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Whether loci that influence fasting glucose (FG) and fasting insulin (FI) levels, as identified by genome-wide

association studies, modify associations of diet with FG or FI is unknown. We utilized data from 15 US and

European cohort studies comprising 51,289 persons without diabetes to test whether genotype and diet interact

to influence FG or FI concentration. We constructed a diet score using study-specific quartile rankings for

intakes of whole grains, fish, fruits, vegetables, and nuts/seeds (favorable) and red/processed meats, sweets,

sugared beverages, and fried potatoes (unfavorable). We used linear regression within studies, followed by

inverse-variance-weighted meta-analysis, to quantify 1) associations of diet score with FG and FI levels and

2) interactions of diet score with 16 FG-associated loci and 2 FI-associated loci. Diet score (per unit increase)

was inversely associated with FG (β =−0.004 mmol/L, 95% confidence interval: −0.005, −0.003) and FI

(β =−0.008 ln-pmol/L, 95% confidence interval: −0.009, −0.007) levels after adjustment for demographic factors,

lifestyle, and body mass index. Genotype variation at the studied loci did not modify these associations. Healthier

diets were associated with lower FG and FI concentrations regardless of genotype at previously replicated FG-

and FI-associated loci. Studies focusing on genomic regions that do not yield highly statistically significant associ-

ations from main-effect genome-wide association studies may be more fruitful in identifying diet-gene interactions.

diabetes; dietary pattern; gene-environment interaction; glucose; insulin

Abbrevations; ARIC, Atherosclerosis Risk in Communities; CHARGE, Cohorts for Heart and Aging Research in Genomic Epide-

miology; CHS, Cardiovascular Health Study; FG, fasting glucose; FG-GRS, FG-associated genetic risk score; FHS, Family

Heart Study; FI, fasting insulin; Framingham, Framingham Generation 5 and Offspring Studies; GENDAI, Gene-Diet Attica In-

vestigation on Childhood Obesity; GHRAS, Greek Health Randomized Aging Study; GLACIER, Gene-Lifestyle Interactions and

Complex Traits in Elevated Disease Risk; GWAS, genome-wide association studies; Health ABC, Health, Aging and Body

103 Am J Epidemiol. 2013;177(2):103–115

American Journal of Epidemiology

© The Author 2012. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of

Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

Vol. 177, No. 2

DOI: 10.1093/aje/kws297

Advance Access publication:

December 19, 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carolina Digital Repository

https://core.ac.uk/display/345200282?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Composition; InCHIANTI, Invecchiare in Chianti [Aging in the Chianti Area]; Malmö, Malmö Diet and Cancer Study (cardiovas-

cular cohort); ln, natural log; MESA, Multi-Ethnic Study of Atherosclerosis; Rotterdam, Rotterdam Study; SD, standard deviation;

SNP, single nucleotide polymorphism; THISEAS, The Hellenic Study of Interactions between SNPs and Eating in Atherosclero-

sis Susceptibility; ULSAM, Uppsala Longitudinal Study of Adult Men; Young Finns, Young Finns Study.

Recent technological and methodological advances have
led to multiple genome-wide association studies (GWAS)
of complex human diseases such as type 2 diabetes (1, 2)
and related quantitative traits (3). While results of these
meta-analyses have identified multiple loci with modest
effect estimates, much of the heritability of the phenotypic
traits remains unexplained. Thus, the utility of using geno-
types at these loci to improve clinical practice remains un-
known. Nevertheless, clinical and lay public awareness of
health-related genomic technologies is growing (4–6). This
raises important clinical and public health questions: Do
lifestyle choices, like adhering to a healthier diet, offset
genetic risks (7–10)? Does genetic variation within popula-
tions necessitate individualized health-promoting dietary
recommendations?
A “healthy diet” can be characterized using many differ-

ent approaches. One popular approach is to create a com-
posite score that ranks individuals on the basis of their
intakes of foods or nutrients that have been favorably or
unfavorably associated with diseases or risk factors (11–
13). The resulting scores, or “dietary patterns,” capture the
highly complex nature of diet, where multiple foods and
their nutrient constituents are consumed—none in isolation
(14–16). Public health recommendations based on dietary
patterns are also more easily understood than nutrient-
based recommendations, since they can be placed in
context with a person’s behavior. Although there are many
methods for characterizing dietary patterns, healthier diets
share several common characteristics that are correspond-
ingly reflected in dietary recommendations across countries.
Diets associated with lower risk of type 2 diabetes and
lower numbers of cardiometabolic risk factors (17, 18)
comprise largely plant foods (e.g., whole grains, fruits, veg-
etables) and plant and marine sources of fat (e.g., nuts and
seeds, fatty fish) in exchange for red and processed meats,
foods high in sugar and salt, and highly refined grains.
The purpose of this study was to 1) evaluate associations

of a dietary pattern score with fasting glucose (FG) and
fasting insulin (FI) levels and 2) evaluate whether geno-
types at known loci associated with FG and FI (3) modify
the associations of dietary pattern with FG and FI, using
data from multiple US and European cohort studies.

MATERIALS AND METHODS

Cohorts

The present work is a collaboration of investigators from
US and European epidemiologic cohort studies included in
the Nutrition Working Group of the CHARGE (Cohorts
for Heart and Aging Research in Genomic Epidemiology)
Consortium (19). Table 1 provides descriptive information
about the 15 studies included in this investigation (additional

details have been published previously (19) and are given in
Web Table 1 (available at http://aje.oxfordjournals.org/)).
The analyses included the following cohort studies: the
Atherosclerosis Risk in Communities (ARIC) Study, the
Framingham Generation 5 and Offspring Studies (Framing-
ham), the Rotterdam Study (Rotterdam), the Cardiovascular
Health Study (CHS), the Gene-Diet Attica Investigation on
Childhood Obesity (GENDAI), the Greek Health Random-
ized Aging Study (GHRAS), the Uppsala Longitudinal
Study of Adult Men (ULSAM), Gene-Lifestyle Interactions
and Complex Traits in Elevated Disease Risk (GLACIER),
the Family Heart Study (FHS), the Health, Aging and Body
Composition (Health ABC) Study, the Malmö Diet and
Cancer Study (cardiovascular cohort) (Malmö), Invecchiare
in Chianti [Aging in the Chianti Area] (InCHIANTI), the
Multi-Ethnic Study of Atherosclerosis (MESA), the Young
Finns Study (Young Finns), and the Hellenic Study of In-
teractions between SNPs and Eating in Atherosclerosis Sus-
ceptibility (THISEAS). All persons studied were free of type
2 diabetes (defined by self-reported diabetes, pharmacologic
treatment for diabetes, or FG concentrations ≥7 mmol/L)
when FG and FI levels were measured, consented to gene-
tic research, and provided written informed consent. All
studies’ examination protocols were approved by local insti-
tutional review boards, and the procedures followed in each
were in accordance with the ethical standards of the respon-
sible institutional or regional committee on human experi-
mentation or with the Helsinki Declaration of 1975 as
revised in 1983.

Diet score

Diet was assessed via food frequency questionnaire (in 13
of 15 cohorts), food records kept for 7 consecutive days (in
ULSAM), or two 1-day dietary recalls (in GENDAI) (19)
(see also Web Table 2). The diet score was based on intakes
of 9 food groups defined consistently for all studies. Whole
grains, fish, fruits, vegetables, and nuts/seeds were designat-
ed as favorable foods, whereas red and processed meats,
sweets, sugared beverages, and fried potatoes were designat-
ed as unfavorable (additional details are given in Web
Table 2). Intakes of foods/beverages were estimated in serv-
ings per day for all cohorts, with the exception of the
ULSAM cohort, where grams per day were used. Intake of
each food group was categorized into quartiles and assigned
ascending values (0, 1, 2, 3) for favorable foods
and descending values (3, 2, 1, 0) for unfavorable foods.
These values were summed to generate a diet score (range,
0–27 points), with higher scores representing healthier diets.
We selected food groups for inclusion in the score based

on 1) country-specific dietary guidelines; 2) results of in-
vestigations of the associations of specific dietary factors
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Table 1. Characteristics of Participants From 15 Cohort Studies Included in a Meta-Analysis of the Influence of Diet and Genotype on Fasting Glucose and Insulin Concentrations,

CHARGE Consortium

Cohort
First Author,

Year (Reference No.)
Region

Maximum
Sample
Size (n)a

Mean Age,
years (SD)

%
Female

Mean Fasting
Glucose Level,
mmol/L (SD)

Mean Fasting
Insulin Level,
ln-pmol/L (SD)

ARIC Study ARIC Investigators, 1989 (33) United States 8,591 54.2 (5.7) 53.7 5.47 (0.50) 4.07 (0.66)

CHS Fried, 1991 (34) United States 2,745 72.3 (5.4) 62.3 5.53 (0.52) 4.44 (0.43)

FHS Higgins, 1996 (35) United States 3,187 51.4 (13.6) 53.6 5.22 (0.54) 4.10 (0.57)

Framingham Feinleib, 1975 (36) and
Splansky, 2007 (37)

United States 5,795 46.0 (11.5) 54.7 5.19 (0.48) 3.30 (0.41)

GENDAI Papoutsakis, 2007 (38) Mediterranean 1,087 11.2 (0.7) 53.2 4.75 (0.48) 3.69 (0.54)

GHRAS Kanoni, 2008 (39) Mediterranean 856 71.8 (5.7) 71.2 5.83 (1.63) 3.76 (0.56)b

GLACIER Renström, 2011 (40) Northern Europe 15,146 52.0 (8.8) 60.7 5.37 (0.62) 3.72 (0.64)b

Health ABC Studyb Houston, 2008 (41) United States 1,281 74.8 (2.9) 50.2 5.16 (0.55) 3.81 (0.53)

InCHIANTI Ferrucci, 2000 (42) Mediterranean 1,071 67.7 (15.8) 56.3 4.84 (0.61) 4.18 (0.53)

Malmö Berglund, 1993 (43) Northern Europe 3,679 57.8 (6.0) 59.0 5.53 (0.52) 3.62 (0.53)

MESA Bild, 2002 (44) United States 2,271 62.4 (10.3) 51.9 4.85 (0.56) 3.48 (0.61)

Rotterdam Hofman, 2011 (45) Northern Europe 2,303 71.9 (6.6) 58.7 5.50 (0.53) 4.10 (0.52)

THISEAS Theodoraki, 2010 (46) Mediterranean 598 55.9 (13.6) 48.5 5.31 (0.64) 3.96 (0.58)b

ULSAM Hedstrand, 1975 (47) Northern Europe 933 71.0 (19.2) 0.0 5.37 (0.56) 4.31 (0.53)

Young Finns Raitakari, 2008 (48) Northern Europe 1,746 37.7 (5.0) 56.2 5.25 (0.48) 3.70 (0.77)

Abbreviations: ARIC, Atherosclerosis Risk in Communities; CHARGE, Cohorts for Heart and Aging Research in Genomic Epidemiology; CHS, Cardiovascular Health Study; FHS,

Family Heart Study; Framingham, Framingham Generation 5 and Offspring Studies; GENDAI, Gene-Diet Attica Investigation on Childhood Obesity; GHRAS, Greek Health Randomized

Aging Study; GLACIER, Gene-Lifestyle Interactions and Complex Traits in Elevated Disease Risk; Health ABC, Health, Aging and Body Composition; InCHIANTI, Invecchiare in Chianti

[Aging in the Chianti Area]; Malmö, Malmö Diet and Cancer Study (cardiovascular cohort); MESA, Multi-Ethnic Study of Atherosclerosis; Rotterdam, Rotterdam Study; SD, standard

deviation; SNP, single nucleotide polymorphism; THISEAS, The Hellenic Study of Interactions between SNPs and Eating in Atherosclerosis Susceptibility; ULSAM, Uppsala Longitudinal

Study of Adult Men; Young Finns, Young Finns Study.
a Maximum sample sizes for both outcomes are provided; exceptions include GHRAS, GLACIER, and THISEAS, where fewer observations were available for fasting insulin: 670, 917,

and 258, respectively.
b Fasting glucose and fasting insulin levels were measured from baseline (year 1) samples; diet score variables were collected during year 2; and covariates (see Web Table 3) were

measured at baseline (year 1).
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and patterns with diabetes and its risk factors; 3) data avail-
ability in participating cohorts; 4) regional food usage pat-
terns; and 5) food product consistency across cohorts. We
also inspected correlations among these food groups and
others not included in the final score in order to evaluate
whether the consumption patterns (correlation matrices)
were similar across cohorts. We did not include dairy foods
in the score, despite the fact that dairy foods, particularly
reduced-fat dairy foods, are endorsed by most national
dietary guidelines. Evidence regarding beneficial effects of
dairy food consumption (reduced-fat vs. whole-fat dairy
foods) on the risk of impaired glucose control or type 2
diabetes is inconclusive (11, 20–23), and product composi-
tion (particularly in terms of fat percentage, fermentation/
culturing processes, and amounts of added sugar—all im-
portant factors in this context) is highly variable across
regions represented in the present work (criterion 5 above).
When information about preparation was available, we
excluded fried fish from the fish food group. We did not
include baked, boiled, or mashed white potatoes in the total
for vegetables, since high intake of white potatoes has been
associated with greater risk of type 2 diabetes (24) and may
reflect a Western animal-based diet in some cohorts. However,
we also did not include white potatoes as an unfavorable food,
since white potatoes represent an important component of a
healthy Mediterranean-style diet in some cohorts. While some
guidelines emphasize replacing animal sources of protein with
plant sources of protein such as legumes, we did not include
legumes in our diet score calculation because 1) intakes were
low and 2) legumes are commonly consumed with meat prod-
ucts (e.g., pork and beans, meat chili), particularly in the
United States, rather than as a meat substitute, as is more
common in Mediterranean regions (11, 25). Lastly, we did not
include poultry in the score because of the absence of compel-
ling evidence linking poultry intake to glucose regulation or
diabetes and the positive correlation between poultry and meat
consumption in most cohorts.

Genetic loci

We selected the 16 loci associated with FG and the 2
loci associated with FI that met the criteria for genome-
wide significance in a previous meta-analysis of GWAS (3)
(allele frequencies and effect sizes are shown in Web
Table 3, genotyping methods in Web Table 4). We also
created an FG-associated genetic risk score (FG-GRS) by
summing the number of risk alleles for each participant
across the FG-associated single nucleotide polymorphisms
(SNPs), theoretically ranging in most cohorts from 0 (no
FG-raising alleles) to 32 (homozygous for the FG-raising
allele at each of the 16 SNPs). In GENDAI and GHRAS,
we calculated the FG-GRS for 14 of the 16 FG-associated
SNPs, since neither rs11558471 (SLC30A8) nor rs4506565
(TCF7L2) was genotyped in these cohorts. In Malmö, we
included persons with more than 60% of the SNPs geno-
typed and then imputed the missing genotypes (with the
most common genotype). Results were similar when the 3
cohorts with missing genotype information were not in-
cluded in FG-GRS-related analyses; thus, to preserve
sample size, we included all 15 cohorts.

FG and FI concentrations and other characteristics

FG and FI concentrations were quantified for each cohort
using enzymatic methods and radioimmunoassays, respec-
tively (cohort-specific methods are shown in Web Table 4).
We statistically analyzed FG values without transformation;
because FI data were not normally distributed, FI values
were natural log (ln)-transformed before statistical analysis.
We present beta coefficients from regression analyses for
(ln)FI. Measurement methods for other relevant covariates
(listed below) are described in Web Table 5.

Statistical analyses

Cohort-specific analyses. For each cohort, we calculat-
ed associations between diet score and FG and FI concen-
trations using multivariable linear regression, with the diet
score modeled as a continuous variable. Analyses were per-
formed at each study center according to a standardized an-
alytic plan. Model 1 adjusted for energy intake (kcal/day),
age, sex, field center (in Health ABC, CHS, ARIC, FHS,
InCHIANTI, and MESA), and population and/or family
substructure (using principal components analysis for rele-
vant cohorts, in CHS, FHS, Framingham, MESA, and
Young Finns). Model 2 included further adjustment for
smoking, physical activity, education, and alcohol con-
sumption (defined within each cohort; described in Web
Table 5). Model 3 further adjusted for body mass index
(weight (kg)/height (m)2). Regression coefficients from
these models represent the predicted difference in FG
(mmol/L) or FI (ln-pmol/L) concentration per 1-unit in-
crease in diet score. For each cohort, we also assessed asso-
ciations of the FG-GRS, the 16 FG-associated SNPs, and
the 2 FI-associated SNPs with respective FG and FI out-
comes, adjusting for age, sex, field center, and/or popula-
tion substructure. An additive genetic model was used,
consistent with the association pattern for these loci (3).
Our primary interaction tests of interest were between

diet score and the FG-GRS (FG outcome) and the 2 FI-
associated SNPs (FI outcome); interactions between diet
score and the 16 individual SNPs making up the FG-GRS
were secondary, exploratory analyses. To test these interac-
tions, we included a diet score × FG-GRS (or SNP) cross-
product term along with model 1 covariates. The resulting
interaction regression coefficients represent the difference
in the magnitude of the healthy diet association (per 1-unit
increase in score) with FG (mmol/L) or FI (ln-pmol/L) con-
centration per copy of an FG- or FI-raising allele.

Meta-analyses. We used an inverse-variance-weighted
meta-analysis with fixed effects, employing the rmeta
package (version 2.16) in R 2.13.1 (http://www.R-project.
org/), for diet score-outcome associations and METAL
(http://www.sph.umich.edu/csg/abecasis/Metal/index.html)
for SNP-outcome associations and diet score × SNP interac-
tions. Heterogeneity was assessed by means of the I2 index
(26). Figures were generated with Stata 11.0 (Stata Corpo-
ration, College Station, Texas).
Sample sizes for the associations of diet score with FG

concentration ranged from 48,787 to 51,289 (in models 3
and 1, respectively); and for FI, sample sizes ranged from
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Table 2. Distribution of Diet Score and Food Group Components Across the 15 Cohort Studies Included in a Meta-Analysis of the Influence of Diet and Genotype on Fasting Glucose and

Insulin Concentrations, CHARGE Consortium

Cohort

Diet Scorea Diet Score Favorable Food Groups, servings/dayb (SD) Diet Score Unfavorable Food Groups, servings/dayb (SD)

Mean Range
Whole
Grains

Fish Fruit Vegetables
Nuts and
Seeds

Red and Processed
Meats

Desserts and
Sweets

Sugar-sweetened
Beverages

Fried
Potatoes

ARIC Study 13.7 1–27 1.37 (1.25) 0.26 (0.28) 1.50 (1.25) 1.72 (1.15) 0.42 (0.58) 1.00 (0.72) 1.45 (1.37) 0.47 (0.88) 0.11 (0.16)

CHS 13.7 1–27 1.02 (0.65) 0.32 (0.30) 2.74 (1.47) 2.83 (1.49) 0.20 (0.25) 0.69 (0.58) 0.85 (0.39) 0.14 (0.26) 0.09 (0.14)

FHS 13.1 1–26 1.58 (1.55) 0.20 (0.22) 1.56 (1.38) 1.61 (1.27) 0.34 (0.57) 2.46 (1.21) 1.64 (1.44) 0.67 (1.1) 0.13 (0.2)

Framingham 13.2 1–26 1.17 (1.13) 0.27 (0.27) 1.26 (1.16) 2.80 (1.92) 0.37 (0.53) 0.77 (0.59) 1.41 (1.32) 0.48 (0.86) 0.10 (0.13)

GENDAI 9.5 1–20 0.41 (0.77) 0.21 (0.60) 1.21 (1.35) 1.08 (1.21) NA 1.69 (1.36) 0.85 (0.85) 0.43 (0.62) NA

GHRAS 11.0 2–19 1.06 (1.53) 0.33 (0.20) 2.15 (1.38) 1.53 (0.57) NA 0.43 (0.34) 1.24 (1.09) 0.10 (0.17) NA

GLACIER 11.9 0–24 2.71 (1.47) 0.17 (0.13) 1.59 (1.17) 1.61 (1.21) NA 0.62 (0.31) 1.52 (1.34) 0.32 (0.49) 0.10 (0.13)

Health ABC
Studyc

15.7 3–27 1.01 (0.71) 0.16 (0.15) 1.88 (1.10) 2.00 (0.99) 0.32 (0.38) 0.71 (0.49) 1.40 (0.86) 0.05 (0.18) 0.07 (0.10)

InCHIANTI 10.6 2–20 0.20 (0.68) 0.22 (0.17) 2.83 (1.38) 2.58 (1.34) 0.02 (0.06) 1.03 (0.52) 2.41 (1.57) 0.08 (0.26) NA

Malmö 13.7 1–26 1.92 (1.83) 0.55 (0.40) 2.02 (1.23) 2.50 (1.32) 0.07 (0.18) 1.45 (0.73) 3.30 (1.95) 0.29 (0.54) 0.18 (0.29)

MESA 13.6 1–27 0.69 (0.58) 0.15 (0.19) 1.89 (1.48) 2.23 (1.32) 0.35 (0.50) 0.53 (0.46) 1.37 (1.46) 0.41 (0.82) 0.11 (0.15)

Rotterdam 10.2 1–20 2.88 (1.50) 0.21 (0.18) 2.11 (1.16) 2.15 (0.94) 0.29 (0.51) 1.38 (0.63) 1.60 (1.13) 0.51 (0.66) NA

THISEAS 11.9 0–26 1.37 (1.60) 0.50 (0.47) 1.66 (1.51) 3.53 (3.10) 0.59 (1.03) 1.20 (1.18) 0.94 (1.18) 0.34 (0.71) 0.26 (0.47)

ULSAMd 13.4 3–24 19.8 (13.3) 18.7 (13.7) 116.4 (99.2) 68.8 (53.9) 0.34 (5.27) 72.0 (27.9) 63.8 (53.5) 39.4 (88.2) 12.0 (16.6)

Young Finns 13.6 2–27 3.25 (1.88) 0.40 (0.32) 2.05 (2.10) 3.39 (2.26) 0.04 (0.08) 1.22 (0.78) 1.47 (1.26) 0.54 (0.90) 0.17 (0.19)

Abbreviations: ARIC, Atherosclerosis Risk in Communities; CHARGE, Cohorts for Heart and Aging Research in Genomic Epidemiology; CHS, Cardiovascular Health Study; FHS, Family

Heart Study; Framingham, Framingham Generation 5 and Offspring Studies; GENDAI, Gene-Diet Attica Investigation on Childhood Obesity; GHRAS, Greek Health Randomized Aging

Study; GLACIER, Gene-Lifestyle Interactions and Complex Traits in Elevated Disease Risk; Health ABC, Health, Aging and Body Composition; InCHIANTI, Invecchiare in Chianti [Aging in

the Chianti Area]; Malmö, Malmö Diet and Cancer Study (cardiovascular cohort); MESA, Multi-Ethnic Study of Atherosclerosis; NA, not applicable; Rotterdam, Rotterdam Study; SD,

standard deviation; SNP, single nucleotide polymorphism; THISEAS, The Hellenic Study of Interactions between SNPs and Eating in Atherosclerosis Susceptibility; ULSAM, Uppsala

Longitudinal Study of Adult Men; Young Finns, Young Finns Study.
a Summed quartile ranks of favorable food groups (0, 1, 2, and 3, for lowest to highest quartiles, respectively) and reversed quartile ranks of unfavorable food groups (3, 2, 1, and 0, for

lowest to highest quartiles, respectively). The theoretical range is 0–27 points, with a high score representing the healthiest diet based on the selected parameters.
b Servings/day except for ULSAM (see footnote d).
c Fasting glucose and fasting insulin levels were measured from baseline (year 1) samples; diet score variables were collected during year 2; and covariates (see Web Table 3) were

measured at baseline (year 1).
d In ULSAM, data were collected by 7-day food record and are characterized in g/day. See Web Table 1 for individual foods and beverages included within each food group.
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34,305 to 35,907 (in models 3 and 1, respectively). Sample
sizes for the interaction analyses for FG ranged from
48,872 for rs10830963 (MTNR1B) to 51,377 for rs2191349
(KB/TMEM), with sample sizes for the other 14 SNPs
falling between those values. The sample size for interac-
tion with the FG-GRS was 51,063. Sample sizes for the
interaction analyses for FI were 35,739 for rs35767 (IGF1)
and 35,991 for rs78094 (GCKR).
We defined the level of statistical significance on the

basis of a Bonferroni correction: P < 0.025 for associations
between the diet score and the two outcomes of interest;
P < 0.017 for primary tests of interaction with the FG-GRS
and the 2 FI-associated SNPs; and P < 0.003 for explorato-
ry tests of interaction with each of the 16 individual
FG-associated SNPs. Estimates of statistical power for various
sample- and effect-size combinations are published else-
where (19).

RESULTS

Mean values for the food groups comprising the diet
score within each study are shown in Table 2. Variation in
values followed expected regional differences in food con-
sumption (19) but did not appear to relate to type of dietary
assessment tool, age of the cohort, or chronologic years of
dietary assessment.
Diet score was inversely associated with both FG and FI

concentrations (Table 3); that is, healthier diets were associ-
ated with lower FG and FI concentrations. While the asso-
ciations were not statistically significant within all cohorts,
12 of 15 cohorts showed inverse associations between diet

score and FG (Figure 1), and all 15 cohorts showed inverse
associations between diet score and FI (Figure 2). The
meta-analyzed associations were robust; adjustment for de-
mographic factors (model 1), lifestyle factors (model 2),
and body mass index (model 3), a potential mediator of the
relation between diet and health outcomes, had no material
impact on the strength or magnitude of the effect estimates
(P < 0.0001 for all) (Table 3). For each 5-unit change (ap-
proximately equal to the mean standard deviation (SD)) in
diet score (pointing towards a healthier diet), FG concentra-
tions were 0.03 mmol/L lower and FI concentrations were
0.05 ln-pmol/L lower (results were derived from model 3
regression coefficients; see Table 3 and Figures 3 and 4).
The previously published associations between 16 SNPs

and FG and between 2 SNPs and FI were observed in the
present collection of cohorts (10 of our 15 cohorts (or 53%
of our sample size based on individuals) contributed to the
original 54-cohort collaboration (3)) (Table 4). Effect sizes for
FG ranged from a 0.01-mmol/L greater to a 0.08-mmol/L
greater FG concentration per FG-raising allele, and the
effect for FI was a 0.02-(ln)pmol/L increase per FI-raising
allele, similar to values reported in the earlier meta-analysis
(Table 4) (3). The FG-GRS was also significantly associat-
ed with FG concentrations in the present meta-analysis: For
each additional FG-GRS unit (risk allele), FG concentra-
tions were 0.03 mmol/L greater (β = 0.03 (standard error,
0.001), P < 0.0001; Table 4).
We observed no interactions between diet score and the

FG-GRS, the 16 individual FG-associated SNPs, or the 2
FI-associated SNPs in our meta-analysis (Table 5; Web
Figures 1–19). Within some cohorts, there were statistically

Table 3. Associations of Healthy Diet Score With Fasting Glucose and Fasting Insulin Concentrations in a Meta-

Analysis, CHARGE Consortium

No. of
Persons

β (SE)a I2, % 95% Confidence
Interval

Fasting glucose, mmol/L

Model 1b 51,289 −0.005 (0.0005)* 62.6 34.6, 78.6

Model 2c 48,902 −0.004 (0.0005)* 54.2 18, 74.5

Model 3d 48,787 −0.004 (0.0005)* 22.1 0, 57.8

Fasting insulin, ln-pmol/L

Model 1 35,907 −0.010 (0.0006)* 71.3 51.7, 83

Model 2 34,415 −0.009 (0.0007)* 45.2 0, 70

Model 3 34,305 −0.008 (0.0005)* 12.3 0, 50.2

Abbreviations: CHARGE, Cohorts for Heart and Aging Research in Genomic Epidemiology; SE, standard error.

* P < 0.0001.
a Beta coefficient and standard error for the estimated difference in fasting glucose (mmol/L) or fasting insulin

(ln-pmol/L) concentration per 1-unit increase in diet score.
b Model 1 adjusted for age, sex, energy intake, field center (in the Health, Aging and Body Composition Study,

the Cardiovascular Health Study, the Atherosclerosis Risk in Communities Study, the Family Heart Study,

Invecchiare in Chianti, and the Multi-Ethnic Study of Atherosclerosis), and population substructure (by principal

components in the Cardiovascular Heath Study, the Family Heart Study, the Framingham Generation 5 and

Offspring Studies, the Multi-Ethnic Study of Atherosclerosis, and the Young Finns Study).
c Model 2 adjusted for model 1 covariates plus highest attained educational level, smoking status, physical

activity level, and alcohol intake (see Web Table 4 for cohort-specific definitions).
d Model 3 adjusted for the model 2 covariates plus body mass index.

108 Nettleton et al.

Am J Epidemiol. 2013;177(2):103–115



significant interactions (P < 0.05), but these were inconsis-
tent across cohorts with respect to loci (Web Figures 2–19)
and were probably false-positive findings owing to the
number of tests performed. Removing the youngest cohort
(GENDAI, where the mean age was 11.2 years) did not
change these conclusions. Inspection of the data according
to the mean age of the cohorts (e.g., <70 years (10 cohorts)
vs.≥70 years (5 cohorts) at assessment) also revealed no con-
sistent differences in the direction of interaction regression
coefficients (Web Figures 1–19). Results from random-
effects meta-analyses conducted on all of these data were not
materially different from those of the fixed-effects meta-
analysis (data not shown).

DISCUSSION

Using data from 15 well-characterized epidemiologic
cohorts comprising US and European subjects without
known diabetes, we observed favorable associations between
adherence to a healthy diet, as reflected by the diet score,

and FG and FI concentrations. These associations were not
modified by genotype at loci previously shown to be reli-
ably associated with glucose homeostasis, such that the as-
sociation between a healthy diet and FG homeostasis was
maintained independently of genotype at these loci. Thus,
these data suggest that adhering to a healthy diet is impor-
tant for everyone, regardless of genotype at these loci.

Although diet quality, as reflected by the diet score, did
not modify the associations of the selected loci with FG
and FI per se, a risk-allele carrier who adheres to a healthi-
er diet would have lower FG and FI levels than a risk-allele
carrier with a less healthy diet. Moreover, our data raise the
possibility that modest differences in diet quality (towards a
healthier diet) might offset the small genetic risk associated
with common variants related to glucose homeostasis. For
example, the average effect size across all 16 FG-raising
alleles was approximately 0.03 mmol/L (a 0.03-mmol/L
greater FG level) per allele, which compares in magnitude to
an approximately 1.5-SD greater diet score (i.e., towards a
healthier diet). More strikingly, the average 0.02-(ln)pmol/L

Figure 1. Associations between diet score and fasting glucose
concentration in a meta-analysis of data from 15 cohort studies,
CHARGE (Cohorts for Heart and Aging Research in Genomic
Epidemiology) Consortium. Regression coefficients (β) for each of the
15 cohorts and the total association, summarized across all 15
cohorts, represent the difference in fasting glucose level (mmol/L) per
1-unit increase in diet score after adjustment for the model 3
covariates: energy intake, age, sex, field center (in Health ABC, CHS,
ARIC, FHS, and InCHIANTI), population substructure (by principal
components in CHS, FHS, Framingham, MESA, and Young Finns),
smoking, physical activity level, highest attained educational level,
alcohol consumption, and body mass index. Bars, 95% confidence
interval. (ARIC, Atherosclerosis Risk in Communities Study; CHS,
Cardiovascular Health Study, FHS, Family Heart Study; Framingham,
Framingham Generation 5 and Offspring Studies; GENDAI, Gene-
Diet Attica Investigation on Childhood Obesity; GHRAS, Greek Health
Randomized Aging Study; GLACIER, Gene-Lifestyle Interactions and
Complex Traits in Elevated Disease Risk; Health ABC, Health, Aging
and Body Composition Study; InCHIANTI, Invecchiare in Chianti
[Aging in the Chianti Area]; Malmö, Malmö Diet and Cancer Study
(cardiovascular cohort); MESA, Multi-Ethnic Study of Atherosclerosis;
Rotterdam, Rotterdam Study; SNP, single nucleotide polymorphism;
THISEAS, The Hellenic Study of Interactions between SNPs and
Eating in Atherosclerosis Susceptibility; ULSAM, Uppsala Longitudinal
Study of Adult Men; Young Finns, Young Finns Study).

Figure 2. Associations between diet score and fasting insulin
concentration in a meta-analysis of data from 15 cohort studies,
CHARGE (Cohorts for Heart and Aging Research in Genomic
Epidemiology) Consortium. Regression coefficients (β) for each of the
15 cohorts and the total association, summarized across all 15
cohorts, represent the difference in fasting insulin level (ln-pmol/L) per
1-unit increase in diet score after adjustment for the model 3
covariates: energy intake, age, sex, field center (in Health ABC, CHS,
ARIC, FHS, and InCHIANTI), population substructure (by principal
components in CHS, FHS, Framingham, MESA, and Young Finns),
smoking, physical activity level, highest attained educational level,
alcohol consumption, and body mass index. Bars, 95% confidence
interval. (ARIC, Atherosclerosis Risk in Communities Study; CHS,
Cardiovascular Health Study, FHS, Family Heart Study; Framingham,
Framingham Generation 5 and Offspring Studies; GENDAI, Gene-
Diet Attica Investigation on Childhood Obesity; GHRAS, Greek Health
Randomized Aging Study; GLACIER, Gene-Lifestyle Interactions and
Complex Traits in Elevated Disease Risk; Health ABC, Health, Aging
and Body Composition Study; InCHIANTI, Invecchiare in Chianti
[Aging in the Chianti Area]; Malmö, Malmö Diet and Cancer Study
(cardiovascular cohort); MESA, Multi-Ethnic Study of Atherosclerosis;
Rotterdam, Rotterdam Study; SNP, single nucleotide polymorphism;
THISEAS, The Hellenic Study of Interactions between SNPs and
Eating in Atherosclerosis Susceptibility; ULSAM, Uppsala Longitudinal
Study of Adult Men; Young Finns, Young Finns Study).
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greater FI level per FI-raising allele compares in magnitude
to a ½-SD greater diet score.
Our observation that a healthy diet was cross-sectionally

associated with lower FG and FI levels is consistent with

previous studies of dietary pattern indexes and specific food
groups comprising our healthy diet score (18, 19, 27–29).
Our work demonstrates that dietary data can be coordinated
sufficiently across studies from diverse regions to create a

Figure 3. Predicted fasting glucose concentration according to diet score in a meta-analysis of data from 15 cohort studies, CHARGE
(Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium. The graph shows predicted fasting glucose concentrations
across the spectrum of possible diet score values (0–27), where a diet score of 13 is set to the across-cohorts mean fasting glucose level
(5.28 mmol/L), fasting glucose concentrations are 0.004 mmol/L (the regression coefficient generated from model 3) lower per successively
higher diet score value, and fasting glucose concentrations are 0.004 mmol/L higher per successively lower diet score value. The model 3
covariates included energy intake, age, sex, field center (in the Health, Aging and Body Composition Study, the Cardiovascular Health Study,
the Atherosclerosis Risk in Communities Study, the Family Heart Study, and Invecchiare in Chianti), population substructure (by principal
components in the Cardiovascular Heath Study, the Family Heart Study, the Framingham Generation 5 and Offspring Studies, the Multi-Ethnic
Study of Atherosclerosis, and the Young Finns Study), smoking, physical activity level, highest attained educational level, alcohol consumption,
and body mass index.

Figure 4. Predicted fasting insulin concentration according to diet score in a meta-analysis of data from 15 cohort studies, CHARGE (Cohorts
for Heart and Aging Research in Genomic Epidemiology) Consortium. The graph shows predicted fasting insulin concentrations across the
spectrum of possible diet score values (0–27), where a diet score of 13 is set to the across-cohorts mean fasting insulin level (3.43 ln-pmol/L),
fasting insulin concentrations are 0.008 ln-pmol/L (the regression coefficient generated from model 3) lower per successively higher diet score
value, and fasting insulin concentrations are 0.008 ln-pmol/L higher per successively lower diet score value. The plotted values are the result of
exponentiating the ln-pmol/L estimates. The model 3 covariates included energy intake, age, sex, field center (in the Health, Aging and Body
Composition Study, the Cardiovascular Health Study, the Atherosclerosis Risk in Communities Study, the Family Heart Study, and Invecchiare
in Chianti), population substructure (by principal components in the Cardiovascular Heath Study, the Family Heart Study, the Framingham
Generation 5 and Offspring Studies, the Multi-Ethnic Study of Atherosclerosis, and the Young Finns Study), smoking, physical activity level,
highest attained educational level, alcohol consumption, and body mass index.
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meaningful, predictive dietary score reflecting healthy food
consumption.

We chose to test for interaction between diet and a select
set of loci from a previous meta-analysis of GWAS for 3
main reasons: 1) the loci (or the functional SNPs these var-
iants tag) from such studies are those with the strongest ev-
idence of biologic relevance to glucose and insulin
homeostasis; 2) these loci are the ones most likely to be used
by medical practitioners (and consumers) for prognostic pur-
poses (4–6); and 3) given the penalty for multiple testing
and the probably small effect sizes for diet-gene interaction,
an analysis focused on fewer SNPs would be more statisti-
cally powerful. Thus, we aimed to assess whether the
effects of GWAS-identified loci altered the favorable asso-
ciations of dietary factors with glucose and insulin ho-
meostasis. Our finding of no interaction is important, as it

suggests that the favorable influences attributed to dietary
factors are likely to be conveyed regardless of genotype at
the selected loci. Thus, from a public health viewpoint,
population-based dietary recommendations are of benefit to
everyone regardless of genetic variation, at least on the
basis of the loci studied here. However, there may be other
regions that do interact with diet that we overlooked in our
focus on top-ranked GWAS loci, since, in order to reach
the extremely low P values required for statistical signifi-
cance, such loci necessarily show little heterogeneity in
phenotypic effects (30). Future work focused on genome-
wide interaction may uncover regions of the genome that
influence biologic response to diet (30). A focus on a
reduced number of loci remains important for preserving sta-
tistical power. However, other strategies that identify regions
that are more likely to interact with environmental factors

Table 4. Associationsa of Single Nucleotide Polymorphisms and Fasting Glucose Genetic Risk Score With Fasting Glucose and Fasting

Insulin Concentrations in a Meta-Analysis, CHARGE Consortium

SNP Chromosome Nearest Gene
Effect
Alleleb

Other
Allele

No. of
Cohorts

Summary Association

β (SE)c P Value

Fasting glucose-related
loci

rs340874 1 PROX1 C T 15 0.0198 (0.0034) 8.31 × 10–09

rs560887 2 G6PC2 C T 15 0.0735 (0.0036) 3.05 × 10–90

rs780094 2 GCKR C T 15 0.0298 (0.0034) 3.64 × 10–18

rs11708067 3 ADCY5 C T 15 0.0305 (0.0041) 1.28 × 10–13

rs11920090 3 SLC2A2 T A 15 0.0318 (0.0048) 4.88 × 10–11

rs4607517 7 GCK A G 15 0.0612 (0.0045) 1.71 × 10–42

rs2191349 7 DGKB/TMEM195 T G 15 0.0248 (0.0033) 1.25 × 10–13

rs11558471 8 SLC30A8 A G 13d 0.0360 (0.0039) 2.88 × 10–20

rs7034200 9 GLIS3 A C 15 0.0180 (0.0033) 6.66 × 10–08

rs10885122 10 ADRA2A G T 15 0.0200 (0.0053) 1.60 × 10–04

rs4506565 10 TCF7L2 C T 13d 0.0276 (0.0038) 4.79 × 10–13

rs10830963 11 MTNR1B G C 15 0.0801 (0.0040) 2.80 × 10–91

rs7944584 11 MADD A T 15 0.0249 (0.0038) 6.87 × 10–11

rs11605924 11 CRY2 A C 15 0.0239 (0.0034) 1.03 × 10–12

rs174550 11 FADS1 T C 15 0.0189 (0.0035) 8.52 × 10–08

rs11071657 15 FAM148B A G 15 0.0071 (0.0035) 4.59 × 10–02

FG-GRS 15 0.0283 (0.0009) <0.0001

Fasting insulin-related
loci

rs780094 2 GCKR C T 15 0.0168 (0.0036) 3.70 × 10–06

rs35767 12 IGF1 G A 15 0.0153 (0.0048) 1.44 × 10–03

Abbreviations: CHARGE, Cohorts for Heart and Aging Research in Genomic Epidemiology; FG-GRS, fasting glucose genetic risk score; SE,

standard error; SNP, single nucleotide polymorphism.
a Adjusted for age, sex, field center (in the Health, Aging and Body Composition Study, the Cardiovascular Health Study, the Atherosclerosis

Risk in Communities Study, the Family Heart Study, Invecchiare in Chianti, and the Multi-Ethnic Study of Atherosclerosis), and population

substructure (by principal components in the Cardiovascular Heath Study, the Family Heart Study, the Framingham Generation 5 and Offspring

Studies, the Multi-Ethnic Study of Atherosclerosis, and the Young Finns Study).
b Coded uniformly in all cohorts. Allele frequencies for each cohort can be found in Web Table 2.
c Beta coefficient and standard error for the estimated difference in fasting glucose (mmol/L) or fasting insulin (ln-pmol/L) concentration per

1-unit increase in the effect allele (the fasting glucose- or fasting insulin-raising allele), assuming an additive genetic model.
d SNP not genotyped in this cohort.
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show promise in helping to uncover gene-environment
interactions while keeping penalties for multiple testing at a
minimum (31).
Some caveats are warranted when interpreting the

present data. First, we assumed that the dietary factors most
relevant for glucose and insulin homeostasis were includ-
ed in our diet score and that these factors were measured
well. For the majority of our cohorts, we had evidence of

successful estimation of dietary intake from conventional
validation or reliability studies (described elsewhere (19)).
Moreover, our observed associations between the healthy
diet score and FG and FI levels are biologically plausible
and consistent with other major studies on this topic, thus
serving, to some degree, as evidence of construct validity.
A second potential limitation of this study is that the
global nature of our healthy diet score, which takes into
account multiple food choices, may have overwhelmed
the biologic influences of individual foods or food com-
ponents. For example, we previously studied interactions
between these same genetic loci and intake of whole-
grain foods and observed evidence of interactions between
whole grain intake and variation at the GCKR locus (19).
In contrast, in the present study, we observed no evidence
of interaction between the diet score and GCKR or any of
the other studied loci, suggesting that the signal may be
specific to whole grains (or a constituent) and that inclu-
sion of other aspects of a healthy diet diluted this signal.
Third, the magnitude of the association between the diet
score and FG and FI was modest. Although this is consis-
tent with most reports of associations between dietary
factors (which are measured with known random error)
and disease-related outcomes, results should be interpreted
with consideration of their clinical relevance. Fourth, the
selected loci explain only a small fraction of the variation
in FG and FI levels (3). Fifth, while our study was
uniquely large, it did not have sufficient power to detect
very small interaction effects; however, such small interac-
tion effects may be of limited clinical relevance. Lastly,
observational studies are prone to residual confounding
and causal inference is difficult, particularly in cross-sec-
tional studies such as ours (32). Moreover, such data
cannot inform us about the impact of changing dietary
quality in the short term, a question that is of key impor-
tance in designing preventive interventions and that re-
quires intervention studies to be adequately addressed.
Our meta-analysis of data from 15 cohort studies had

several strengths. We were able to achieve a large sample
size that far exceeded almost all previous studies of gene-
diet interactions, while also using a standardized analytic
plan and uniformly defined dietary exposures. Furthermore,
we were able to take advantage of existing observational
data which captured habitual dietary intake, perhaps most
significant in the context of gene-environment interactions
(32). Additionally, such studies possess information on im-
portant confounders, effect modifiers, or mediators of expo-
sure-outcome relations which can be used in analyses.
Much of the dietary data used in the current study came
from long-standing, well-designed studies with appropriate
assessments of data quality and a history of published nutri-
tional epidemiologic research.
Determining whether genetic loci that have been reliably

associated with complex disease traits modify associations
attributed to protective lifestyle behaviors is important
because the presence of such interactions might guide further
research and targeted disease prevention. Determining that
interactions do not exist between these loci and lifestyle be-
haviors is important, not least because direct-to-consumer
personal genome profiling is now widely available, but data

Table 5. Meta-Analyzed Effect of Interactions Between Healthy

Diet Score, Single Nucleotide Polymorphisms, and Fasting Glucose

Genetic Risk Score on Fasting Glucose and Fasting Insulin

Concentrations, CHARGE Consortiuma

SNP
No. of
Persons

Diet Score × SNP Interaction

β (SE)b P Value

Fasting glucose-
related loci

rs340874 51,063 0.0010 (0.0008) 0.22

rs560887 51,117 0.0001 (0.0008) 0.91

rs780094 50,810 0.0007 (0.0008) 0.35

rs11708067 51,403 −0.0003 (0.0009) 0.77

rs11920090 50,828 0.0000 (0.0011) 0.99

rs4607517 51,172 0.0003 (0.0010) 0.76

rs2191349 51,377 −0.0009 (0.0008) 0.23

rs11558471 51,149 0.0002 (0.0009) 0.80

rs7034200 49,146 −0.0002 (0.0008) 0.83

rs10885122 51,126 0.0001 (0.0012) 0.93

rs4506565 51,145 0.0003 (0.0009) 0.77

rs10830963 48,872 −0.0003 (0.0009) 0.78

rs7944584 50,644 0.0006 (0.0009) 0.48

rs11605924 50,720 −0.0005 (0.0008) 0.56

rs174550 51,163 −0.0007 (0.0008) 0.40

rs11071657 51,273 0.0006 (0.0008) 0.44

FG-GRS 51,120 0.0001 (0.0002) 0.67

Fasting insulin-
related loci

rs780094 35,991 −0.0011 (0.0009) 0.25

rs35767 35,739 −0.0011 (0.0012) 0.38

Abbreviations: CHARGE, Cohorts for Heart and Aging Research

in Genomic Epidemiology; FG-GRS, fasting glucose genetic risk

score; SE, standard error; SNP, single nucleotide polymorphism.
a Results were adjusted for age, sex, energy intake, field center (in

the Health, Aging and Body Composition Study, the Cardiovascular

Health Study, the Atherosclerosis Risk in Communities Study, the

Family Heart Study, Invecchiare in Chianti, and the Multi-Ethnic Study

of Atherosclerosis), and population substructure (by principal compo-

nents in the Cardiovascular Heath Study, the Family Heart Study, the

Framingham Generation 5 and Offspring Studies, the Multi-Ethnic

Study of Atherosclerosis, and the Young Finns Study).
b Beta coefficient and standard error for the estimated difference in

fasting glucose (mmol/L) or fasting insulin (ln-pmol/L) concentration

per 1-unit increase in the effect allele (the fasting glucose- or fasting

insulin-raising allele), assuming an additive genetic model,

interacting with a 1-point increase in the diet score.
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concerning the utility of the information provided by these
products and companies are not. Thus, studies such as ours
may help dispel misunderstanding about the way common
genetic variants affect disease risk and whether knowledge
of one’s genomic profile should motivate specific changes
in lifestyle, as suggested by some personal genome product
manufacturers (4). Based on the evidence reported here, we
conclude that the importance of adhering to a healthy diet
per se in maintaining glucose and insulin homeostasis is
not influenced by one’s genotypes at the loci we have
studied. Although the present study suggests that the pub-
lished variants for glucose and insulin traits do not interact
with dietary patterns, it remains possible that future studies
will discover novel loci that do interact with dietary factors.
Future studies focusing on regions of the genome other than
those that emerge as the most statistically significant main-
effect signals from GWAS may be more fruitful in identify-
ing diet-gene interactions.
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