj � mjj ¼ jβ�mj, which corresponds to usingdouble-

exponential prior distributions (which, unlike the normal dis-
tribution, has heavy tails spread around a sharp peak at m)
and leads to least absolute shrinkage and selection operator
(LASSO) regression based on the penalized log-likelihood
ln{L(β; y)} − r|β −m| (14). Unlike quadratic penalties,
LASSO can shrink the βj estimate all the way to mj, thus de-
leting βj from the model if mj = 0 (this can happen because,
unlike a quadratic penalty, the LASSO penalty can overwhelm
the likelihood for ML estimates near mj). Such methods have
proven superior to ordinary ML logistic regression for

Table 2. Penalized Maximum Likelihood Estimates of the Odds Ratioa for the Example Cohort Data on Diarrhea

During a 10-Day Follow-up of Breastfed Infants Colonized With Vibrio cholerae, Bangladesh, 1980–1981

r1 (Precision)
95% Prior Interval
for Odds Ratio

Penalized Likelihood

Data
Augmentation

95% CI NLMIXED 95% CI

0b 0, ∞ 7.71 1.28, 46.4 7.71 1.28, 46.4

1/8 0.004, 256 6.40 1.22, 33.6 6.39 1.22, 33.5

1/4 0.020, 50.4 5.51 1.16, 26.2 5.51 1.16, 26.1

1/2 0.063, 16.0 4.39 1.07, 18.1 4.39 1.07, 18.1

1 0.141, 7.10 3.26 0.95, 11.2 3.25 0.95, 11.2

2 0.250, 4.00 2.34 0.83, 6.56 2.34 0.83, 6.56

4 0.375, 2.66 1.73 0.76, 3.94 1.73 0.76, 3.94

8 0.500, 2.00 1.38 0.74, 2.59 1.38 0.74, 2.59

r1 → ∞c 1, 1 1.00 1.00, 1.00 1.00 1.00, 1.00

Abbreviation: CI, confidence interval.
a Zero prior mean m1 for the log odds ratio.
b Equal to unpenalized maximum likelihood estimate.
c Ignores data, gives back prior m1.
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association screening and data mining (14), for clinical pre-
diction (24), and for fitting models with inverse-probability
weights, especially when there are many covariates (25–28).

SPARSE-DATA BIAS, THE CURSE OF DIMENSIONALITY,

AND SEMIPARAMETRIC MODELS

When the sample size is small or the data are sparse, ML
may produce estimates that are skewed away from the true pa-
rameter values even if no other bias is present (29). This
problem is called small- (or finite-) sample bias or sparse-
data bias, depending on the situation, and there are real exam-
ples in which it is severe (30). Epidemiologists are aware of
problems due to sparse-data bias in very small studies, but
sparse-data bias appears to be less widely recognized when
it occurs in larger studies. A common misconception is that
this bias is addressed by matching and conditional logistic re-
gression, but sparse-data bias can be severe with those meth-
ods even when there is a large number of matched sets with
few model covariates (29).

The problems of correct model specification and sparse-
data bias are intertwined. As we attempt to fit a more flexible
and elaborate model to better adjust for large-sample biases
(e.g., confounding), we invariably add more parameters
and thus make the data sparse relative to the model. For ex-
ample, large samples can become sparse if one uses ordinary
ML to simultaneously adjust (or stratify) for many variables
in an attempt to control confounding. As another example,
large samples quickly become sparse in genome-wide asso-
ciation studies with hundreds of thousands of exposure vari-
ables (i.e., single-nucleotide polymorphisms). This problem,
in which the number of model parameters grows too fast rel-
ative to the sample size, has been labeled the “curse of dimen-
sionality” (31). Methods such as ordinary ML are ill-suited for
high-dimensional problems because, to achieve approximate
normality, they require large numbers at all exposure-outcome
combinations relative to the number of model parameters.

If the number of model parameters is smaller than the sam-
ple size, there are various fixes for sparse-data bias, including
Firth’s correction (17), which is available in the SAS proce-
dure LOGISTIC, as well as penalties based on the number of
parameters (32, 33) and Bayesian methods using weak priors
(18, 21, 29, 30). Another approach is to reduce the number of
estimated parameters by using semiparametric models. These
models are typically fitted through generalizations of ML.
Best known is partial likelihood (34), which we now briefly
introduce. Partial likelihood applies when the full likelihood
depends on 2 distinct parameter vectors β and λ and only β is
of interest; λ is then called the nuisance parameter. If the full
likelihood can be expressed as a product of 2 functions, the
first involving only β, and this function satisfies standard
technical conditions, then statistical inferences about β can
be obtained by treating the first function alone as if it were
a full likelihood. Partial likelihood is called semiparametric
rather than fully parametric because λ is not estimated and in-
deed may be arbitrarily complex, even infinite-dimensional.
Estimators obtained by maximizing the partial likelihood re-
tain the desirable asymptotic properties of ML estimators
from the full likelihood, except possibly efficiency (34).

The classic example of partial likelihood arises in Cox
proportional hazards modeling (35), where λ is an infinite-
dimensional parameter representing the baseline hazard func-
tion. The advantages of focusing on β alone include not only
dimension reduction but also potential computational ease;
the disadvantage is that if β also appears in the second func-
tion along with λ, information on β in that function is not
used and the resulting inferences will not be fully efficient.

Estimating-equation methods (36) (which include ML as a
special case, as well as least-squares, quasi-likelihood (5, 37),
M-estimation (38), inverse-probability-weighted estimators
(39), and targeted ML (40)) offer even more general ap-
proaches to semiparametric model-fitting. Such methods do
not require specifying the entire probability distribution for
the data, and they are overtaking ML as the standard fitting
method in some settings. In particular, modern methods for
fitting longitudinal treatment-effect models such as g-esti-
mation and inverse-probability-of-treatment weighting (41)
are based on estimating-equation theory.

Semiparametric estimates may still suffer from sparse-data
bias or excessive variance (inefficiency) wherever they de-
pend on normal approximations similar to those used for
ML; in addition, they discard potentially relevant information
that might be captured by using flexible parametric models
(29, 42). To handle these difficulties, extensions of profile,
score, and penalized methods to semiparametric modeling
are available; for example, penalization may be used for the
weight-estimation process in marginal structural modeling
(25–28).

DISCUSSION

Perhaps the foremost reasonML is widely used in epidemi-
ology is that it is the default method in commercial software
for logistic, log-linear, and survival regression models. This
software ubiquity may in turn be traced to the desirable com-
putational and statistical properties of ML under the models
ordinarily used in epidemiology. These properties include
statistical consistency, asymptotic unbiasedness, asymptotic
normality, and minimum variance among estimators with
these large-sample properties. We note that even when the
model is incorrect, a model parameter is still often interpret-
able as an approximate summary population parameter such
as the logarithm of a population-averaged (marginal) or total-
population standardized rate ratio (2–4).

If we let go of asymptotic unbiasedness, there are many es-
timationmethods that are more accurate thanML, in the sense
of retaining statistical consistency while having smaller
MSE. This happens because the bias of competing estimators
diminishes with sample size and is outweighed by reduction
in standard error. In frequentist statistics, the bias introduced
by penalization can be viewed as an adjustment for antic-
ipated random error in the estimate; in multiparameter
settings, the resulting accuracy improvement is called “Stein’s
paradox” (the paradox being that introducing bias improves
accuracy) or the shrinkage effect (43).

The theoretical properties of any method do not ensure that
the method performs well in analysis of epidemiologic stud-
ies. First, derivations of those properties assume that all or
most aspects of the probability model are correct, yet such
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perfect specification is essentially impossible when address-
ing real epidemiologic problems. A common response is that
when a model is flexible enough to faithfully approximate the
process under investigation and the sample size (given mea-
sured covariates) is adequate, the above properties should
hold approximately. Nonetheless, in realistic-sized epidemio-
logic studies, being “flexible enough” can lead to sparse-data
problems, which will call for penalization, semiparametric
modeling, or some combination of methods beyondML. Fur-
ther flexibility to allow for uncontrolled bias can lead to an
inability to estimate target parameters, which will necessitate
the use of penalization or analogous Bayesian methods to ob-
tain reasonable estimates (44).

ACKNOWLEDGMENTS

Author affiliations: Department of Epidemiology, Gillings
School of Global Public Health, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina (Stephen R.
Cole); Department of Biostatistics, School of Public Health,
University of Minnesota, Minneapolis, Minnesota (Haitao
Chu);DepartmentofEpidemiology,FieldingSchoolofPublic
Health, University of California, Los Angeles, Los Angeles,
California (Sander Greenland); and Department of Statistics,
College of Letters and Science, University of California, Los
Angeles, Los Angeles, California (Sander Greenland).
Dr. Stephen Cole was supported in part by National Insti-

tutes of Health grant R01AI100654, and Dr. Haitao Chu was
supported in part by National Institutes of Health grant
R21AI103012.
Conflict of interest: none declared.

REFERENCES

1. Rothman KJ, Greenland S, Lash T. Modern Epidemiology. 3rd
ed. New York, NY: Lippincott-Raven Publishers; 2008.

2. Greenland S. Bayesian perspectives for epidemiological
research: I. Foundations and basic methods. Int J Epidemiol.
2006;35(3):765–775.

3. Greenland S. Bayesian perspectives for epidemiological
research. II. Regression analysis. Int J Epidemiol. 2007;36(1):
195–202.

4. Lehmann EL. Theory of Point Estimation. NewYork, NY: John
Wiley & Sons, Inc; 1983.

5. McCullagh P, Nelder JA. Generalized Linear Models. London,
United Kingdom: Chapman & Hall Ltd; 1989.

6. White H. Estimation, Inference and Specification Analysis.
New York,NY: Cambridge University Press; 1994.

7. Greenland S. Likelihood-ratio testing as a diagnostic method for
small-sample regressions. Ann Epidemiol. 1992;2(3):311–316.

8. Agresti A. Categorical Data Analysis. 2nd ed. New York, NY:
John Wiley & Sons, Inc; 2002.

9. Royston P. Profile likelihood for estimation and confidence
intervals. Stata J. 2007;7(3):376–387.

10. Agresti A. Score and pseudo-score confidence intervals for
categorical data analysis. Stat Biopharm Res. 2011;3:163–172.

11. Vollset SE, Hirji KF, Afifi AA. Evaluation of exact and
asymptotic interval estimators in logistic analysis of matched
case-control studies. Biometrics. 1991;47(4):1311–1325.

12. Agresti A. On logit confidence intervals for the odds ratio with
small samples. Biometrics. 1999;55(2):597–602.

13. Greenland S. Principles of multilevel modelling. Int J
Epidemiol. 2000;29(1):158–167.

14. Hastie T, Tibsharani R, Friedman J. The Elements of Statistical
Learning: Data Mining, Inference and Prediction. New York,
NY: Springer Publishing Company; 2009.

15. Greenland S. Probability logic and probabilistic induction (with
comment by Maclure). Epidemiology. 1998;9(3):322–332.

16. Gelman A, Carlin JB, Stern HS, et al. Bayesian Data Analysis.
2nd ed. Boca Raton, FL: CRC Press; 2003.

17. Firth D. Bias reduction of maximum likelihood estimates.
Biometrika. 1993;80(1):27–38.

18. Greenland S. Small-sample bias and corrections for conditional
maximum-likelihood odds-ratio estimators. Biostatistics.
2000;1(1):113–122.

19. Efron B. Large-scale Inference: Empirical Bayes Methods for
Estimation, Testing and Prediction. NewYork, NY: Cambridge
University Press; 2010.

20. Greenland S. Methods for epidemiologic analyses of multiple
exposures: a review and comparative study of maximum-
likelihood, preliminary-testing, and empirical-Bayes
regression. Stat Med. 1993;12(8):717–736.

21. Sullivan SG, Greenland S. Bayesian regression in SAS
software. Int J Epidemiol. 2013;42(1):308–317.

22. Greenland S. Generalized conjugate priors for Bayesian
analysis of risk and survival regressions. Biometrics. 2003;
59(1):92–99.

23. Witte JS, Greenland S, Kim LL, et al. Multilevel modeling in
epidemiology with GLIMMIX. Epidemiology. 2000;11(6):
684–688.

24. Steyerberg EW. Clinical Prediction Models: A Practical
Approach to Development, Validation, and Updating.
New York, NY: Springer Publishing Company; 2008.

25. McCaffrey DF, Ridgeway G, Morral AR. Propensity score
estimation with boosted regression for evaluating causal effects
in observational studies. Psychol Methods. 2004;9(4):403–425.

26. Schneeweiss S, Rassen JA, Glynn RJ, et al. High-dimensional
propensity score adjustment in studies of treatment effects using
health care claims data. Epidemiology. 2009;20(4):512–522.

27. Westreich D, Lessler J, Funk MJ. Propensity score estimation:
neural networks, support vector machines, decision trees
(CART), and meta-classifiers as alternatives to logistic
regression. J Clin Epidemiol. 2010;63(8):826–833.

28. Lee BK, Lessler J, Stuart EA. Weight trimming and propensity
score weighting. PLoS One. 2011;6(3):e18174.

29. Greenland S, Schwartzbaum JA, Finkle WD. Problems due to
small samples and sparse data in conditional logistic regression
analysis. Am J Epidemiol. 2000;151(5):531–539.

30. Hamra GB, MacLehose RF, Cole SR. Sensitivity analyses for
sparse-data problems using weakly informative Bayesian
priors. Epidemiology. 2013;24(2):233–239.

31. Robins JM, Ritov Y. Toward a curse of dimensionality
appropriate (CODA) asymptotic theory for semi-parametric
models. Stat Med. 1997;16(1–3):285–319.

32. Burnham KP, Anderson DR.Model Selection and Multi-model
Inference: A Practical Information-theoretic Approach. 2nd ed.
New York, NY: Springer-Verlag New York; 2002.

33. Claeskens G, Hjort NL. Model Selection and Model
Averaging. New York, NY: Cambridge University Press;
2008.

34. Cox DR. Partial likelihood. Biometrika. 1975;62(2):269–276.
35. Cox DR. Regression models and life tables [with discussion].

J R Stat Soc (B). 1972;34(2):187–220.
36. Godambe VD. Estimating Functions. New York, NY:

Clarendon Press; 1991.

258 Cole et al.

Am J Epidemiol. 2014;179(2):252–260



37. Wedderburn RWM. Quasi-likelihood functions, generalized
linear models, and the Gauss-Newton method. Biometrika.
1974;61(3):439–447.

38. Stefanski LA, Boos DD. The calculus of M-estimation. Am
Stat. 2002;56(1):29–38.

39. Tsiatis AA. Semiparametric Theory and Missing Data.
New York, NY: Springer Publishing Company; 2006.

40. Van der Laan M, Rose S. Targeted Learning: Causal Inference
from Observational and Experimental Data. New York, NY:
Springer Publishing Company; 2011.

41. Robins JM, Hernán MA. Estimation of the causal effects of
time-varying exposures. In: Fitzmaurice G, Davidian M,
Verbeke G, et al, eds. Longitudinal Data Analysis. New York,
NY: Chapman & Hall, Inc; 2008:553–597.

42. Whittemore AS, Keller JB. Survival estimation using splines.
Biometrics. 1986;42(3):495–506.

43. Efron B, Morris C. Stein’s paradox in statistics. Sci Am.
1977;236(5):119–127.

44. Greenland S. Relaxation penalties and priors for plausible
modeling of nonidentified bias sources. Stat Sci. 2009;24(2):
195–210.

45. Casella G, Berger RL. Statistical Inference. 2nd ed. Pacific
Grove, CA: Duxbury Press; 2002.

46. Efron B, Hinkley DV. Assessing the accuracy of the maximum
likelihood estimator: observed versus expected Fisher
information. Biometrika. 1978;65(3):457–487.

47. Maldonado G, Greenland S. A comparison of the performance
of model-based confidence intervals when the correct model
form is unknown: coverage of asymptotic means.
Epidemiology. 1994;5(2):171–182.

APPENDIX 1

Wald Interval Estimation in Maximum Likelihood

For Wald intervals to be valid, the point estimator should
be locally uniformly asymptotically unbiased normal, mean-
ing that as the sample size grows, its distribution converges to
a normal distribution with mean equal to the true value, with
a discrepancy from normality that is proportional to n−1/2

(where n is the sample size) and bounded within a neighbor-
hood of the true value. Generally, a maximum likelihood es-
timator will satisfy this condition if the model f(yi|xi; β)
satisfies certain technical or “regularity” conditions, which
among other things ensure that (in probability) the likeli-
hood, score, and information functions are finite smooth
functions of the parameters and are not dominated by any sin-
gle observation as the sample size grows (45, p. 516).

We also need variance estimates to obtain standard errors
for interval estimation. The variances in the approximate
sampling distribution for β̂ are inversely proportional to the
sample size, which together with asymptotic unbiasedness
implies that maximum likelihood estimators are also statisti-
cally consistent if the model is correct, meaning that the prob-
ability of β̂ falling within any given distance of the true value
increases as n increases (called convergence in probability to
the true value). The negative of the matrix of second deriva-
tives of the log-likelihood g(β), which is denoted −g″(β) or
I(β), is called the observed information at β. If the model is
correct, the inverse of the observed information at β̂, Iðβ̂Þ�1,
is an estimate of the covariance matrix of the approximate

sampling distribution for β̂. The estimated standard error
ŝj for a coefficient βj in β̂ is the square root of the correspond-
ing diagonal of this estimated covariance matrix.

The expected information E{I(β)} is often called the
Fisher information at β; its inverse evaluated at β̂,
EfIðβ̂Þg�1, is also a covariance-matrix estimate for β̂ and is
used in some generalized linear model software. In normal
linear models, binomial logistic models, and Poisson log-
linear models, the observed information and expected infor-
mation are equal. Nonetheless, Iðβ̂Þ�1 may provide better
approximate standard errors (46, 47) and a more intuitive der-
ivation. From calculus, recall that the second derivative
g00ðβ̂Þ ¼ �Iðβ̂Þ measures the curvature of the likelihood
function at β̂, with negative diagonal values representing
downward curvature (indicating that β̂ is a maximum). A
more curved log-likelihood function will be less spread out
and thus will contain more information about the parameters.
Note that changing the sign of g00ðβ̂Þ to obtain our informa-
tion measure Iðβ̂Þmakes larger diagonal values in Iðβ̂Þ repre-
sent more curvature (a sharper likelihood peak), which in turn
represents more information in the likelihood function and
smaller variance estimates for β̂.

APPENDIX 2

Plotting Profile Likelihoods

One can find likelihood ratio limits by constructing multi-
ple copies of the data set in which β1 is set to different values
between βmin

1 and βmax
1 . For each data set, define the variable

β1x and declare this variable an offset (a variable in the model
whose coefficient will not be estimated but instead will be set
to 1); then run the regression analysis on this data set (but not
otherwise including the exposure x). Next, plot the resulting
profile log-likelihoods from each data set as a function of β1,
as shown in Figure 1 for our example. A SAS program to do
this is as follows.

*Cohort data from ME3 Table 14.4;
data a; input x y n; cards;
1 12 14
0 7 16
;

*Profile ML;
data b;

set a;
do b1=0 to 5 by .005;
b1x=b1*x;
output;

end;
proc sort data=b; by b1;
run; ods select none; run; *Turn off output

from multiple logit models;
proc genmod data=b;

by b1;
model y/n=/d=b offset=b1x;
ods output modelfit=c;
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run; ods select all; run; *Turn output back
on;
data d;
set c;
by b1;
logl=value;
format logl stderr 10.4;
if criterion="Log Likelihood" then out-

put;
keep b1 logl;

*Next plot logl by b1;

APPENDIX 3

Likelihood-Ratio and Score Limits and Tests

Suppose now that we want to compare a simpler, more re-
stricted model M0 whose maximum likelihood is L0 with a
more complex reference model M whose maximum likeli-
hood is L. We will consider the setting where the model M0

is a special case of the model M with 1 or more parameters
constrained, and so is “nested” within model M. Most
often, M0 is a version of M with 1 or more coefficients set
to zero (i.e., 1 or more covariates dropped), but many other
restrictions are possible; for example,M0 may assume linear-
ity while M allows more complex dose-response, in which
the model M0 assuming linearity is nested.
We can construct aP value comparingM0 withM using the

likelihood ratio (LR) statistic −2 ln(L0/L) = 2(ln L− ln L0),
which is also called the deviance of M0 from M, denoted
Dev(M0, M). If M0 is correct, then for sufficiently large
samples this statistic is approximately χ2 with degrees of free-
dom (df ) equal to the difference in the number of unknown
parameters inM andM0. In the example, M is the original 2-
parameter logistic model, whileM0 is the 1-parameter model
without X, Pr(Y = 1|X = x) = expit(β0), which is restricted by
β1 = 0. From Figure 1 at β1 ¼ β̂1 and β1 = 0, we see that
ln(L) = −16.7067, ln(L0) = −19.7147, and thus

DevðM0;MÞ ¼ 2f�16:7067� ð�19:7147Þg ¼ 6:016

on 1 df (P = 0.014). In comparison, the Wald statistic for
β1 = 0 is 2.043/0.915 = 2.23 (P = 0.026). The 95% LR limits
(1.47, 61.1) are the 2 values βlower1 and βupper1 for which the LR
tests of the restrictions β1 = βlower1 and β1 ¼ βupper1 give P =
0.05.
To describe score tests, suppose that the likelihood is max-

imized at ~β when we assume the restricted model M0 (e.g.,
when β1 = 0); then the expected information evaluated at ~β,
EfIð~βÞg, is an estimate of the covariance matrix for the
score g0ð~βÞ and can be used to construct an approximate χ2

statistic for comparing M0 with the unrestricted model M,
with df equal to the difference in the number of unknown pa-
rameters in M and M0. Pearson χ2 statistics for 2-way tables,
Mantel-Haenszel test statistics, and log-rank statistics for sur-
vival data are special cases. In our example,M0 is the logistic
model without X (β1 = 0), and for comparing M0 to the unre-
stricted model with X, the score is 3.133 and the expected

information is 1.734; thus, the score statistic for β1 = 0 is
3.1332/1.734 = 5.662 (P = 0.017), similar to the LR P value.
Score 95% confidence limits for β1 are the 2 values β

lower
1 and

βupper1 for which the score tests of the restrictions β1 ¼
βlower1 and β1 ¼ βupper1 give P = 0.05.

APPENDIX 4

SASCode for PenalizedMaximumLikelihood in GENMOD

and NLMIXED

*Cohort data from ME3 Table 14.4;
data a; input x y n; cards;
1 12 14
0 7 16
;

*PML by GENMOD using scaled data augmenta-
tion with r = 2;
data prior;
s=10; int=0; h=0/s; x=1/s;
r=2;
v=1/r;
y=(2/v)*s**2;
n=2*y;
output;

data a2; set a; h=0; int=1;
data a3; set a2 prior;
proc sort data=a3;
proc genmod data=a3;
model y/n=int x/noint offset=h;
ods select modelinfo modelfit parameter-

estimates;
title "Penalized ML by scaled data aug-
mentation, m=0 r=2";

*PML by NLMIXED using the same r;
*NOTE: # records is needed because SAS ap-
plies the penalty to each record;
*WARNING: Disregard generated CI because
it uses a t-multiplier based on an incorrect
df=2(#records),insteadcreateWaldCIusing
the estimated SE and a standard normal mul-
tiplier (1.96 for 95% CI);
%macro pml(m,r,records);
proc nlmixed data=a;

parms b0 0 b1 0;
p=1/(1+exp(-(b0+b1*x)));
logl=(log(p)*y+log(1-p)*(n-y)) - .5*
&r*(b1-&m)**2/&records;
model y∼general(logl);
ods select specifications fitstatistics

parameterestimates;
title "Penalized ML by NLMIXED, m=&m

r=&r";
%mend;
%pml(m=0,r=2,records=2);

run; quit; run;
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