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In a 1993 paper (Am J Epidemiol. 1993;137(1):1–8), Weinberg considered whether a variable that is associated

with the outcome and is affected by exposure but is not an intermediate variable between exposure and outcome

should be considered a confounder in etiologic studies. As an example, she examined the common practice of

adjusting for history of spontaneous abortion when estimating the effect of an exposure on the risk of spontaneous

abortion. She showed algebraically that such an adjustment could substantially bias the results even though

history of spontaneous abortion would meet some definitions of a confounder. Directed acyclic graphs (DAGs)

were introduced into epidemiology several years later as a tool with which to identify confounders. The authors

now revisit Weinberg’s paper using DAGs to represent scenarios that arise from her original assumptions. DAG

theory is consistent with Weinberg’s finding that adjusting for history of spontaneous abortion introduces bias in

her original scenario. In the authors’ examples, treating history of spontaneous abortion as a confounder introduc-

es bias if it is a descendant of the exposure and is associated with the outcome conditional on exposure or is a

child of a collider on a relevant undirected path. Thoughtful DAG analyses require clear research questions but are

easily modified for examining different causal assumptions that may affect confounder assessment.

bias (epidemiology); causality; confounding factors (epidemiology); reproductive history

Abbreviation: DAG, directed acyclic graph.

In her 1993 paper, “Toward a Clearer Definition of Con-
founding,” Weinberg focused on clarifying the definition of a
confounder in etiologic studies (1). Specifically, she noted a
situation where a variable that did not confound the estimated
effect would qualify as a confounder according to commonly
applied criteria of the time: The variable was associated with
exposure, was associated with the outcome among the unex-
posed, and was not an intermediate factor between the expo-
sure and the outcome. As an illustrative example, she
examined the common practice of adjusting for history of
spontaneous abortion when estimating the causal effect of an
exposure on the risk of spontaneous abortion. She showed,
by example, that under simplified but biologically plausible
assumptions, controlling for history of spontaneous abortion
could substantially bias the estimated risk ratio.
Since the publication of Weinberg’s paper, the use of di-

rected acyclic graphs (DAGs) to identify confounders has

become increasingly common. Concurrently, it has become
more widely recognized that a variable could appear to be a
confounder by some conventional definitions but adjust-
ment for that variable could induce bias (2–9). Numerous
published texts provide introductions to DAGs (2–7, 10).
In this paper, we assume a basic familiarity with DAGs
while revisiting Weinberg’s original work, using DAGs to
evaluate and expand upon her examples.

ORIGINAL ASSUMPTIONS

History of spontaneous abortion is predictive of pregnan-
cy loss and is often adjusted for in studies of spontaneous
abortion (11–13), presumably under the assumption that it
serves as a proxy for unmeasured confounders rather than
supposing that it causally affects the risk of subsequent
spontaneous abortions. Weinberg described a hypothetical
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study for estimating the effect of an exposure (E) (e.g.,
smoking) on the risk of spontaneous abortion in a current
pregnancy (S2) (1). The exposure was a risk factor for prior
spontaneous abortion (S1), but S1 was not an intermediate
variable between E and S2. However, S1 was associated
with the outcome among the unexposed, a commonly
applied criterion used to determine whether a variable is a
confounder when the target population is the exposed
group. Thus, S1 has often been treated as a confounder.

For simplification, Weinberg limited the example to
second pregnancies and assumed that a woman’s exposure
status remained the same across pregnancies (1). Further,
she assumed that E increased the risk of an occult abnor-
mality (A) and that A also was the same across pregnancies.
Finally, she assumed that the outcomes (S1 and S2) were
independent, conditional on A, and that Pr[Si|E, A] = Pr[Si|
A] for pregnancies i = 1, 2.

THE ORIGINAL DAG

We can use DAGs to represent possible underlying
causal relations compatible with the statistical assumptions
from Weinberg’s paper (1). In order to draw appropriate
conclusions from a DAG, it is necessary to assume that the
DAG represents the true causal relations and that it is not
missing any variable that causes any pair of variables in the
graph (5, 7). We consider several DAGs that represent vari-
ations in the scenario considered by Weinberg. Our interest
is in determining whether different DAGs compatible with
the scenario described by Weinberg lead us to the same
conclusions she reached originally (1) and whether biolog-
ically plausible revisions would cause us to revise those
conclusions.

The construction and interpretation of a DAG differs de-
pending on the causal contrast of interest and the hypothe-
sized causal relations. First, we will consider an exposure
that occurs prior to both pregnancies (e.g., in utero expo-
sure of the pregnant woman to smoking). Formally, let E
represent a dichotomous exposure where 1 indicates expo-
sure and 0 indicates no exposure, and let S2 represent a di-
chotomous outcome where 1 indicates that the second
pregnancy ended in a loss and 0 indicates that it ended in a
birth. Assuming that the target population is the exposed
group, let S2

e=1 represent the outcome of the second preg-
nancy if all exposed women were exposed and S2

e=0 repre-
sent the outcome of the second pregnancy if all exposed
women had instead been unexposed. Then the causal risk
ratio would be Pr[S2

e=1 = 1]/Pr[S2
e=0 = 1]. In the data, only

Pr[S2
e=1 = 1] would be observed (indicated Pr[S2 = 1|E = 1]).

Pr[S2
e=0 = 1] would be estimated from the experience of the

unexposed group, Pr[S2 = 1|E = 0]. If the (observed) experi-
ence of the unexposed group differed from the (unob-
served) experience the exposed group would have had if
they had been unexposed, then the estimated effect parame-
ter would be biased. Confounding could exist in the unad-
justed estimate or could be introduced by inappropriate
adjustment for covariates. In this article, we evaluate
several DAGs to determine whether adjustment for S1 intro-
duces bias. Formally, we assess whether Pr[S2

e=1 = 1]/
Pr[S2

e=0 = 1] = Pr[S2 = 1|E = 1, S1]/Pr[S2 = 1|E = 0, S1].

DAG 1A (Figure 1A) is consistent with Weinberg’s as-
sumptions and is equivalent to Figure 1b in her original
paper (1). It assumes that E causes an underlying abnormal-
ity A, which in turn affects risk of spontaneous abortion in
both pregnancies (S1 and S2). In this DAG, there is no con-
founding, so Pr[S2

e=1 = 1]/Pr[S2
e=0 = 1] = Pr[S2 = 1|E = 1]/

Pr[S2 = 1|E = 0]. Nevertheless, S1 would be considered a
confounder on the basis of some conventional criteria. S1 is
associated with S2 through an open path that does not di-
rectly involve exposure (S1← A→ S2); S1 is associated
with E because S1 is a descendant of E; and S1 is not a
causal intermediate or mediator between E and S2. Given
these conditions, the unadjusted effect estimate for E would
be expected to differ from the estimate adjusted for S1, but
based on DAG 1A, controlling for S1 would introduce bias
(i.e., Pr[S2

e=1 = 1]/Pr[S2
e=0 = 1]≠ Pr[S2 = 1|E = 1, S1]/Pr[S2 =

1|E = 0, S1]) as Weinberg stated (1), because S1 and S2 are
affected by a shared parent (A), which is an intermediate
between E and S2. In a sense, S1 is a proxy for the interme-
diate A, so adjusting for S1 is like imperfectly adjusting for
an intermediate and produces a form of bias that has been
called overadjustment bias (14). The equations from the
original paper are directly relevant to this DAG (1).

One of the advantages of DAG analyses is that one can
easily illustrate increasingly complex situations. DAG 1B
(Figure 1B) builds on DAG 1A by introducing an unmea-
sured risk factor for spontaneous abortion (Us). This addition
changes Weinberg’s simplifying assumption that S1 and S2
are independent conditional on A (1) and is more realistic.
Under DAG 1B, Pr[S2 = 1|E = 1]/Pr[S2 = 1|E = 0] is still an
unconfounded estimate of Pr[S2

e=1 = 1]/Pr[S2
e=0 = 1], and

Weinberg’s conclusion that adjusting for S1 introduces bias
still holds, because adjustment for S1 would be equivalent
to adjusting for a proxy of an intermediate. There are
further complications in DAG 1B, because S1 is also a
collider on a path from E to S2 (E→ A→ S1←Us→ S2), so
adjusting for S1 would open this path.

ADDING MULTIPLE EXPOSURES

The DAGs shown in Figure 1 indicate that E and A both
occur prior to or during the first pregnancy but affect both
pregnancies. For some exposures that do not change (e.g., in

Figure 1. A) Directed acyclic graph (DAG) 1A, in which a single
exposure (E) causes a single underlying abnormality (A) that causes
both outcomes (S1 and S2). B) DAG 1B, in which a shared cause
(Us) of S1 and S2 is added to DAG 1A.
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utero exposures of the study participant) this might be appro-
priate, but for an exposure such as participant smoking,
which can change, it is important to specify the exact research
question. Are we interested in the effect of smoking during
the first pregnancy on the outcome of the second pregnancy,
or are we interested in the effect of smoking during the
second pregnancy on that pregnancy? If the exposure of interest
were smoking during the second pregnancy, the DAG would
have to be modified to reflect the fact that smoking during the
second pregnancy cannot affect the first pregnancy.
The DAGs shown in Figure 2 represent the same expo-

sure (such as participant smoking) at 2 points in time
through 2 nodes: E1 and E2 (designating smoking during
the first and second pregnancies, respectively). In these
DAGs, the exposure during each pregnancy produces its
own underlying abnormality (such as poor response of the
endometrium to pregnancy hormones (1)), which affects
only the contemporaneous pregnancy. The new causal risk
ratio of interest is Pr½Se2¼1

2 ¼ 1�=Pr½Se2¼0
2 ¼ 1�.

Our revised DAGs require us to modify Weinberg’s as-
sumptions slightly. The original simplifying assumption that
S1 and S2 are independent conditional on A is no longer un-
ambiguous, because the abnormality may occur at 2 different
points in time. However, we can be consistent with the spirit
of the assumption in our revised DAG if S1 and S2 are inde-
pendent conditional on A1 and A2. This is the case in DAG
2A, where S1 and S2 are not associated through any open
paths that do not involve A1 and A2 and where conditioning
on either would block the otherwise open paths S1← A1←
Ua→ A2→ S2 and S1← A1← E1→ E2→ A2→ S2. In addi-
tion, we now assume Pr[Si|Ai, Ei] = Pr[Si|Ai] as an extension
of the corresponding original assumption (1). This is repre-
sented by the fact that all paths from Ei to Si go through Ai.
Weinberg’s assumptions that exposure status and abnormali-
ty status are the same for both pregnancies (E1 = E2 and A1 =
A2) are not required to evaluate the revised DAGs and are
neither indicated nor contradicted.
In DAG 2A, Pr[S2 = 1|E2 = 1]/Pr[S2 = 1|E2 = 0] is an un-

confounded estimate of Pr½Se2¼1
2 ¼ 1�=Pr½Se2¼0

2 ¼ 1� because
the only backdoor path from E2 to S2 (E2← E1→ A1←

Ua→ A2→ S2) is blocked by the collider A1. As before, S1
is not a confounder of the estimated effect of E2 on S2, but
some conventional criteria would still define it as such. S1
is associated with the outcome (S2) among the unexposed
because of the open path between them that does not
include E2 (S1← A1←Ua→ A2→ S2). This path exists
because Ua is a shared parent of A1 and A2. For concrete-
ness, we can think of Ua as a genetic factor that makes
some women liable to develop the abnormality every time
they become pregnant. In DAG 2A, S1 is associated with
the exposure of interest (via the open path E2← E1→
A1→ S1) but is not on the causal path of interest (from E2

to S2). The association between S1 and E2 is due to the as-
sumption in DAG 2A that exposure status during the first
pregnancy directly affects exposure status during the
second pregnancy (e.g., smoking is addictive, and therefore
smokers tend to continue smoking). That is to say, S1 and
E2 are associated because they share E1 as a cause.
In DAG 2A, S1 is neither a confounder nor a child of an

intermediate. It meets some conventional criteria for con-
founding because it is a child of the collider A1. Adjusting
for S1 will open a backdoor path and bias the effect estimate
(i.e., Pr½Se2¼1

2 ¼ 1�=Pr½Se2¼0
2 ¼ 1�≠ Pr[S2 = 1|E2 = 1, S1]/

Pr[S2 = 1|E2 = 0, S1]). Thus, as Weinberg described in the
original paper (1), adjusting for S1 is not appropriate. The
bias introduced by conditioning on S1 could be removed by
conditioning on E1 or Ua, provided that DAG 2A is correct
and complete. However, if the DAG were missing variables,
such as a shared cause of S1 and S2 (DAG 2B), bias could
be introduced by adjusting for S1 that would not be removed
by adjusting for Ua. In addition, adjusting for E1, a close
correlate of the exposure, would affect statistical efficiency.
In DAG 2B, the assumption that S1 and S2 are indepen-

dent conditional on A1 and A2 is relaxed by adding an
unmeasured shared cause of the pregnancy outcomes (Us).
This creates 2 backdoor paths from E2 to S2 (E2← E1→
A1←Ua→ A2→ S2 and E2← E1→ A1→ S1←Us→ S2),
but both paths are unconditionally blocked by colliders (A1

and S1, respectively). Thus, as before, the unadjusted esti-
mate would be an unbiased estimate of the causal contrast,
while adjusting for S1 would open backdoor paths between
E2 and S2, which would therefore introduce bias.
DAG 3A (Figure 3) is the same as DAG 2A and DAG 3B

is the same as DAG 2B, except that in Figure 3 the associa-
tion between E1 and E2 is due to the shared cause Ue (e.g.,
societal factors that determine smoking behavior) instead of
E1’s directly causing E2 (i.e., we no longer consider smoking
addictive). In both DAG 3A and DAG 3B, as before, the
unadjusted estimate for the effect of E2 on S2 is unbiased. In
DAG 3A, we need not condition on any covariate, because
the only backdoor path between E2 and S2 (E2←Ue→ E1→
A1←Ua→ A2→ S2) is blocked by the collider A1. Once
again, S1 is the child of the collider A1, so adjusting for S1
would also open a backdoor path and introduce bias. In
DAG 3B, it is inappropriate to adjust for S1 because it is a
collider as well as a child of a collider. This is also true in
DAG 3C, which combines DAGs 2B and 3B by allowing E2
both to be affected by E1 and to have a shared cause with E1.
DAG 3D is similar to DAG 3C, but now S1 is allowed to

affect the exposure of interest (E2). This could occur if a

Figure 2. A) Directed acyclic graph (DAG) 2A, in which exposure
during the first pregnancy (E1) causes an underlying abnormality
during the first pregnancy (A1) and exposure during the second
pregnancy (E2). E2 causes an underlying abnormality during the
second pregnancy (A2). In addition, an unknown covariate (Ua)
causes both A1 and A2, and A1 and A2 cause the corresponding
outcomes (S1 and S2, respectively). B) DAG 2B, in which a shared
cause (Us) of S1 and S2 is added to DAG 2A.
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woman modified her behavior based on the outcome of her
first pregnancy. For example, a smoker who had a spontane-
ous abortion during her first pregnancy might quit smoking
prior to her second pregnancy. This would violate Weinberg’s
original assumption that exposure was the same across preg-
nancies (1). In DAG 3D, there are unconditionally open back-
door paths through S1 (e.g., E2← S1←Us→ S2). Thus, this is
the first example in which the unadjusted estimate is biased (i.
e., Pr½Se2¼1

2 ¼ 1�=Pr½Se2¼0
2 ¼ 1�≠ Pr [S2 = 1|E2 = 1]/Pr[S2 =

1|E2 = 0]). If Us and Ua were measured, the simplest way to
block the backdoor paths would be to condition on them. If
they were unmeasured, then conditioning on S1 would be nec-
essary, but S1 is a collider on other backdoor paths (E2←
E1→ A1→ S1←Us→ S2 and E2←Ue→ E1→ A1→ S1←
Us→ S2). Therefore, additional adjustment (e.g., adjusting for
E1) would be needed to block the paths opened by condition-
ing on S1.

DAGS THAT FURTHER ALTER THE ORIGINAL

ASSUMPTIONS

Figure 4 presents DAGs that substantially modify
Weinberg’s original assumptions (1) despite being similar to

the preceding DAGs. DAG 4A is similar to DAG 2A,
except that A1 causes A2. This modification means that A1 is
no longer a collider, so there is an open backdoor path from
E2 to S2 (E2← E1→ A1→ A2→ S2). An unbiased estimate
for the effect of E2 on S2 would require adjustment for E1 or
A1. The simplest way to understand this is to note that under
this DAG, E1 is a confounder because it causes both the ex-
posure of interest (E2) and the outcome (S2). Theoretically, if
neither E1 nor A1 were measured, adjusting for S1 could
serve as a proxy for A1. However, the backdoor path would
still remain open to the degree that S1 was not perfectly cor-
related with A1 (7). For DAG 4A, the effect estimate adjust-
ed for S1 might be less biased than the unadjusted estimate.
This conclusion is incompatible with Weinberg’s original
calculations, because we have modified her assumptions.

DAGs 4B and 4C are similar to previous DAGs, except
that Ai is only directly affected by Ei. Although these DAGs
would initially appear compatible with Weinberg’s example
(1), they violate the assumption that S1 and S2 are associated
among the unexposed, because the only path between the
two pregnancy outcomes goes through the exposure of inter-
est. Consequently, S1 would not meet some conventional cri-
teria for a confounder, nor would it be a confounder based
on the DAG. If the DAG is correct, if all variables are mea-
sured perfectly, if the adjusted model is specified correctly,
and if there is no effect-measure modification, adjusting for
S1, although unnecessary, would not bias the effect estimate
(i.e., Pr½Se2¼1

2 ¼ 1�=Pr½Se2¼0
2 ¼ 1� = Pr[S2 = 1|E2 = 1]/Pr[S2 =

1|E2 = 0] = Pr[S2 = 1|E2 = 1, S1]/Pr[S2 = 1|E2 = 0, S1]) because
S1 is not a risk factor for the outcome. However, adjustment
could affect the precision of the estimate (7, 14).

OTHER EXAMPLES FROM THE ORIGINAL PAPER

Weinberg considered other scenarios in which a variable
could be mistaken for a confounder (1). She described a

Figure 4. A) Directed acyclic graph (DAG) 4A, in which exposure
during the first pregnancy (E1) causes an underlying abnormality
during the first pregnancy (A1) and exposure during the second
pregnancy (E2). E2 causes an underlying abnormality during the
second pregnancy (A2). In addition, A1 causes A2. Each underlying
abnormality causes the corresponding outcome (S1 and S2).
B) DAG 4B, which removes the effect of A1 on A2 that was present
in DAG 4A. C) DAG 4C, which alters DAG 4B so that E1 and E2

have a shared cause (Ue) instead of E1 causing E2.

Figure 3. A) Directed acyclic graph (DAG) 3A, in which an
unknown variable (Ue) causes exposure during the first (E1) and
second (E2) pregnancies. Each exposure causes the corresponding
underlying abnormality (A1 and A2). In addition, an unknown
variable (Ua) causes both underlying abnormalities, and each
underlying abnormality causes the corresponding outcome (S1 and
S2). B) DAG 3B, in which a shared cause (Us) of S1 and S2 is added
to DAG 3A. C) DAG 3C, which builds on DAG 3B by allowing E1 to
affect E2 directly. D) DAG 3D, which builds on DAG 3C by allowing
the first outcome (S1) to affect the second exposure (E2).
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general situation where E caused 2 events that were inde-
pendent given E, and the causal contrast of interest was
Pr[S2

e=1 = 1]/Pr[S2
e=0 = 1]. The simplest case can be seen in

DAG 5A (Figure 5), where the unadjusted estimate of the
effect of E on S2 is not confounded. Nevertheless, as
Weinberg reported, no bias would be introduced by adjust-
ing for S1 because S1 is not associated with the outcome
conditional on E (1, 14). However, in the more realistic sce-
nario where there is a shared cause (Us) of S1 and S2, ad-
justment for S1 is no longer benign. DAG 5B is analogous
to Figure 1c in the original paper (1). Here again there is
no confounding, so Pr[S2

e=1 = 1]/Pr[S2
e=0 = 1] = Pr[S2 = 1|E =

1]/Pr[S2 = 1|E = 0]; but in this case, adjustment for S1
induces bias by opening the path E→ S1←Us→ S2. In
DAG 5C, however, S1 is no longer a collider because there
is no association between E and S1, so adjustment for S1 is
unnecessary but would not introduce bias.
Weinberg also discussed cases where spontaneous abor-

tion might serve as a proxy for an unmeasured confounder
(Figure 6). In Figure 5, Us is not a confounder because it is
not unconditionally associated with E, but in Figure 6, Use

is a confounder on a backdoor path from E to S2. DAG 6A
represents a scenario described by Weinberg (1) in which E
is unrelated to the risk of S2 and the unadjusted estimate
would be biased because of the open backdoor path E←
Use→ S2. Adjusting for Use would block the backdoor
path. Although S1 is not a confounder, it could be used as a
proxy for Use if Use were unmeasured. However, there
would be residual confounding to the degree that Use and
S1 were not perfectly correlated. In addition, stratifying on
S1 (as Weinberg demonstrated (1)) could result in greater
bias in one stratum than in another (7), causing spurious
effect-measure modification. DAG 6B is the same as DAG
6A, except that E is allowed to have an effect on S2. This
change would not alter the above conclusions about using
S1 as a proxy for Use.
DAG 6C resembles DAG 6B, except that now E affects

both S1 and S2. Use is still a confounder, but S1 is now a

collider, so its ability to serve as a proxy for Use is compro-
mised. While adjusting for S1 as a proxy for Use might be
intended to close the backdoor path E←Use→ S2, it would
open the backdoor path E→ S1←Use→ S2. Whether the
effect estimate adjusted for S1 would be more or less biased
than the unadjusted estimate would depend on information
not captured in the DAG, such as the strength of the effects
represented by each arrow. Thus, for this example, some
bias is unavoidable unless Use is measured.

DISCUSSION

We have used DAGs to revisit the examples Weinberg
provided in her landmark 1993 paper, where a variable ap-
peared to be a confounder using commonly applied criteria
but adjustment for the variable actually introduced bias (1).
Given her assumptions, our conclusions based on several
possible DAGs matched those she derived with algebraic
examples. To summarize the conclusions of the specific ex-
amples we explored, bias may be introduced when a de-
scendant of the exposure is adjusted for if there is a path
from that descendant to the outcome that does not involve
the exposure (e.g., DAG 1A). Bias also may be introduced
by adjusting for a variable that is a collider or a child of a
collider on a noncausal path between the exposure and the
outcome of interest (e.g., DAG 2A). Both of these situa-
tions often plausibly apply to history of spontaneous abor-
tion. Thus, under several different causal structures, bias
would be introduced by adjusting for this variable. Even
when the true DAG is unknown, it is useful to draw and
evaluate several different likely possibilities because, as is
illustrated here, the conclusions may be the same under
several different causal structures.
History of spontaneous abortion could serve as a proxy

for an unmeasured confounder if it is not subject to the

Figure 5. A) Directed acyclic graph (DAG) 5A, in which exposure
(E) causes both pregnancy outcomes (S1 and S2). B) DAG 5B,
which adds a shared cause of S1 and S2 (Us) to DAG 5A. C) DAG
5C, in which E still causes S2 but no longer causes S1.

Figure 6. A) Directed acyclic graph (DAG) 6A, in which exposure
(E) has no effect on the outcome (S2). An unmeasured confounder
(Use) is a risk factor for both pregnancy outcomes (S1 and S2) and
causes E. B) DAG 6B, which builds on DAG 6A by allowing E to be
a risk factor for S2. C) DAG 6C, which builds on DAG 6B by allowing
E to affect both pregnancy outcomes (S1 and S2).
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conditions just described (e.g., DAG 6B). However, residu-
al bias would remain to the degree that reproductive history
was imperfectly associated with the true unmeasured con-
founder, and this residual bias might be worse in one
stratum than in another (7), causing apparent effect-
measure modification. Thus, use of reproductive history as
a proxy for an unmeasured confounder requires careful
consideration.

The DAGs considered here also highlight the importance
of defining the specific research question. In Figure 1, we
considered an exposure that occurred prior to the first preg-
nancy outcome, whereas in Figures 2 and 3, we considered
an exposure that occurred just prior to the current pregnan-
cy outcome. The evaluation of a potential confounder
needs to be made in the context of the specific research
question and the associated DAG.

As DAG theory has percolated into epidemiology, there
has been increasing awareness of the inadequacy of con-
ventional criteria for appropriately identifying confounders,
especially in the case where collider stratification bias may
occur (3, 7, 9). DAGs help us build useful etiologic models
by providing a transparent way to represent the causal rela-
tions between variables. They have simple rules that allow
the identification of confounders, and they allow complexi-
ty that cannot be illustrated as concisely using algebraic
proofs. However, DAGs do not provide information on the
magnitude of the effects or the magnitude of the bias intro-
duced by improper exclusion of confounders or inappropri-
ate adjustment for nonconfounders. Quantitative analyses
complement DAGs because they can be used to explore the
magnitude of these biases under specific assumptions. Nev-
ertheless, in order for a DAG (or an algebraic example) to
be effective, the research question must be clearly defined.
Even then, both approaches require simplifying assump-
tions. Despite their limitations, together quantitative sensi-
tivity analyses and DAGs improve our ability to make
causal inferences from observational data.
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