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Workers’ smoking histories are not measured in many occupational cohort studies. Here we discuss the use

of negative control outcomes to detect and adjust for confounding in analyses that lack information on smoking.

We clarify the assumptions necessary to detect confounding by smoking and the additional assumptions necessary

to indirectly adjust for such bias. We illustrate these methods using data from 2 studies of radiation and lung cancer:

the Colorado Plateau cohort study (1950–2005) of underground uraniumminers (in which smoking was measured)

and a French cohort study (1950–2004) of nuclear industry workers (in which smoking was unmeasured). A cause-

specific relative hazards model is proposed for estimation of indirectly adjusted associations. Among the miners,

the proposed method suggests no confounding by smoking of the association between radon and lung cancer—a

conclusion supported by adjustment for measured smoking. Among the nuclear workers, the proposed method

suggests substantial confounding by smoking of the association between radiation and lung cancer. Indirect adjust-

ment for confounding by smoking resulted in an 18% decrease in the adjusted estimated hazard ratio, yet this

cannot be verified because smoking was unmeasured. Assumptions underlying this method are described,

and a cause-specific proportional hazards model that allows easy implementation using standard software is

presented.

cohort studies; lung cancer; smoking

Abbreviations: CI, confidence interval; COPD, chronic obstructive pulmonary disease; RR, relative rate; WLM, working-

level months.

Consider the setting of a retrospective cohort study in
which an investigator is interested in the association between
an occupational exposure and lung cancer and has collected
information on a small set of potential confounders of that as-
sociation. Concern about confounding by smoking is com-
monplace in such studies, because cigarette smoking is an
established cause of lung cancer (1). However, available in-
formation in retrospective occupational studies often is insuf-
ficient to reconstruct individual smoking histories. This poses
a challenge for the interpretation of statistical estimates of the
association between the occupational exposure and lung can-
cer, because there is an unmeasured factor that is a suspected
common cause of exposure and lung cancer. Figure 1 illus-
trates a scenario of concern involving associations between

occupational exposureE, lung cancerD, measured confound-
ers of the association of interest (such as age, sex, and birth
cohort) Z, and smoking status S. The circle around S denotes
that this variable is unmeasured. In Figure 1, S is a cause of E;
alternatively, S and E may be associated as a consequence of
unmeasured common causes of these variables.

Algebraic approaches to adjusting a confounded relative
risk measure by using external information on the joint dis-
tribution of the confounder and exposure, together with ex-
ternal information on the relative risk of disease due to the
confounding factor among unexposed individuals, have been
discussed since the 1950s (2, 3). Taking a similar approach,
Axelson and Steenland (4) proposed an indirect method of
adjusting incidence rate ratios for potential confounding by
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smoking in occupational cohort studies. Extensions of this
method have been discussed, including Monte Carlo and
Bayesian approaches to sensitivity analysis (5–7). However,
in the absence of empirical data on exposure-group-specific
smoking prevalence, assumptions regarding confounding
scenarios are unverifiable.
In this paper, we consider an approach to this problem that

draws on a negative control outcome: a response variable that
is known not to be caused by the exposure. The purpose of
the negative control is to reproduce a condition that cannot
involve the hypothesized causal effect of the exposure of in-
terest but is likely to involve the same sources of bias that are
present in the analysis of the exposure-disease association of
primary interest (8). Drawing upon previous work on negative
control outcomes and extendingpreviouswork byRichardson
(9) on indirect adjustment for confounding by smoking in
cohort studies, we discuss some assumptions that are neces-
sary to use negative control outcomes to detect confounding
by cigarette smoking, and the additional assumptions neces-
sary to adjust for such bias (5, 8, 9). First we describe how to
detect confounding of an occupational cohort–lung cancer
association by smoking using negative control outcomes.
Second, we describe how to adjust for confounding by smok-
ing of an occupational cohort–lung cancer association using
negative controls. Third, we describe how, in some settings,
confounding may be controlled by adjusting for a measured
common cause of occupational exposure and smoking; and

we suggest how the adequacy of this approach may be
assessed using negative control outcomes. Each section is
followed by an illustration of the approach using empirical
data.

METHODS

Detecting confounding by a negative control outcome

We can use a negative control outcome to assess whether
there is confounding of the exposure–lung cancer association
by smoking. Figure 2 presents a causal diagram that includes
a negative control outcome, N. We assume that the exposure
of interest is not a cause of the negative control outcome. This
is represented by the absence of an arrow between E and N in
Figure 2. Furthermore, we assume that the unmeasured po-
tential confounder(s) of the association between E and N
also confound the association between E and D, but perhaps
to a differing extent. In Figure 2 this is represented by S,
which represents smoking, an unmeasured common cause
of D and N that may be associated with E. If these 2 assump-
tions hold, an observed E-N association (adjusting for Z) does
not reflect a causal effect of E on N but rather reflects con-
founding by S; in such cases, S also will confound analysis
of the E-D association.
We allow that there may be other unmeasured confounders

of the E-D association that do not confound the E-N associ-
ation (represented byU in Figure 3), but not unmeasured con-
founders of E-N. We are not focused on evaluating the
complete absence of confounding of the E-D association;
rather, we are focused on use of a negative control outcome
to assess confounding of the E-D association by unmeasured
factor S. Note that measured covariates Z allow us to adjust
for other confounders of the E-N association and the E-D as-
sociation. It is not important that all elements of Z confound
E-N or that all elements of Z confound E-D.

Z D

E

S N

Figure 2. Diagram for an ideal negative control outcome for detect-
ing confounding. Exposure, E, does not cause negative control out-
come N. Factors Z (assumed measured) are common causes of E,
D, and/or N. S (assumed unmeasured) is a cause of D and N. There
is concern that S may be a cause of E and therefore an unmeasured
confounder of the E-D association.

Z D

E

S

Figure 1. Diagram for the effect of an exposure of interest (E ) on an
outcome of interest (D), with factors Z (assumed measured) and S
(assumed unmeasured) that are potential common causes ofE andD.

Z D

E

U

S N

Figure 3. Alternative diagram for a negative control outcome for de-
tecting confounding. Exposure, E, does not cause negative control
outcome N. Factors Z (assumed measured) are common causes of
E, D, and/or N. S (assumed uncontrolled) is a common cause of D
and N, while U (assumed uncontrolled) represents a common cause
of E and D.
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An estimate of the statistical association between E and N, conditional on Z, may be obtained by fitting a regression model of
the form

hNðZ jEÞ ¼ hN0ðZÞ expð~θ1EÞ; ð1Þ

where hN0 is the estimated baseline hazard for the negative control outcome. The condition ~θ1 ¼ 0 indicates absence of associ-
ation between E and N, which implies absence of a confounding pathway operating through unmeasured factors S. This suggests
that the E-D association also is free of confounding via the backdoor pathway E← S→D. Rejection of a statistical test of the null
hypothesis of ~θ1 ¼ 0 indicates potential confounding of the E-D association by S.

Suppose that we don’t have information on N in the entire study base but only have it for persons who do not experienceD. This
may occur, for example, in a cohort mortality study in which N and D are competing causes of death. An assessment of the asso-
ciation between E and N conditional on D = 0 may suffer from an induced association as a result of conditioning on D, if D is an
effect of E and S (Figure 2). Therefore, while absence of association between E and N suggests absence of a confounding pathway
operating through unmeasured factors S, an empirical estimate of this association could be distorted by what is termed “collider
stratification bias” (10). However, the degree of bias in an estimate of the E-N association will typically be small when conditioning
on the absence of a rare outcome like lung cancer (11).

Adjusting for confounding by an unmeasured factor

If there is evidence of confounding based on the assessment described above, an investigator will often want to understand the
magnitude of this potential source of bias and perhaps want to adjust for it.

Suppose that for each lung cancer case, a risk set is enumerated from people who are at risk at the attained age of the case. Let
hD(·) denote the lung cancer-specific hazard, let Z index risk sets defined by attained age and any other matching factors, let E
denote a binary exposure of interest, and define indicator (1 = yes, 0 = no) variables as S1 = current smoker and S2 = former
smoker. Assume that the lung cancer hazard conforms to a model of the form

hDðZ jE; S1; S2Þ ¼ hD0ðZÞ expðβ1E þ β2S1 þ β3S2Þ; ð2Þ

where hD0(Z) is the baseline cause-specific hazard for lung cancer, the set of matching factors Z have been chosen because they
are confounders of the association between E and lung cancer, and the effects of S1, S2, and E conform to a multiplicative model.
The quantity exp(β1) corresponds to the desired effect measure describing the relative change in the cause-specific hazard of lung
cancer with respect to E, conditional on Z, S1, and S2.

We allow that S1 and S2 may confound the association between exposure, E, and lung cancer. Let expð~β1Þ denote an estimate of
the hazard ratio for the association between exposure and lung cancer in the study cohort unadjusted for smoking, obtained by
fitting the reduced proportional hazards model,

hDðZ jEÞ ¼ hD0ðZÞ expð~β1EÞ: ð3Þ

The estimated coefficient, ~β1, may differ from β1, the parameter obtained when conditioning on S1 and S2, because of confound-
ing by smoking. The magnitude of confounding is a function of the weighted average of the stratum-specific proportions of cur-
rent and former smokers among the exposed relative to the unexposed. Let ωz denote a weight proportional to the contribution of
subgroup z to the study cohort, and let π1,2,z, π1,3,z, π0,2,z, π0,3,z be the proportion of current and former smokers among the exposed
and unexposed workers in covariate stratum z. The bias due to confounding by smoking is

BIASβ ¼
X

z

ωz
fπ1;2;z expðβ2Þ þ π1;3;z expðβ3Þ þ ð1� π1;2;z � π1;3;zÞg
fπ0;2;z expðβ2Þ þ π0;3;z expðβ3Þ þ ð1� π0;2;z � π0;3;zÞg ;

where β1 ¼ ~β1 � logðBIASβÞ (8).
Assume that the negative control outcome hazard conforms to the proportional hazards model hNðZ jE; S1; S2Þ ¼

hN0ðZÞ expðθ1E þ θ2S1 þ θ3S2Þ. Let expð~θ1Þ be an estimate of the relative hazard for the association between E and N in the
study cohort (unadjusted for smoking) as in equation 1.

The bias due to confounding by smoking is given by

BIASθ ¼
X

z

ωz
fπ1;2;z expðθ2Þ þ π1;3;z expðθ3Þ þ ð1� π1;2;t � π1;3;zÞg
fπ0;2;z expðθ2Þ þ π0;3;z expðθ3Þ þ ð1� π0;2;z � π0;3;zÞg;

where θ1 ¼ ~θ1 � logðBIASθÞ. Because we assume that there is no causal association between E and N (i.e., θ1 = 0), it
follows that logðBIASθÞ ¼ ~θ1. Therefore, an estimate of logðBIASθÞ ¼ ~θ1 may be obtained directly by fitting the regression model
in equation 1.
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The expressions for BIASβ and BIASθ are similar, except
that one is a function of the smoking–negative control asso-
ciation (θ2 and θ3) and the other is a function of the smoking–
lung cancer association (β2 and β3). Consequently, estimates
of log(BIASβ) and log(BIASθ) will take similar values if
θ2 ≅ β2 and θ3 ≅ β3. Illustrative calculations are derived
for a setting in which we take chronic obstructive pulmonary
disease (COPD) as a negative control outcome. Table 1
shows BIASβ and BIASθ for various scenarios in which the
prevalence of smoking among exposed workers was as high
as or higher than the prevalence of smoking among un-
exposed workers. The difference between the true bias cor-
rection factor, log(BIASβ), and log(BIASθ) indicates the
magnitude of bias in the target parameter after this adjustment
for confounding by smoking. A value of 0 indicates perfect
adjustment. In the scenarios considered, log(BIASβ) and

log(BIASθ) take similar values. Table 1 also shows results
of calculations for a setting in which we take cancers of the
mouth, pharynx, larynx, and esophagus as a negative control
outcome. In the scenarios considered, 90% or more of the
bias due to confounding by smokingwould be removed via the
adjustment approach.
Substituting ~θ1 into the expression for correction of the

target parameter in place of log(BIASβ) results in an indirect
approach to estimating the adjusted association between
exposure and lung cancer that may reduce bias due to un-
controlled confounding by smoking, β1 ≅ ~β1 � ~θ1 (8). If E
is a continuous variable, modeled for example as a linear
function, then the same expression holds as long as variation
in average smoking prevalence across levels of E can be ap-
propriately modeled as a linear function of E and Z (9).
Joint estimation of the regression models shown in equa-

tions 1 and 3 provides a framework for obtaining the necessary
regression parameter estimates and their covariance, and
thereby deriving the appropriate standard error for an adjusted
estimate obtained by taking their difference. The Appendix
provides SAS code with which to estimate ~β1 � ~θ1 under a
cause-specific proportional hazards model allowing for time-
varying explanatory variables (12, 13). The approach uses
the PHREG procedure of the SAS statistical package (version
9.2) (SAS Institute, Inc., Cary, North Carolina) (14).
The proposed approach indirectly adjusts for confounding of

the hazard ratio due to unmeasured S, as in Figure 3. However,
in the absence of confounding by S, a regressionmodel estimate
of β1 may still differ from ~β1; the reason is noncollapsibility of
the hazard ratio across strata of a risk factor for lung cancer
(15, 16). The indirect adjustment procedure aims to address
bias due to confounding but does not address changes in pro-
portional hazards parameter estimates due to noncollapsibil-
ity. In settings with rare outcomes, differences in estimates
due to noncollapsibility will be small.

Z D

E

U

J

S N

Figure 4. Alternative diagram for a negative control outcome for de-
tecting confounding. Exposure, E, does not cause negative control
outcome N. Factors Z (assumed measured) are common causes of
E, D, and/or N. S (assumed unmeasured) is a cause of D and N,
while U (assumed unmeasured) represents a common cause of E
and D. The association between E and smoking (S, unmeasured) is
due to a common cause, J.

Table 1. Bias Factors and the Difference Between the Natural

Logarithms of These Values for Various Scenarios Concerning the

Prevalence of Current Smoking (π1,2) and Former Smoking (π1,3)
Among Exposed Workersa

Negative Control
Outcome and π1,2 Value

π1,3 BIASβ BIASθ
Log(BIASβ)−
Log(BIASθ)

COPD

0.35 0.31 1 1 0

0.35 0.41 1.045 1.068 −0.021

0.35 0.51 1.090 1.135 −0.041

0.45 0.31 1.203 1.186 0.015

0.45 0.41 1.248 1.253 −0.004

0.45 0.51 1.293 1.321 −0.021

0.55 0.31 1.407 1.371 0.025

0.55 0.41 1.451 1.439 0.009

0.65 0.31 1.610 1.557 0.033

Cancers of the mouth,
pharynx, larynx,
and esophagus

0.35 0.31 1 1 0

0.35 0.41 1.045 1.053 −0.008

0.35 0.51 1.090 1.106 −0.015

0.45 0.31 1.203 1.159 0.037

0.45 0.41 1.248 1.212 0.029

0.45 0.51 1.293 1.265 0.022

0.55 0.31 1.407 1.318 0.065

0.55 0.41 1.451 1.371 0.057

0.65 0.31 1.610 1.477 0.086

Abbreviation: COPD, chronic obstructive pulmonary disease.
a In all scenarios, the percentages of current and former smokers

among the unexposed were 35% and 31% (i.e., π0,2 = 0.35 and

π0,3 = 0.31), respectively. In all calculations, we assumed that the

relative rates of lung cancer among current and former smokers

were 14.6 and 4.0, respectively. For COPD, we assumed that the

relative rates of COPD among current and former smokers were

14.2 and 5.8, respectively. For cancer, we assumed that the relative

rates of cancers of the mouth, pharynx, larynx, and esophagus

among current and former smokers were 6.7 and 2.9, respectively.
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Blocking the association between smoking and

occupational exposure

Suppose we posit that the only reason smoking is associ-
ated with exposure, E, is because they share a common cause
J, such as job category or socioeconomic status (Figure 4). If
J is measured, then we could fit a regression model that would
block this confounding path. It is reasonable to consider
whether occupational exposure is associated with the nega-
tive control outcome conditional on adjustment for J.

The proposed use of a negative control outcome offers an
approach to evaluating whether confounding of the associa-
tion of interest by smoking may be handled by adjustment for
measured common causes of smoking and exposure, J. The
adequacy of this approach can be assessed using a negative
control outcome by subsequently applying the model shown
in equation 1 to detect confounding or by jointly estimating
the regression models shown in equations 1 and 3 to obtain an
indirectly adjusted estimate.

To illustrate the approach of assessing uncontrolled con-
founding of an occupational exposure–lung cancer associa-
tion by smoking, we used data on a cohort of 3,379 white
male underground uranium miners employed on the Colo-
rado Plateau between January 1, 1950, and December 31,
1960, with follow-up through December 31, 2005 (17). We
used death due to COPD, defined on the basis of underlying
cause of death, as a negative control outcome. Cumulative
radon progeny exposure, a time-varying factor expressed in
working-level months (WLM) and lagged 10 years, was
computed for each worker as the product of the length of em-
ployment at each job in a year and the estimated rate of radon
exposure for that job. Smoking status was determined from a
1985 worker survey and was treated here as a fixed variable at
baseline. To assess evidence of confounding using the pro-
posed approach, we fitted Cox proportional hazards regres-
sion models for the association between cumulative WLM
and COPDwith age as the time scale, matching on 5-year cat-
egories of year of birth. Given the availability of information
on individual smoking history, we evaluated our conclusion
regarding confounding by smoking by comparing estimates
of radon–lung cancer associations obtained with and without
direct adjustment for a 4-level indicator of final smoking
status (never smoker, former smoker, current smoker of <1
pack/day, current smoker of ≥1 pack/day).

To further illustrate the methods described in this paper for
assessing and indirectly adjusting for confounding by smok-
ing, we used data from a cohort of 51,348 white male workers
employed in the French nuclear industry between January 1,
1950, and December 31, 1994 (18) with follow-up through
December 31, 2004. Lung cancer mortality and death due
to COPD were defined on the basis of underlying cause of
death. Cumulative external radiation dose, a time-varying
variable expressed in millisieverts (mSv) and lagged 10
years, was based on personal dosimetry information. To as-
sess evidence of confounding, we fitted Cox proportional
hazards regression models for the association between cu-
mulative radiation dose and COPD with age as the time
scale and risk sets matched on 5-year categories of year of
birth. To illustrate the indirect adjustment approach, we fitted
a standard Cox model for the radiation–lung cancer associa-

tion, and we fitted a cause-specific Cox model for associa-
tions between cumulative radiation dose and lung cancer
and COPD. Finally, we assessed whether, via adjustment for
a 5-level indicator of socioeconomic status, we could block
the association between occupational exposure and cigarette
smoking.

To assess evidence of residual confounding by smoking
after adjustment for socioeconomic status, we fitted a propor-
tional hazards regression model for the association between
cumulative radiation dose and COPD, with adjustment for
age, category of year of birth, and socioeconomic status
(based on job title at the time of hire). We fitted a Cox model
for the association between cumulative radiation dose and
lung cancer with adjustment for socioeconomic status, and
we fitted a cause-specific Coxmodel for associations between
cumulative radiation dose and lung cancer and COPD with
adjustment for socioeconomic status.

RESULTS

Using the Colorado Plateau data (17), we assessed evidence
of confounding by cigarette smoking. The cohort included 616
deaths due to lung cancer and 183 deaths due to COPD. Anal-
ysis of the association between cumulative WLM and COPD
yielded an estimate of ~θ1 ¼ 0:0007 (standard error, 0.0061;
relative rate (RR) = 1.00, 95% confidence interval (CI): 0.99,
1.01), suggesting little or no confounding of the cumulative
WLM–lung cancer association by smoking, as evidenced by
the negative control outcome. Because smoking history was
measured in the study cohort, we could evaluate this conclu-
sion by comparing the estimate of the association between
cumulative WLM and lung cancer unadjusted for smoking
(at 100 WLM, RR = 1.018, 95% CI: 1.015, 1.021) with the
estimate adjusted for smoking status (at 100 WLM, RR =
1.018, 95% CI: 1.014, 1.021). The similarity of the results
obtained with and without direct adjustment for smoking is
consistent with the conclusion derived from the negative con-
trol analysis that smoking was not a confounder of the asso-
ciation between radon and lung cancer in this cohort.

Using the French nuclear worker study (18), we assessed
and indirectly adjusted for confounding by smoking. The co-
hort included 585 deaths due to lung cancer and 69 deaths
due to COPD. Analysis of the association between cumula-
tive radiation dose and COPD yielded an estimate of ~θ1 ¼
0:177 (standard error, 0.255; RR = 1.19, 95% CI: 0.73,
1.97), suggesting confounding, as evidenced by the nega-
tive control outcome. Next we fitted a model for the asso-
ciation between radiation and lung cancer (unadjusted for
smoking): The relative rate for a 100-mSv increment in ex-
posure (RR(100 mSv)) was 1.214 (95% CI: 1.018, 1.448). A
joint model for the association between radiation and lung can-
cer and COPD was fitted, yielding an indirectly adjusted es-
timate of association between cumulative radiation dose and
lung cancer of RR(100 mSv) = 1.017 (95%CI: 0.599, 1.728),
which is substantially smaller than the estimate obtained from
the Cox model with no adjustment for confounding by un-
measured smoking. The large change in the estimate reflects
either the failure of an assumption or evidence of a positive
bias due to confounding of the radiation–lung cancer associ-
ation by unmeasured cigarette smoking.

Indirect Adjustment for Confounding by Smoking 937
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Finally, we assessed whether, via adjustment for socio-
economic status, we could minimize potential confounding
of the association of interest by cigarette smoking. After ad-
justment for a 5-level indicator of socioeconomic status, anal-
ysis of the association between cumulative radiation dose
and COPD yielded ~θ1 ¼ �0:00475 (standard error, 0.2813;
RR = 1.00, 95% CI: 0.57, 1.73), suggesting little or no con-
founding. We fitted a model for the association between radi-
ation and lung cancer adjusted for socioeconomic status and
obtained an RR(100 mSv) of 1.066 (95% CI: 0.882, 1.288).
A joint model for the association between radiation and lung
cancer and COPD yielded an indirectly adjusted estimate of
association between cumulative radiation dose and lung can-
cer, adjusted for socioeconomic status, of RR(100 mSv) =
1.071 (95% CI: 0.599, 1.918). There was little evidence of
confounding by smoking status after adjusting for age, birth
cohort, and socioeconomic status.

DISCUSSION

We have described a method for assessing confounding by
smoking using negative control outcomes. Standard sensitivity
analysis methods for confounding by smoking require investi-
gators to posit unverifiable assumptions about smoking preva-
lence conditional on strata of sociodemographic factors and
exposure (6). Use of negative control outcomes to detect con-
founding by smoking also requires deploying some unverifi-
able assumptions. The first of these is that the exposure of
interest does not cause the negative control outcome. This is
a strong assumption, and great care should be taken if there
is uncertainty about it. The validity of this assumption depends
upon the investigator’s appropriate choice of a negative control
outcome. Suppose an investigator is uncertain that the E-N
association is precisely null. Perhaps, in our example using
the Colorado Plateau data, the investigator is concerned that
radon causes COPD. Such an association has been suggested
in a study of domestic radon but not shown in studies of asso-
ciations between radon and nonmalignant respiratory disease
among uranium miners (after excluding deaths due to silicosis
and pneumoconiosis) (17, 19, 20). The expression for bias ad-
justment given a non-null association between E and A be-
comes β1 ≅ ~β1 � ð~θ1 � θ1Þ, where the last term reflects the
effect of exposure on the negative control outcome.
A second assumption is that any unmeasured common

cause of exposure and the negative control outcome also
causes lung cancer. Ideally, smoking is the only uncontrolled
confounder of the association between exposure and the neg-
ative control outcome. However, if there are other, unmeasured
confounders of the exposure–negative control outcome associ-
ation (and these factors also cause lung cancer), then the pro-
posed approach to bias detection remains useful. Suppose, in
our example using the Colorado Plateau data, that an investi-
gator is concerned that smoking and silica dust are both un-
measured confounders of the radon–lung cancer association.
If smoking and silica dust both cause lung cancer and COPD,
then the validity of our conclusion that smoking is unlikely to
confound the estimated association between radon and lung
cancer holds. Absence of an association between radon and
COPD signals that confounding is not likely to operate through
paths tested by negative control outcome. The latter conclusion

is useful, given the absence of individual estimates of silica
dust exposure for members of our illustrative cohorts.
To indirectly adjust for confounding (but not to test for its

presence), we must assume that the associations between the
unmeasured confounder S and lung cancer (D) and the neg-
ative control outcome (N) are similar in magnitude.While the
association between cigarette smoking and lung cancer is
quite large in magnitude, outcomes including COPD, emphy-
sema, and cancers of the mouth, pharynx, larynx, and esoph-
agus also exhibit largemagnitudes of associationwith cigarette
smoking (21, 22). As Table 1 illustrates, this is an important as-
sumption, but it can be relaxed somewhat without substantial
loss of utility of the proposed method.
The indirect adjustment strategy proposed herein is well jus-

tified when background knowledge is available about the na-
ture of the unobserved confounder, mainly smoking behavior,
and previously published estimates of its association with the
primary outcome and the negative control outcome, respec-
tively. Often such background information about unmeasured
confounders may not be available, in which case the proposed
strategy might not be as compelling. Interestingly, in the con-
text of Cox regression analysis, indirect adjustment of the ex-
posure log hazard ratio for the primary outcome—obtained
simply by subtracting the estimated log hazard ratio for the
negative control outcome—is sometimes formally justified,
provided that the unobserved confounder U is continuous
and provided that the relationship betweenU andN and the re-
lationship between U and the potential outcome (for D) when
unexposed are monotonic at the individual level. This result
suggests that under this monotonicity assumption, the simple
adjustment technique used here may in fact continue to be
sound even if the association betweenU andN is quite distinct
from that between U and D, and that background information
about the confounder may not be needed to justify the ap-
proach under such assumptions. For settings in which little
background information about the unobserved confounder is
available, the recently proposed control outcome calibration
approach may be adopted in the context of linear or logistic re-
gression with a valid negative control outcome; however, to
date, the control outcome calibration approach has not been
extended to a Cox regression framework for using the French
nuclear worker study data censored survival outcomes (23).
As our example illustrates, there is often good reason to

believe that by conditioning on determinants of cigarette
smoking, such as sex, age, birth cohort, and social class,
the potential for substantial confounding by smoking is
reduced (24). While in a crude analysis smoking may be dif-
ferentially distributed between exposure categories, within
strata of these factors large systematic differences in smoking
prevalence between occupational exposure groups are less
likely (Figure 4). In our example, we observed that when
we adjusted for socioeconomic status, the resultant estimate
of the radon–lung cancer association was similar in magni-
tude to the estimate of this association obtained with indirect
adjustment for confounding by smoking. Consequently, our
example supports prior advice that it is generally reasonable
to believe that by conditioning on factors such as sex, age,
birth cohort, and social class, there is often low potential for
substantial confounding of occupational exposure–disease
associations by smoking status (25).
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Estimation of adjusted effects (and associated confidence
intervals) is facilitated by the proposed cause-specific propor-
tional hazards models, which can be fitted using standard
statistical software. The variance for the indirectly adjusted
estimate obtained from our proposed joint model will tend to
be larger than that for the covariate-adjusted Cox model. One
might assess evidenceofuncontrolledconfoundingbysmoking
(i.e., assessing the exposure–negative control outcome as-
sociation) first to determine whether confounding is likely to
be operating through paths assessed with the negative outcome
control. This is appealing, because evidence of a null associa-
tion may lead to the conclusion that no indirect adjustment is
necessary. Of course, if using such a 2-stage procedure, one
should account for the uncertainty due to the first-stage test.

In conclusion, occupational epidemiologists often draw
upon cohort studies to inform their understanding of occupa-
tional causes of lung cancer. Information on smoking history
is rarely available in occupational cohort studies; conse-
quently, it is usually not possible to directly address concerns
about confounding by smoking through techniques such as
restriction, stratification, matching, or statistical adjustment.
In these situations, the use of negative control outcomes to
detect confounding by smoking may help in the interpre-
tation of effect estimates. The proposed approach can be
used in conjunction with other approaches to assess con-
founding by smoking (6, 26) and may offer a valuable com-
plement to those approaches.
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APPENDIX

Consider a cohort study with the following key variables: each person’s age at entry into the study (age_entry), age at exit from
the study (age_exit), exposure information (E), other covariates (Z), and binary indicators of lung cancer (ulung) and a negative
control outcome (ucopd). To fit the cause-specific hazards model, we create a new outcome variable (eventtype) with 3 levels
(0 = event of interest did not occur, 1 = lung cancer occurred, 2 = negative control outcome occurred). Next, we create a data set
with 2 records for each person and 2 new variables in that expanded data set: a variable for observation type (f_type) which takes a
value of 0 for the first record for a person and a value of 1 for the second record for that person; and a binary indicator of any event
(which takes a value of 1 if eventtype=1 and f_type=0, a value of 0 if eventtype ^=1 and f_type=0, a value of 1 if eventtype=2 and
f_type=1, and a value of 0 if eventtype^=2 and f_type=1). A cause-specific hazards model may be fitted using standard software
from Cox regression, simultaneously estimating the associations between exposure and lung cancer and the negative control out-
come. In the example code below, we use the PHREG procedure of the SAS statistical package (version 9.2) (14); standard errors
and confidence intervals for the differences in the estimated associations between exposure and lung cancer and exposure and the
negative control outcome are directly obtained using a “contrast” statement.

data source2; set final;
t= age_exit; eventtype=0; if ulung=1 then eventtype=1; if ucopd=1 then eventtype=2; run;

data augment; set source2 source2; run;
proc sort data=augment; by id ; run;

data augment1; set augment; by id;
if first.id then do; ftype=0; if eventtype=1 then status=1; if eventtype^=1 then status=0; end;
iffirst.id^=1thendo;ftype=1;ifeventtype=2thenstatus=1;ifeventtype^=2thenstatus=0;end;

proc phreg data=augment1 nosummary;
model age_exit*status(0) = cumdose_L cumdose_C / ties=efron entry=age_entry rl;
strata ftype cohort ; array ds{55} d1-d55;
year_rs=year(age_exit + birthdate) -1949;
cumdose= ds{ Year_RS }; cumdose_C= cumdose*ftype; cumdose_L= cumdose*(1-ftype);
contrast ‘diff’ cumdose_L 1 cumdose_C -1 / estimate = both; run;
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