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Abstract
Background: Epidemiologic studies of choline and betaine intakes have been sparse because a
food-composition database was not available until recently. The physiologic relevance of a variation
in dietary choline and betaine in the general population and the validity of intake assessed by food-
frequency questionnaire (FFQ) have not been evaluated.

Objective: This study was conducted to examine the physiologic relevance and validity of choline
and betaine intakes measured by an FFQ.

Design: We examined the relations between choline and betaine intakes measured by FFQ and
plasma total homocysteine (tHcy) concentrations in 1960 participants from the Framingham
Offspring Study.

Results: Higher intakes of dietary choline and betaine were related to lower tHcy concentrations
independent of other determinants, including folate and other B vitamins. For the lowest and highest
quintiles of dietary choline plus betaine, the multivariate geometric means for tHcy were 10.9 and
9.9 μmol/L (P for trend < 0.0001). The inverse association was manifested primarily in participants
with low folate intakes (P for interaction < 0.0001). Among participants with folate intakes ≤250
μg/d, the geometric mean tHcy concentrations in the lowest and highest quintiles of choline plus
betaine intakes were 12.4 and 10.2 μmol/L (P for trend < 0.0001). Except for choline from
phosphatidylcholine, individual forms of choline were inversely associated with tHcy concentrations.

Conclusions: Our findings provide support for a physiologically important variation in choline
and betaine intakes in the general population and for the validity of intake measured by FFQ.
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INTRODUCTION
Choline is an essential human nutrient that serves several biological functions. It is a source
of methyl groups, a precursor for the synthesis of phospholipids such as phosphatidylcholine
and sphingomyelin, and a precursor for the synthesis of the neurotransmitter acetylcholine
(1). Betaine is an osmolyte in addition to its function as a methyl-group donor (2).
Homocysteine is converted to methionine by acquiring a methyl group. Folate can donate a
methyl group to homocysteine; alternatively, choline is converted to betaine, which can donate
a methyl group to homo-cysteine. Extensive epidemiologic research has identified low folate
intake as a risk factor for neural tube defects, cardiovascular diseases, and several cancers
(3-5). However, epidemio-logic studies on dietary choline and betaine are few because a food-
composition database was available only recently (6). In a case-control study, higher choline
intake was associated with a reduced risk of neural tube defect independent of folate intake
(7). Choline may also be related to other diseases such as neurodegenerative disorders,
including Alzheimer disease, through mechanisms unrelated to methyl-group metabolism (8).
Higher betaine intake was also related to improvement in atherosclerosis (9) and fatty liver
(10).

An elevated plasma concentration of total homocysteine (tHcy) is a risk factor for
cardiovascular disease (11-16), dementia (16,17), Alzheimer disease (16,17), some cancers
(18-22), and mortality (23,24). Many studies have found that intakes of folate and vitamins
B-6 and B-12, nutrients involved in methyl-group metabolism, predict tHcy concentrations
(13,25-32). Therefore, it is plausible that intakes of choline and betaine also predict tHcy
concentrations. In our study, to assess the physiologic role of choline intake in a free-living
population, we examined the relation between intake of choline measured by a food-frequency
questionnaire (FFQ) and plasma total tHcy concentrations from participants in the Framingham
Offspring Study. Several known determinants of tHcy, including intakes of folate, vitamin B-6,
alcohol, and caffeine, predicted tHcy concentrations in this population (28) and were accounted
for in the current analyses.

SUBJECTS AND METHODS
Subjects

Participants in this analysis were members of the Framingham Offspring Study, who were
offspring and their spouses of the participants in the Framingham Heart Study, an
epidemiologic study of heart disease. The Framingham Heart Study was established in
Framingham, MA, between 1948 and 1950 with a cohort of 5209 men and women aged 30-59
y (33). By 1971, the original cohort included 1644 husband-wife pairs and 1921 single
individuals. The offspring of the original cohort and the offsprings' spouses were invited to
participate in the Framing-ham Offspring Study in 1971. Overall, 5135 of the 6838 eligible
individuals participated in the first examination (34,35); 82% of the participants lived in
Massachusetts. The age range of participants was between 12 and 58 y, but most were between
20 and 52 y at the first round of examinations, which was begun in 1971 and completed in
1975. The Offspring cohort undergoes repeat examination approximately every 3–4 y. Nearly
all participants are whites. Of the 3799 individuals who attended the fifth examination cycle
of the study between 1991 and 1994, 1960 (920 men and 1040 women) had valid FFQs; had
complete data on plasma tHcy, vitamin, and creatinine concentrations; were free of diagnosed
cardiovascular disease; and were not taking medications that might alter tHcy concentrations
(28). These men and women were included in the current analyses. The mean age of the
participants was 54 y for both men and women, with a range of 28-82 y. The procedures and
protocols of the study were approved by the Institutional Review Board for Human Research
at Boston Medical Center.
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Measurements
Usual dietary intake was assessed with a semiquantitative FFQ covering ≈130 food items
(36). Before the fifth examination of the cohort, the FFQ was mailed to participants, who were
asked to complete the form and bring it to their appointments. The questionnaire also included
items about the use of vitamin supplements and the type of breakfast cereal most frequently
consumed.

The choline and betaine composition of individual foods was added to the FFQ's nutrient
database (Harvard University Food Composition Database) with the use of values published
by Zeisel et al (6) and from the US Department of Agriculture's choline database (37). Total
choline intake was calculated as the sum of intake from free choline, phosphocholine,
glycerophosphocholine, phosphatidylcholine (lecithin), and sphingomyelin. We used the
regression-residual method to adjust nutrient intakes for a total energy intake of 1803 kcal/d
(median energy intake in this population) (38).

As part of the fifth cohort examination, fasting (>10 h) blood samples were obtained for
measurement of tHcy (28). Plasma tHcy was measured by HPLC with fluorometric detection
(39). The CV for the assay was 8%.

Statistical analyses
To determine the main food sources of choline and betaine in this population, we calculated
the contribution of each food in the FFQ by summing the amount consumed by all participants
and dividing this by the total intake from all foods for all participants (40). We used
logarithmically transformed tHcy concentrations to improve normality of the distribution and
exponentiated the values to provide geometric means and 95% CIs. We assessed the age- and
sex-adjusted and multivariate-adjusted geometric mean tHcy concentrations and 95% CIs
within quintiles of dietary choline and betaine by using SAS PROC GLM (version 8.2; SAS
Institute, Cary, NC). Multivariate-adjusted models included age, sex, smoking, alcohol intake,
caffeine intake, hypertensive medication use, serum creatinine concentrations, and intakes of
fo-late, vitamin B-6, and vitamin B-12; all of these were predictors of tHcy concentrations in
this population or other populations (27,28). Tests for trend were conducted by using the
median value for each category of intake as a continuous variable. Tests for interaction were
conducted by introducing an interaction term (choline plus betaine × the factor of interest) in
a multivariate model.

RESULTS
Mean intakes and correlations of energy-adjusted choline and betaine in the Framingham
Offspring Study are presented in Table 1. The energy-adjusted mean (±SD) choline intake was
313 ± 61 mg/d. The mean values were 314 mg/d for women and 312 mg/d for men.
Approximately half of choline intake came from phosphatidylcholine. The energy-adjusted
mean for betaine intake was 208 ± 90 mg/d. The mean values were 216 mg/d for women and
200 mg/d for men. The correlation between choline and betaine was low, because food sources
were quite different. The correlations between the choline and betaine and the B vitamins which
are related to methyl-group metabolism (folate and vitamins B-6 and B-12) are of interest
because these nutrients share food sources. However, the correlations between betaine and
these vitamins were low (0.27 for folate, 0.20 for vitamin B-6, and 0.10 for vitamin B-12). The
correlations between choline and these vitamins were modest also (0.21 for folate, 0.32 for
vitamin B-6, and 0.34 for vitamin B-12).

The main dietary sources of choline and betaine in this cohort are listed in Table 2; these figures
were calculated from the composition of a given food and its frequency of consumption (40).
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Animal-based foods, including red meat, poultry, milk, and eggs, were the main sources of
choline. Grain products and vegetables such as spinach and beets were the main sources of
betaine. Ten main sources of these nutrients accounted for 65% of choline intake and 81% of
betaine intake.

Higher intakes of choline and betaine were each related to lower plasma tHcy concentrations
(Table 3). The associations were consistent in age- and sex-adjusted analyses and in
multivariate analyses that adjusted for other predictors of tHcy concentrations, including
intakes of folate and B vitamins. Because choline is irreversibly converted to betaine when it
donates a methyl group to tHcy, we also combined the intakes of choline and betaine; the
combined values also predicted tHcy concentrations. For the lowest and highest quintiles of
combined dietary choline and betaine, the multivariate geometric mean tHcy concentrations
were 10.9 and 9.9 μmol/L, respectively (P for trend < 0.0001), after adjusting for multiple
predictors of tHcy concentrations. The intakes of all of the individual choline compounds
predicted tHcy concentrations except phosphatidylcholine (Table 4).

Because either folate or choline (through betaine) can donate a methyl group to tHcy, it is
plausible that the pathway mediated by choline and betaine becomes more important when
folate intake is low. To evaluate this hypothesis, we stratified the association between intake
of choline plus betaine and tHcy concentrations by 3 levels of folate intake (≤250, >250 to
≤400, and >400 μg/d; Table 5). Consistent with our hypothesis, choline plus betaine predicted
tHcy only when folate intake was low (≤250 μg/d; P for interaction < 0.0001). For increasing
quintiles of dietary choline plus betaine, the corresponding mean tHcy concentrations were
12.4, 11.2, 10.7, 10.8, and 10.2 μmol/L (P for trend < 0.0001).

Alcohol is a folate antagonist and reduces bioavailable folate concentrations (41,42). Choline
plus betaine predicted tHcy concentrations only among alcohol drinkers (P for interaction =
0.03) (Table 5).

We also examined the association between dietary choline plus betaine and tHcy concentrations
by age (≤50, 51–60, and >60 y) and sex (male and female) (Table 5). The associations did not
differ by age groups (P for interaction = 0.29) but differed by sex; men showed a stronger
association than did women (P for interaction = 0.004).

DISCUSSION
In our study, intakes of choline and betaine predicted plasma tHcy concentrations independent
of other important predictors, including intakes of folate and B vitamins. The inverse
association between choline plus betaine and tHcy concentrations was manifested among
participants with low folate intake and participants consuming alcohol.

Choline has several biological functions. Along with folate, it is a source of methyl groups.
Choline is oxidized to betaine, which can donate a methyl group to homocysteine to form
methionine. Choline is involved in lipid transport as a precursor for phospholipids such as
phosphatidylcholine and sphingomyelin, which are incorporated into cellular membrane and
are involved in signal transduction (1). Choline affects nerve signaling as a precursor for the
neurotransmitter acetylcholine and is essential in brain development and normal memory
function (43-47). Perturbation of phospholipid metabolism and neurotransmitter production
may underlie development of degenerative diseases such as Alzheimer disease. Animal studies
have found that prolonged depletion of choline promotes fatty liver, DNA hypomethylation,
and tumor development in the liver even in the absence of any additional carcinogens
(48-50). Betaine is an osmolyte; protects cells, proteins, and enzymes from environmental
stress (2); and shows a beneficial effect for atherosclerosis (9) and fatty liver (10). Until
recently, dietary choline and betaine have not been extensively investigated in epidemiologic
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studies because of lack of food-composition databases. Whether choline and betaine intakes
would be measured accurately by using an FFQ and whether the variation of intake in the
general population is physiologically important have not been examined. Our findings provide
strong evidence that choline and betaine intakes measured by FFQs are valid and support the
contention that variation in intake among free-living populations is physiologically
meaningful.

Although choline is synthesized in the body, humans still need choline from diet. The
recommended daily intake was set in 1998 at 550 mg/d for men and 425 mg/d for women
(51). Our data show that mean intake in this population is lower than the recommended daily
intake. A study measured the choline content of ad libitum diets by healthy adult volunteers
housed in a clinical research center and compared these with intake from 3-d food records
assessed immediately before study enrollment (52). Male and female subjects consumed 631
and 443 mg choline/d when observed, but the intakes estimated from the food records were
significantly lower. This difference between observed and reported intakes was not apparent
when data were normalized for energy intake, which suggests that the choline composition of
the diet was reported accurately but that energy intake was underre-ported on the food records
(52).

Although choline is widely available in food, our data show that most choline intake in the
general population comes from only a few food sources. Humans can obtain betaine either
from diet or from endogenous synthesis from choline. Most betaine intake in our population
also came from limited food sources.

Methylation of homocysteine by choline and betaine is confined to the liver and kidney, but
methylation of homocysteine by folate exists in all body cells (53). Methylation pathways
mediated by choline and betaine and folate are interrelated; disruption of one pathway may
affect the others. Studies among animals and humans support this possibility. Animals with a
choline-deficient diet had lower hepatic folate concentrations (54), and animals with folate
deficiency had depletion of hepatic choline concentrations (55). Folate supplementation raised
plasma betaine concentrations in a clinical trial (56). Depletion and subsequent repletion of
folate intake affected plasma choline concentrations (57). An inverse association between
plasma betaine and tHcy concentrations was most pronounced at low serum folate
concentrations (58). Our data also show that choline and betaine intakes affect tHcy
concentrations and, presumably, methyl-group metabolism, especially when folate intake is
low. In other words, even if folate intake is low, methyl-group metabolism may function
properly if choline and betaine intakes are adequate. This may help explain some discrepancies
in the findings of previous epidemiologic studies that examined folate intake and chronic
diseases (59). In a case-control study, higher maternal periconceptional choline and betaine
intakes were associated with a reduced risk of neural tube defects, a disease related to one-
carbon metabolism (7); the multivariate odds ratio for the highest compared with lowest
quartile of choline intake was 0.51 (95% CI: 0.25, 1.07), independent of folate intake.

Depletion of choline intake in humans raised plasma tHcy concentrations after a methionine
load (60), and betaine supplementation reduced the elevation of plasma tHcy concentration
after a methionine load (61). Supplementation of betaine (1.5–6 g/d or higher) was used to
lower tHcy concentrations among people with hyperhomocysteinemia (53) and lowered fasting
tHcy concentrations in the general population up to 20% (61). High-dose supplementation of
choline as phosphatidylcholine (2.6 g choline/d) lowered fasting as well as postmethionine-
loaded concentrations of tHcy in healthy men (62). The doses used in those studies are not
easily achieved by typical diet. Our study adds further evidence that intakes of <1 g choline or
betaine/d can reduce tHcy concentrations in a free-living population.
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Among the choline-containing compounds, phosphatidylcholine was not related to plasma
tHcy concentrations, even though it was the largest component of total choline intake. Because
phosphatidylcholine and sphingomyelin are lipid soluble, whereas other choline compounds
are water soluble (6), the former are absorbed through different pathways and may have
different bioavailabilities and fates. Phosphatidylcholine supplementation did lower plasma
tHcy concentrations, although the dose was much higher than that normally available from diet
alone (62).

We found that the association between choline plus betaine intakes and tHcy concentrations
was stronger among men than among women. This may be partly due to higher folate
concentrations in women than in men in this population (63). Women may also have higher
de novo synthesis of choline (48,62) and lower tHcy concentrations than men (27). A
preliminary analysis of choline intake and tHcy concentrations in women did not find an
association (64).

In conclusion, we found that intakes of choline and betaine predicted plasma tHcy
concentrations, especially when folate intakes were low. Our data support the validity of intake
measured by FFQs and indicate the physiologic importance of these nutrients within the range
consumed by a general population. Future epidemiologic studies examining methyl-group
availability and chronic diseases should account for these nutrients in addition to folate.
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TABLE 3
Geometric mean (95% CI) total plasma homocysteine concentrations by quintile (Q) of energy-adjusted choline and
betaine intakes in the Framingham Offspring Study of 920 men and 1040 women

Mean intake (mg/d) Age and sex adjusted Multivariate adjusted 11 Multivariate adjusted 22

Choline + betaine μmol/L μmol/L μmol/L
 Q1, 383 10.5 (10.2, 10.9) 11.3 (10.9, 11.8) 10.9 (10.5, 11.3)
 Q2, 462 9.6 (9.3, 9.9)  10.3 (9.9, 10.7)  10.0 (9.7, 10.4) 
 Q3, 511 9.3 (9.0, 9.6)  10.0 (9.6, 10.4)  9.8 (9.5, 10.2)
 Q4, 564 9.2 (8.9, 9.5)  9.8 (9.5, 10.2) 9.8 (9.4, 10.2)
 Q5, 689 9.0 (8.7, 9.3)  9.7 (9.3, 10.0) 9.9 (9.6, 10.3)
 P for trend3 <0.0001 <0.0001 <0.0001
Choline
 Q1, 234 10.1 (9.8, 10.4)  11.0 (10.5, 11.4) 10.6 (10.2, 11.0)
 Q2, 283 9.9 (9.6, 10.2) 10.7 (10.3, 11.1) 10.4 (10.0, 10.8)
 Q3, 311 9.5 (9.2, 9.8)  10.3 (9.9, 10.7)  10.1 (9.7, 10.5) 
 Q4, 339 9.0 (8.7, 9.3)  9.7 (9.4, 10.1) 9.7 (9.3, 10.1)
 Q5, 401 9.0 (8.8, 9.3)  9.7 (9.3, 10.1) 9.8 (9.5, 10.2)
 P for trend3 <0.0001 <0.0001 <0.0001
Betaine
 Q1, 112 10.0 (9.7, 10.3)  10.7 (10.3, 11.2) 10.4 (10.1, 10.8)
 Q2, 159 9.7 (9.4, 10.0) 10.5 (10.1, 11.0) 10.3 (9.9, 10.7) 
 Q3, 196 9.4 (9.1, 9.7)  10.1 (9.7, 10.5)  9.9 (9.6, 10.3)
 Q4, 235 9.1 (8.9, 9.4)  9.9 (9.5, 10.3) 9.8 (9.4, 10.1)
 Q5, 340 9.2 (8.9, 9.5)  9.9 (9.6, 10.3) 10.1 (9.8, 10.5) 
 P for trend3 <0.0001 <0.0001 0.05

1
Adjusted for age, sex, smoking, alcohol intake, caffeine intake, hypertensive medication use, and serum creatinine concentration.

2
Adjusted for the variables in multivariate 1 plus intakes of folate, vitamin B-6, and vitamin B-12.

3
Calculated with median intake in each quintile as a continuous variable.
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TABLE 4
Age- and sex-adjusted and multivariate-adjusted geometric mean (95% CI) total plasma homocysteine concentrations
by quintile (Q) of energy-adjusted choline intakes (5 main food sources) in the Framingham Offspring Study of 920
men and 1040 women

Mean intake (mg/d) Age and sex adjusted Multivariate adjusted1

Free choline (coffee, potato, beer, milk, and chicken) μmol/L μmol/L
 Q1, 55 10.0 (9.7, 10.3) 10.6 (10.2, 11.0)
 Q2, 68 9.4 (9.1, 9.7) 10.0 (9.6, 10.4) 
 Q3, 75 9.5 (9.2, 9.7) 10.1 (9.8, 10.5) 
 Q4, 84 9.3 (9.0, 9.6) 9.9 (9.6, 10.3)
 Q5, 105 9.4 (9.1, 9.7) 9.9 (9.6, 10.3)
 P for trend2 0.006 0.01
Choline from glycerophosphocholine (milk, fish, beer, coffee, and
yogurt)
 Q1, 30 10.2 (9.9, 10.5) 10.7 (10.3, 11.1)
 Q2, 41  9.9 (9.6, 10.2) 10.6 (10.2, 11.0)
 Q3, 50 9.4 (9.1, 9.7) 10.0 (9.7, 10.4) 
 Q4, 61 9.2 (8.9, 9.5) 9.9 (9.5, 10.2)
 Q5, 87 8.8 (8.5, 9.1) 9.5 (9.1, 9.8) 
 P for trend2 <0.0001 <0.0001
Choline from phosphocholine (milk, chicken, broccoli, potato, and
tomato)
 Q1, 8  10.6 (10.2, 10.9) 10.7 (10.4, 11.1)
 Q2, 11 9.6 (9.4, 9.9) 10.1 (9.7, 10.5) 
 Q3, 13 9.3 (9.0, 9.6) 9.8 (9.5, 10.2)
 Q4, 16 9.1 (8.9, 9.4) 10.0 (9.6, 10.4) 
 Q5, 21 8.9 (8.6, 9.1) 9.8 (9.5, 10.2)
 P for trend2 <0.0001 0.0003
Choline from phosphatidylcholine (red meat, chicken, eggs, fish,
and shellfish)
 Q1, 99 10.0 (9.6, 10.3) 10.4 (10.0, 10.8)
 Q2, 127 9.4 (9.1, 9.7) 10.0 (9.6, 10.4) 
 Q3, 147 9.4 (9.1, 9.7) 10.2 (9.8, 10.6) 
 Q4, 168 9.4 (9.1, 9.7) 10.1 (9.7, 10.5) 
 Q5, 211 9.3 (9.0, 9.6) 10.0 (9.7, 10.4) 
 P for trend2 0.005 0.12
Choline from sphingomyelin (chicken, red meat, milk, eggs, and
fish)
 Q1, 11  9.9 (9.6, 10.2) 10.5 (10.1, 10.8)
 Q2, 15  9.8 (9.5, 10.2) 10.4 (10.1, 10.8)
 Q3, 18 9.3 (9.0, 9.6) 9.9 (9.6, 10.3)
 Q4, 20 9.5 (9.2, 9.8) 10.1 (9.8, 10.5) 
 Q5, 27 9.0 (8.8, 9.3) 9.7 (9.4, 10.1)
 P for trend2 <0.0001 0.0002

1
Adjusted for age, sex, smoking, hypertension medication use, serum creatinine, and intakes of alcohol, caffeine, folate, vitamin B-6, and vitamin B-12.

2
Calculated with median intake in each quintile as a continuous variable.
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