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A major challenge in mapping health data is protecting patient privacy while maintaining the spatial resolution
necessary for spatial surveillance and outbreak identification. A new adaptive geomasking technique, referred to
as the donut method, extends current methods of random displacement by ensuring a user-defined minimum level
of geoprivacy. In donut method geomasking, each geocoded address is relocated in a random direction by at least
a minimum distance, but less than a maximum distance. The authors compared the donut method with current
methods of random perturbation and aggregation regarding measures of privacy protection and cluster detection
performance by masking multiple disease field simulations under a range of parameters. Both the donut method
and random perturbation performed better than aggregation in cluster detection measures. The performance of the
donut method in geoprivacy measures was at least 42.7% higher and in cluster detection measures was less than
4.8% lower than that of random perturbation. Results show that the donut method provides a consistently higher
level of privacy protection with a minimal decrease in cluster detection performance, especially in areas where the
risk to individual geoprivacy is greatest.

cluster analysis; confidentiality; demography; epidemiologic methods; population surveillance; public health practice

Advances in geostatistical computing have enabled epide-
miologists to examine the spatial and spatio-temporal distri-
bution of diseases by mapping patient location information.
Disease maps have a wide range of applications, from hy-
pothesis generation to public health surveillance. Assessment
of the spatial heterogeneity of a disease within a specified
time frame allows investigators to highlight areas with un-
usually high or low rates, identify spatial patterns that may
indicate clusters or ‘‘hot spots’’ of disease, or obtain clues as
to disease etiology and community-level risk factors through
ecologic regression studies (1–3). In addition, spatial patterns
of disease may change over time, possibly serving as a geo-
graphic early warning disease surveillance system when case
data are mapped in real time (4, 5). At the policy level,
disease maps may aid decisions regarding intervention or
prevention programs, allocation of health care resources,
and assessment of inequalities or provide context for further
epidemiologic studies (2, 6).

In the United States, a number of laws and guidelines,
such as the Public Health Service Act (1946), the Privacy

Act of 1974, and the Health Insurance Portability and Ac-
countability Act (1996), place restrictions on the collection
and dissemination of data in order to protect patient confi-
dentiality and prevent identification of individuals (7, 8). In
disease mapping, publishing maps that use exact patient
location information jeopardizes patients’ privacy because
of ‘‘reverse geocoding’’ techniques. Reverse geocoding can
generate an approximate address based on a latitude and
longitude (9, 10). Consequently, geographic location is con-
sidered a personal identifier that could breach patient or
study subject confidentiality if known, so it presents an eth-
ical hurdle requiring justification for inclusion in data sets
and analyses. A major challenge in working with geographic
health data then becomes protecting patient confidentiality
while maintaining the spatial resolution necessary for
small-area analyses such as outbreak and cluster detection.
This problem also extends to the sharing of data with re-
searchers and analysts. Many governmental agencies have
access to sensitive information combined with address data.
Sharing these data directly with researchers may compromise
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individuals’ privacy. Thus, patients’ geoprivacy must be pro-
tected so that individuals cannot be identified through loca-
tional information (7, 11).

In response, a variety of methods have been proposed that
modify the geographic coordinates of the original data set to
mask patients’ locational information. The aim of these geo-
masks is to protect patient geoprivacy while allowing for
valid geographic analyses of the data (12). However, when
geomasks are used, a trade-off exists between privacy pro-
tection and accuracy of analytical results (7, 8, 13). For ex-
ample, the most common geomasking practice is to aggregate
individual-level information to preexisting administrative or
political boundaries, such as census tracts or zip codes. Al-
though patient geoprivacy protection improves, aggregation
causes a loss in data resolution. If the disease process operates
at a finer resolution than the aggregated data, aggregation
decreases the power, sensitivity, and specificity of detecting
an excess risk (4, 7, 12, 14, 15). For example, if addresses are
analyzed as center points of zip code or census tracts, spatial
cluster detection algorithms perform worse than when ad-
dresses are analyzed at exact locations, particularly when
case locations of a single cluster cross administrative bound-
aries (8). Similarly, the farther a point is moved from its
original location, the greater the introduced error. This error
increases the magnitude of anonymization but decreases spa-
tial detection performance (13).

Other geomasks, such as random perturbation, have been
proposed that reduce the amount of introduced error in the
data set, which improves cluster detection performance but
also increases the risk to patient privacy. For example, in
random perturbation masking, each individual point is
moved a random distance in a random direction from its
original location. However, as shown in Figure 1, the ran-
domly generated masked point may be located on or near
the original coordinates. This is a problem because, while
the number of individuals geomasked to their original loca-
tions may constitute only a small proportion of the overall
data set, an adversary intent on reidentification may reverse

geocode all points with the assumption that a few individ-
uals will be correctly identified. Furthermore, researchers
analyzing surveillance data from government agencies, such
as departments of public health, may be restricted from
accessing any individually identifiable health information,
in which case anonymity of all individuals must be ensured
before data access is granted (16). Methods are needed that
protect geoprivacy without significantly affecting the accu-
racy of analytical results.

In this simulation, we examine a new adaptive geomask-
ing technique, referred to as the donut method, which ex-
tends current methods of random displacement by ensuring
that an address is not randomly assigned on or too near its
original location. Although versions of the donut method
have been proposed for use with mobile systems and envi-
ronmental exposure data (16, 17), we examine the donut
method here as it applies to disease mapping. In donut
method geomasking, each geocoded address is relocated
in a random direction by at least a minimum distance, but
less than a maximum distance (10). In addition, each point is
moved a distance inversely proportional to the underlying
population density, which provides privacy protection while
minimizing the introduced spatial error (10, 12, 13). For
example, persons in high-density urban areas do not need
to be moved as far as persons in low-density rural areas to
achieve the same magnitude of anonymization. The donut
method is an adaptive geomask because the dimensions of
the mask around each point vary to meet specified anonym-
ity constraints based on the underlying population density
(16, 17). Accounting for population density variation also
optimizes the donut method by minimizing the distances
required for privacy protection while maximizing analytical
validity.

In this implementation of the donut method, we retained
each geomasked location within the administrative bound-
aries of the original point. Since the population at risk is
often derived from areal demographics, it is important to
keep geomasked points within their original administrative

Figure 1. Comparison of random perturbation (left) and donut method (right) geomasks. For a given Max k geoprivacy level, the Euclidean
distanceR2 is calculated for each point from the underlying population density. The population within a circular region of radiusR2 around a point is
equal to Max k, with R2 being the maximum distance the point may be displaced from its original location. For the donut method (right), a Min k
(dotted) is also given that defines the minimum displacement R1. The actual distance displaced, r, ranges in value from 0 to R2 for random
perturbation (left) and from R1 to R2 for the donut method (right). The population within the circular region of radius r (striped) is the actual k
achieved by the geomask.
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boundaries to maintain each case with its associated popu-
lation at risk. Doing so also allows researchers to derive
accurate aggregated data without accessing the original data
set since aggregation of the geomasked points matches that
of the original locations. However, the donut method may be
implemented without the administrative boundary restric-
tion, depending on the research environment. We compared
the donut method with simple random perturbation and
aggregation to assess its effectiveness in terms of both
cluster detection and protection of patient geoprivacy.

MATERIALS AND METHODS

We constructed 3 disease field simulations over a 4-county
region of varying population density to assess how a health
data set is affected by geomasking (Web Figure 1, the first of
2 supplementary figures posted on the Journal’s Web site
(http://aje.oupjournals.org/)). Each disease field consisted of
endemic background cases spatially distributed across the
study area and 3 injected case clusters. The background cases
were generated by assigning a random incidence rate, be-
tween 0 and 500 infections per 100,000 people, to each cen-
sus block group. The endemic incidence rate was then
combined with the 2000 US Census population to determine
the number of background cases per block group, which were
placed a random distance from the areal centroid but within
census block group boundaries (18). We then injected 3
circular clusters into the disease field.

Cluster center points were identified in one region each of
low, medium, and high population density. Cluster cases were
then distributed a random distance and direction from each
center point using a uniformly distributed pseudo-random
number generator in theMATLABprogramming environment
(19). Cluster cases were also allowed to cross administrative
boundaries, resulting in clusters that spanned multiple census
block groups. To reflect the observed local spatial structure of
an infectious disease such as gonorrhea (20, 21), the radius of
each cluster was proportionate to the underlying population
density. Therefore, cluster cases in the high-density area were
spatially more compact than cluster cases in the low-density
area. However, between disease fields, in addition to having
different endemic incidence rates, themaximumcluster radius
was varied manually to ensure 3 distinct data sets.

Geomask definitions

Aggregation sets the benchmark for privacy protection
when comparing current geomasking methods, while ran-
dom perturbation has been demonstrated to provide superior
cluster detection performance. Each of the baseline disease
fields was therefore masked using the donut method (Figure
1), random perturbation, and aggregation to the centroid of
the census block group.

In random perturbation geomasking, points are displaced
randomly within a circular region around their original lo-
cations. In donut method geomasking, points are moved at
least a minimum distance and are therefore displaced in
a torus, or donut-shaped region, around their original loca-
tions. With both random perturbation and the donut method,
the maximum distance a point can be displaced from its

original location corresponds to the outer radius R2 of the
geomask around that point (Figure 1).

To determine R2, we used the k-anonymity metric, where
k refers to the number of people among whom a specific de-
identified cluster case cannot be reversely identified (13,
22). For example, if an individual case is moved a distance
R2 from its original location, the k-anonymity achieved by
the displacement is the population within a circular region
of radius R2 around the original point. Conversely, given
a desired k-anonymity level, R2 may be calculated from
the underlying population density. The R2 radius of a partic-
ular point is the same for both random perturbation and
donut method geomasks, but it will vary from point to point
since cases in low-density areas need to be moved farther
distances than those in high-density areas in order to achieve
the same magnitude of k-anonymity. We used predefined
maximum k-anonymity, or Max K, levels to calculate sets
of R2 radii for each disease field. For the donut method,
a minimum k-anonymity, or Min K, was also defined to
determine the inner radius R1 of the torus, or the minimum
distance each point was to be moved. Each disease field was
geomasked at multiple Max K and Min K values to examine
how changing the size of the random perturbation and donut
method geomasks affected results.

To determine the actual distance and angle to move each
point in random perturbation and donut method geomask-
ing, a uniformly distributed pseudo-random number gener-
ator in MATLAB (19) was used, bounded by the condition
that the new coordinates fall within the specified geomask
region. Another condition was that points not be displaced
out of their original administrative boundaries. Therefore,
for a point located near the edge of its census block group,
the geomask regions would be dissected by the block group
boundaries, resembling a rough ‘‘slice of pie’’ for random
perturbation and an ‘‘eaten donut’’ for the donut method.
For aggregation geomasking, points were displaced to the
centroid of their respective census block groups.

Since the aggregation geomask is based on administrative
boundaries, it does not vary from point to point because of
anonymity constraints and is therefore a ‘‘fixed’’ mask. In
contrast, the donut method is an adaptive mask because the
range of themask at eachpoint is determined by the underlying
population density and user-specified minimum and maxi-
mum k-anonymity. Random perturbation may be considered
‘‘semiadaptive’’ because, while its outer radii may vary, it is
not bounded by any minimum anonymity constraint.

Privacy protection

The k-anonymity metric was also used to measure privacy
protection performance. As shown in Figure 1, if an indi-
vidual case is moved an actual distance r from its original
location, the actual k achieved by the displacement is the
population within a circular region of radius r around the
original point. Higher actual k values correspond to higher
magnitudes of anonymization. Therefore, how well each
geomask performed with respect to privacy protection was
assessed by recording the actual distance that points were
displaced from their original location and then calculating
the actual k achieved with each method.
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Cluster detection

Geomasking introduces error into the data set, which af-
fects the performance of cluster detection algorithms such as
the spatial scan statistic test implemented by the SaTScan
program (8). The ideal outcome would be for geographic
analysis of the geomasked data to match that of the original
data set. Therefore, we compared the sensitivity and speci-
ficity of the donut method masked, random perturbation
masked, and aggregated disease fields with those of the
baseline (unmasked) data to assess how geomasking af-
fected cluster detection performance.

Cluster detection performance was analyzed for each dis-
ease field iteration with the SaTScan Spatial Bernouilli
Model scanning algorithm (23, 24). We used a circular scan-
ning window to identify the most likely clusters and assign
them a P value. We assumed spatial clustering when the P
value of SaTScan-identified clusters was less than 0.05 on
the basis of 999 Monte Carlo simulations.

Cluster detection sensitivity and specificity were calcu-
lated for each masking technique. Sensitivity was defined as
the number of simulated cluster cases identified by SaTScan
divided by the total number of cluster cases injected into
each disease field. Specificity was defined as the number of
endemic background cases not belonging to SaTScan clus-
ters divided by the total number of endemic cases.

RESULTS

We examined how the donut method compared with cur-
rent methods of random perturbation and aggregation in
protecting patient privacy while maintaining cluster detec-
tion performance by masking multiple disease field simula-
tions under a range of parameters. Each of the 3 disease
fields consisted of approximately 2,500 endemic back-
ground cases and 150 cluster cases (3 clusters 3 50 cases).
We examined how the size of the random perturbation and
donut method geomasks affected the results by geomasking
each disease field for 10 different Max K levels with 20
iterations per level. Thus, a total of 600 iterations were
generated for random perturbation and donut method
geomasking (3 disease fields 3 10 Max K levels 3 20
iterations/level). For the donut method, Min K was defined
as 10% of the Max K level.

Distance displaced and k-anonymity

Random perturbation and donut method geomasks protect
patient privacy by displacing cases random distances from
their original location within a defined region. In random
perturbation geomasking, the distance that points are dis-
placed range in value from 0 to the upper limit of R2, as
determined by the Max K level and underlying population
density. In donut method geomasking, distance values range
from the lower limit of R1, as determined by the Min K level,
to the upper limit of R2.We plotted density scaled histograms
of the Euclidean distance moved (Figure 2a and b) and actual
k achieved (Figure 2c and d) for all points masked using
random perturbation and the donut method at a Max K level
of 1,000 people to examine how far points in our simulation

were displaced from their original locations. As shown in
Figure 2a, the majority of random perturbation masked points
were displaced very small distances, with the highest likeli-
hood being a value at or near zero. Correspondingly, most
random perturbation masked points had an actual k value of
zero (Figure 2c), placing them at high risk of reidentification.

In comparison, the distance distribution of donut method
masked points (Figure 2b), while also skewed toward the
lower bound, had all positive values. With a Min K level of
100 people, all lower-bound values of R1 were greater than
zero (Figure 2b), and donut method masked points were
displaced far enough from their original locations to ensure
an actual k value of at least the Min K level. As shown in
Figure 2d, the minimum actual k value achieved with the
donut method was 100 people. Compared with random per-
turbation, the donut method reduces risk to patient privacy
by ensuring that all points achieve at least the user-defined
Min K value.

Privacy protection performance

We examined random perturbation and donut method geo-
masking at 10 different Max K levels. As the Max K level
increased, so did the outer radius R2, and thus the size, of the
random perturbation and donut method geomasks around
each point. Increasing geomask size increased the amount
of error introduced into the data set, thereby raising the level
of privacy protection. Figure 3a shows the mean actual k
achieved by random perturbation, donut method, and aggre-
gation geomasking, averaged across all disease field simula-
tions, as a function of the Max K level. Because the distance
displacements from aggregation are independent of the Max
K level, the aggregation mean actual k value remains constant
through the plot and serves as a benchmark against which to
compare random perturbation and the donut method.

At all levels, the donut method mean actual k was greater
than that of random perturbation, with the difference increas-
ing as the Max K level increased. For Max K levels of less
than 3,000 people, aggregation yielded a higher value than
the donut method and random perturbation. However, for
higher levels of Max K, the mean actual k of the donut
method surpassed that of aggregation. In other words, the
donut method provided a consistently higher level of patient
privacy when compared with random perturbation. Com-
pared with aggregation, the donut method performed worse
at low levels of Max K, but, as Max K and the size of the
geomask increased, the donut method provided increasingly
higher levels of privacy protection that quickly outperformed
the level achieved by aggregation.

Cluster detection performance

Increasing the amount of error introduced with greater
privacy protection decreases cluster detection performance
(13). Figure 3 also displays the average sensitivity (Figure
3b) and specificity (Figure 3c) from SaTScan analyses of the
baseline, random perturbation masked, donut method
masked, and aggregated disease fields as a function of the
Max K level. Since the spatial distributions of points in the
baseline and aggregated disease fields are independent of
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the Max K level, their sensitivity and specificity values are
also independent of Max K and therefore are constant
through the plots. Analyses of the baseline disease fields
yielded the highest average values and serve as a benchmark
against which to compare the geomasked data.

With respect to sensitivity (Figure 3b), random perturba-
tion geomasking yielded values closest to the baseline re-
sults. Donut method sensitivity values were similar to
random perturbation values at low levels of Max K, but they
diverged as Max K increased, particularly at levels greater
than 5,000 persons. However, at all but the greatest Max K
level, both the donut method and random perturbation per-
formed better than aggregation. Similarly, in terms of spec-
ificity (Figure 3c), both the donut method and random
perturbation yielded values that were higher than aggrega-
tion at all levels and that closely matched the baseline re-
sults. As shown in Figure 3b, the sensitivity of the donut
method and random perturbation were comparable and
outperformed aggregation at Max K levels below 5,000 per-
sons. At higher Max K levels, donut method cluster detec-
tion sensitivity declined at a faster rate and performed worse
than that of random perturbation.

Although Figure 3 shows the relative performance of the
geomasking methods, the magnitude of the difference be-
tween geomasks is difficult to assess because of differing
units between plots. To further examine the relative trade-
off between the donut method and random perturbation
regarding measures of privacy protection and cluster detec-
tion, we plotted the percent change in mean actual k, sensi-
tivity, and specificity values when using the donut method
over random perturbation as a function of the Max K level
(Figure 4). The percent change in mean actual k ranged from
42.7% to 110.5%. The percent change in sensitivity ranged
from 0% to �4.8%; the percent change in specificity hov-
ered around zero. These results show that, compared with
random perturbation, the minimum percent increase in
privacy protection with the donut method is approximately
9 times greater than the maximum decrease in cluster
detection measures.

DISCUSSION

Aggregation is a commonly used geomasking method
because of the magnitude of anonymization it provides.

Figure 2. For a given geoprivacy level (Max k ¼ 1,000), shown are density-scaled histograms of the A) distance displaced with random
perturbation, B) distance displaced with the donut method, C) actual k achieved with random perturbation, and D) actual k achieved with the
donut method (all iterations). With the donut method, points were perturbed at least a minimum distance from their original locations. Correspond-
ingly, the donut method maintained a minimum level of k-anonymity with more points achieving higher actual k values.
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However, particularly for local phenomena that cross ad-
ministrative boundaries, aggregation obscures spatial details
needed for in-depth geographic analyses. In contrast, ran-

dom perturbation masking allows access to health data at the
geopoint level but may not sufficiently protect patient pri-
vacy. Suggested ways to improve random perturbation in-
clude using a normal random number generator to spread
out the distance distribution, but these methods do not elim-
inate the possibility in random perturbation that a point may
be placed on or near its original location. Other proposed
methods, such as linear programming (25), require specific
information, such as the locations of all possible patients,
that is unavailable for most study areas.

In this simulation study, the donut method, a straightfor-
ward extension of current geomasking methods, provided
a consistently higher level of privacy protection with a gen-
erally minimal decrease in cluster detection performance.
The donut method was particularly valuable at low levels of
k-anonymity where the risk to individual geoprivacy is
greatest. As shown in Figures 1 and 2, the donut method
relocated each case in the data set far enough from its orig-
inal location to ensure at least a minimum level of anonym-
ization. Furthermore, the donut method provides this
minimum level of privacy protection without sacrificing an-
alytical validity. Examination of actual k values below the
50th percentile shows that the donut method provided a clear
advantage in privacy protection at lower percentiles while

Figure 3. Average A) actual k, B) sensitivity, and C) specificity for random perturbation and the donut method as a function of Max k. At all levels,
the donut method, compared with random perturbation, achieved higher average k-anonymity. Regarding sensitivity, both random perturbation and
the donut method performed worse than baseline (no geomasking) and better than aggregation, with no significant difference in specificity.

Figure 4. Average percent change between random perturbation
and donut method values as a function of Max k. The percent change
in mean actual kwas significantly higher and increased at a faster rate
than that of sensitivity and specificity.
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maintaining the same cluster detection sensitivity as random
perturbation (Web Figure 2).

Another major advantage of the donut method is the ability
to solicit user input in determining the minimum and maxi-
mum levels of privacy protection. Factors such as population
density, endemic disease frequency, cluster size, and social
stigma associated with the disease may influence the optimal
level of anonymization. In addition, the donut method is able
to incorporate suggested improvements for other point geo-
masks, such as using demographic characteristics of the un-
derlying population to determine the privacy protection level.
For example, in addition to population density, gender- and
age-based adjustments may be used to determine the inner
and outer radii of the donut to account for spatial variation in
population distribution patterns (13). Additional research is
needed to examine the optimal parameters of the donut
method geomask in real-world settings.

We used simulated data to model the spatial pattern of
real-world disease fields that may not completely reflect
performance with actual data. For example, while the size
and shape of real-world disease clusters are often irregular,
we injected circular clusters into the simulated baseline dis-
ease fields. In these analyses, we used a circular SaTScan
window, which maximized the likelihood that the unmasked
cluster cases would be identified. Additional research will
be required to investigate the performance of geomasks
when applied to real-world data sets and examined with
a variety of outbreak detection tools.

With increased use of geographic information systems,
geocoded addresses offer new insights and opportunities
for epidemiologic research and public health planning.
However, unmodified geocoded addresses threaten the pri-
vacy and confidentiality of patients and research partici-
pants. As implemented for other forms of private health
and personal identifying information, obscuring individ-
uals’ locational information is critical, yet often overlooked.
The donut method presented here provides researchers and
public health practitioners with a flexible technique that
maximizes privacy protection with minimal loss of geo-
graphic resolution to accurately detect disease clusters.

To facilitate dissemination of the donut method, source
code written for the MATLAB program (19) detailing our
application of this method is available on the University of
North Carolina (UNC)–BMElab Web page by accessing
http://www.unc.edu/depts/case/BMElab/ and clicking on
the ‘‘donutGeomask’’ link in the left-hand menu. Readers
interested in other versions should contact the correspond-
ing author.
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