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Abstract

Background—Orexin (OX) neurons originating in the lateral hypothalamus (LH) are ideally 

positioned to modulate reward processing as they form connections with several key brain regions 

known to be involved in the reward pathway. Consistent with these findings, a growing number of 

studies have implicated the OX system in modulating the rewarding properties of several drugs of 

abuse, including ethanol (EtOH). However, the role of the OX system in excessive binge-like 

EtOH intake remains relatively unexplored. Here, we assessed changes in OX immunoreactivity 

(IR) in the hypothalamus following repeated cycles of binge-like EtOH drinking and assessed the 

participation of the OX-1 receptor (OX1R) in binge-like EtOH consumption.

Methods—The drinking-in-the-dark (DID) paradigm was used to model binge-like EtOH 

drinking in male C57BL/6J mice. In the first experiment, mice experienced 1 or 3 cycles of binge-

like EtOH or sucrose drinking with DID procedures to assess changes in OX IR in distinct 

subregions of the hypothalamus. Subsequent experiments examined binge-like EtOH and 

saccharin drinking following peripheral injections of 0.0, 5.0, or 10.0 mg/kg SB-334867 (SB), a 

selective OX1R antagonist. Finally, mice were given peripheral injections of SB and open-field 

locomotor activity was measured.

Results—Relative to water drinking controls, binge-like consumption of EtOH and sucrose 

resulted in a marked reduction in OX IR in the LH. Inhibition of the OX1R via SB blunted EtOH 

and saccharin drinking, but did not alter open-field locomotor activity.

Conclusions—Our observed reduction in OX IR in the LH indicates that the OX system in 

engaged during binge-like consumption of EtOH and sucrose. The observation that inhibition of 

the OX1R signaling blunted binge-like EtOH, and saccharin drinking suggests that reward-related 
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OX circuits originating in the LH participate in the consumption of salient reinforcers regardless 

of calories.
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CENTRAL OREXIN (OX) is synthesized exclusively within the hypothalamus and is 

involved in a host of neurobiological functions, including feeding (Sakurai et al., 1998), 

stress (Winsky-Sommerer et al., 2004), arousal (Chemelli et al., 1999), and, more recently, 

reward-related behavior (Harris et al., 2005). It is believed that the functional responsibilities 

of central OX neurons are segregated within the hypothalamus. Specifically, lateral 

hypothalamic (LH) OX neurons have been proposed to be more involved in reward-related 

behaviors (Harris et al., 2005), while OX neurons from the perifornical area of the 

hypothalamus (PFA) and dorsomedial hypothalamus (DMH) are more associated with stress 

and arousal (Harris and Aston-Jones, 2006). Although OX originates solely within the 

hypothalamus (Sakurai et al., 1998), its afferents form connections with regions across the 

brain (Yoshida et al., 2005). Consistent with these findings, OX projections originating from 

the LH facilitate the activity of several brain regions in the reward circuit, such as the ventral 

tegmental area (VTA; Borgland et al., 2006; Korotkova et al., 2003; Moorman and Aston-

Jones, 2010) and shell of the nucleus accumbens (NAc; Patyal et al., 2012).

In agreement with the widespread connections to various regions in the reward circuit, OX 

has been found to be involved in the neurobiological responses to ethanol (EtOH). Lawrence 

and colleagues (2006) first observed this relationship by systemically injecting the selective 

OX-1 receptor (OX1R) antagonist, SB-334867 (SB) to reduce operant self-administration of 

EtOH. Similarly, SB was found to selectively reduce EtOH consumption in high-, but not 

low-, EtOH-preferring rats (Moorman and Aston-Jones, 2009). Further investigations 

suggest that modulation of OX signaling via SB is specific to EtOH as Jupp and colleagues 

(2011) found that SB significantly attenuated the motivational effects of EtOH but not 

sucrose. Although these data suggest an essential role for OX1R signaling in EtOH drinking, 

recent evidence suggests the OX2R is also capable of modulating responses to EtOH 

(Anderson et al., 2014; Barson et al., 2014; Shoblock et al., 2011). Moreover, more 

comprehensive investigations of the role of OX in EtOH drinking have revealed that 

signaling within the reward-related pathway is responsible for modulating this behavior. 

Indeed, direct infusions of orexin-A in the LH (Schneider et al., 2007) and a nonselective 

OXR antagonist into the VTA (Srinivasan et al., 2012) significantly increased and decreased 

EtOH drinking, respectively. As a whole, these findings indicate EtOH drinking directly 

parallels OX signaling in the reward pathway.

In addition to the OX system modulating the neurobiological responses to EtOH, it has 

previously been reported that EtOH experience produces alterations in the OX system. 

Indeed, chronic EtOH drinking increased OX mRNA, as measured by in situ hybridization 

(ISH), in the LH relative to EtOH naïve rats (Lawrence et al., 2006). Interestingly, 

Morganstern and colleagues (2010) reported that chronic EtOH consumption caused a 

significant reduction in hypothalamic OX mRNA, as measured by quantitative real-time 
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polymerase chain reaction (qRT-PCR), while acute EtOH exposure via oral gavage 

significantly enhanced OX mRNA and orexin-A levels, as measured by ISH and 

immunohistochemistry (IHC), respectively. What is more, Barson and colleagues (2014) 

recently used qRT-PCR to assess changes in OX mRNA following EtOH drinking in an 

intermittent-access paradigm and found increased OX expression in the hypothalamus. 

Although these findings demonstrate experience with EtOH alters central OX levels, 

different methodological approaches, such as acute versus chronic and self-versus 

experimenter-administered EtOH, may influence the nature of this effect.

Despite this growing body of literature implicating the OX system in EtOH consumption, 

relatively less is known of its role in binge drinking behavior. Considering recent evidence 

that indicates different neurocircuitry may be engaged during binge-like versus moderate 

levels of EtOH drinking (Lowery et al., 2010; Lowery-Gionta et al., 2012; Sparta et al., 

2008), the goal of this study was to further characterize the role of the central OX system in 

binge-like drinking behavior. To this end, we first examined the influence of repeated cycles 

of binge-like EtOH or sucrose drinking on hypothalamic OX levels using IHC procedures. 

Additionally, we peripherally administered the selective OX1R antagonist, SB, to 

characterize the participation of the OX1R in binge-like EtOH consumption, and we 

assessed the specificity of SB in modulating EtOH drinking by examining its effects on 

saccharin, a salient but noncaloric reinforcer. Finally, we also examined the effects of this 

pharmacological inhibition on more general behavioral responses by assessing locomotor 

activity following treatment with SB.

MATERIALS AND METHODS

Animals

A total of 90 male C57BL/6J (C57) mice (Jackson Laboratories, Bar Harbor, ME) aged 7 to 

9 weeks were used in this study. Mice were individually housed in plastic cages located in a 

vivarium with an ambient temperature of approximately 22°C and a reverse light/dark cycle 

with lights off at 7:00 AM. Food and water were available ad libitum except during testing 

(see below). All procedures used were in accordance with the National Institutes of Health 

guidelines and were approved by the University of North Carolina Institutional Animal Care 

and Use Committee.

OX Immunoreactivity Following Repeated Cycles of Binge-Like EtOH Intake

Fifty C57 mice experienced 1 or 3 cycles of binge-like EtOH drinking using the “drinking-

in-the-dark” (DID) procedure. The DID procedure is a commonly used animal model of 

binge-like EtOH drinking that promotes high levels of consumption and generates 

physiologically relevant blood EtOH concentrations (BECs) of 80 mg/dl or greater (Rhodes 

et al., 2005, 2007). On days 1 to 3, standard water bottles were removed 3 hours into the 

dark cycle and the animals were given access to test bottles containing water, EtOH (20% 

v/v), or sucrose (3% w/v) solutions for 2 hours. Binge-like consumption was assessed on the 

fourth day when access to the test bottles was extended to 4 hours. Each 4-day test period 

constituted a binge cycle, and there were 3 days with no EtOH access between binge cycles. 
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The start dates of the binging cycles were staggered such that all groups finished testing on 

the same day and at the approximate same age.

Refer to the Supplementary Materials for a complete description of the IHC procedure. 

Briefly, on the final day of testing, tail bloods were collected to assess BECs and brains 

were collected and processed for orexin-A immunoreactivity (IR). The number of 

hypothalamic orexin-A positive neurons was quantified and grouped based on hypothalamic 

subregion (Fig. 2A; i.e., LH, PFA, or DMH) as defined previously (Mahler and Aston-Jones, 

2012). Upon quantifying levels of orexin-A positive cells in our animals, it became clear 

that the DMH exhibited minimal orexin-A IR in our samples (grand mean: 3.327, SEM: 

0.352); therefore, this subregion was removed from further analysis.

Univariate analyses of variance (ANOVAs) were used to measure orexin-A positive cells in 

the LH and PFA separately using group (water, 1-cycle EtOH, 1-cycle sucrose, 3-cycle 

EtOH, or 3-cycle sucrose) as the independent variable. The brain tissue from an animal in 

the 3-cycle EtOH group was damaged during the staining process making it unable to be 

quantified and was removed from the analysis. To ensure that hypothalamic OX expression 

was not affected by differential drinking levels, separate t-tests were used to assess 

consumption of each test solution (i.e., EtOH or sucrose) on the final day of testing between 

animals in the 1 or 3 DID cycle groups. Similarly, a t-test was also performed on the BEC 

data to measure differences in EtOH metabolism as a function of DID cycles (1 or 3). 

Tukey’s HSD post hoc tests and Bonferroni corrections were used when applicable.

Binge-Like EtOH Drinking Following Treatment with SB

A separate cohort of 20 C57 mice was used to assess the effect of pharmacological 

inhibition of OX1R on binge-like consumption of 20% EtOH (v/v). Initial investigations 

utilized the standard DID procedure as described above with the addition that consumption 

was recorded every hour during testing to assess the drug’s effect over time. However, early 

observations indicated that the effect of the pharmacological treatment was short-lived (data 

not shown). Therefore, to better capture the transient effects of the drug, subsequent 

iterations used a modified DID paradigm that was identical to the standard DID procedure 

described above with the exception that the animals only had access to the EtOH bottles for 

2 hours on the fourth day. All other test parameters remained unchanged.

Thirty minutes prior to EtOH access on the fourth day, mice were given intraperitoneal (i.p.) 

injections of 0.0, 5.0, or 10.0 mg/kg SB (Tocris Bioscience, Minneapolis, MN), which was 

dissolved using 0.01% Tween® 80 (Sigma-Aldrich, St. Louis, MO) in saline as described 

previously (Anderson et al., 2014). All doses were administered in a 10.0 ml/kg injection 

volume. Immediately after testing, tail-blood samples were collected from each animal and 

analyzed as described above. To increase power during statistical analysis, each animal 

received all 3 doses of the drug over repeated trials to allow for within-subject comparison 

of EtOH drinking behavior. Mice were given 3 days rest between subsequent 4-day DID 

sessions to avoid carryover effects of the drug.

A repeated-measures ANOVA was used to assess hourly EtOH consumption with both time 

(hour 1 and hour 2) and SB dose (0.0, 5.0, or 10.0 mg/kg) being within-subject variables. 
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Additionally, total EtOH consumption across the 2-hour test period was assessed using a 

repeated-measures ANOVAs with SB dose (0.0, 5.0, or 10.0 mg/kg) as the within-subject 

variable. As the first round of DID in the within-subjects design followed the standard, 4-

hour DID model, the tail-blood samples from the first round were excluded from the 

analysis. Due to the exclusion of these data points, a univariate ANOVA was used to assess 

BECs with dose of SB (0.0, 5.0, or 10.0 mg/kg) as the independent variable. Additionally, 

drug order was included as a between-subjects variable in these analyses to ensure the order 

in which the animals were presented the drug did not have any confounding effects on EtOH 

consumption. Tukey’s HSD post hoc tests and Bonferroni corrections were used when 

applicable.

Binge-Like Saccharin Drinking Following Treatment with SB

A separate cohort of 20 C57 mice was used to assess binge-like consumption of saccharin 

following treatment with SB. The procedures used here were identical to those described 

above except that these mice were given access to saccharin (0.15% w/v) during the 

modified, 2-hour DID procedure. A Latin square design was used such that each animal 

received all 3 doses of the drug over repeated trials. Mice were given at least 3 days of rest 

between subsequent 4-day DID sessions to avoid carryover effects of the drug.

A repeated-measures ANOVA was used to assess hourly saccharin consumption with both 

time (hours 1 and 2) and dose of SB (0.0, 5.0, or 10.0 mg/kg) being within-subject variables. 

Total saccharin consumption was also assessed using separate repeated-measures ANOVAs 

with SB dose (0.0, 5.0, or 10.0 mg/kg) as the within-subject variable. Drug order was also 

included as a between-subjects variable in these analyses. Tukey’s HSD post hoc tests and 

Bonferroni corrections were used when applicable.

Locomotor Activity Following Treatment with SB

The same 20 mice from the previous saccharin experiment were used to assess locomotor 

activity following treatment with SB. The complete procedure for locomotor testing can be 

found in the Supplementary Materials section. Briefly, 1 week following saccharin testing, 

animals were given i.p. injections of 0.0 or 10.0 mg/kg SB as described above. Thirty 

minutes later, animals were placed in an open-field locomotor chamber and 2-hour 

locomotor activity was measured. The decision to use only the 10.0 mg/kg dose of SB was 

based on the findings from our previous experiment that only the higher dose produced 

significant reductions in EtOH consumption. Unlike our previous pharmacological 

experiments, a Latin square design was not used to avoid previous experience with the 

locomotor chamber confounding the animals’ locomotor activity.

Separate t-tests were used to assess the effects of SB on locomotor activity. In addition to 

measuring the effects of SB across the entire 2-hour test period, the immediate effects of the 

drug during the first 15 minutes of testing were also assessed.
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RESULTS

Binge-Like Consumption of a Salient Reinforcer Reduces OX Levels

Animals’ responses to the test solutions were comparable regardless of DID history as EtOH 

and sucrose drinking on the final day of testing did not differ between animals that 

experienced 1 cycle or 3 cycles of DID (Fig. 1A,B; t(18) = 0.1316, p = 0.897; t(18) = 0.4746, 

p = 0.641, respectively). Moreover, both groups of EtOH drinkers achieved similar BECs 

regardless of DID history (Fig. 1C; t(18) = 0.603, p = 0.5540). This allows us to make direct 

comparisons of IR between the different groups without the potential confound of group 

differences in brain–EtOH exposure.

Our analysis revealed that binge-like consumption of EtOH or sucrose solutions 

significantly altered the number of orexin-A positive neurons within the LH (Figs 1D and 

2B–F), F(4, 48) = 5.863, p = 0.001. Further probing of this effect revealed that relative to 

the water group (Fig. 2D), all test groups (i.e., 1-cycle EtOH [Fig. 2B], 3-cycle EtOH [Fig. 

2C], 1-cycle sucrose [Fig. 2E], and 3-cycle sucrose [Fig. 2F]) displayed significantly 

reduced OX levels (Fig. 1D; ps < 0.010). Similarly, binge-like consumption of EtOH or 

sucrose also significantly altered OX levels within the PFA (Fig. 2B–F), F(4, 48) = 3.702, p 

= 0.011. Unlike the LH, however, Tukey’s HSD tests indicated that only the 3-cycle EtOH 

group showed significant reductions in OX expression in the PFA relative to the water group 

(Fig. 1D; p = 0.006).

Treatment with SB Attenuates Binge-Like EtOH Consumption

The previous experiment demonstrated that binge-like EtOH drinking affects hypothalamic 

OX levels. Next, we sought to determine whether manipulating OX signaling via the 

selective OX1R antagonist, SB, could modulate binge-like EtOH drinking. As shown in Fig. 

3A, treatment with SB significantly reduced binge-like EtOH consumption (main effect of 

dose: F(2, 38) = 6.083, p = 0.005), but the animals’ drinking behavior did not change over 

time (main effect of time: F(1, 19) = 0.372, p = 0.549). Analysis also showed that there was 

a significant drug by time interaction effect, F(2, 38) = 8.196, p = 0.001. Further probing 

revealed both the 5.0 and 10.0 mg/kg dose of SB significantly reduced binge-like EtOH 

drinking during the first hour relative to water (ps < 0.05), although the higher dose of SB 

significantly reduced binge-like EtOH drinking to a level beyond the lower dose (p = 0.015). 

Importantly, the effect of drug order was not significant, F(2, 17) = 0.862, p = 0.481, 

indicating that the order in which the animals received the SB treatment did not affect hourly 

EtOH drinking behavior. Additionally, SB significantly reduced EtOH drinking over the 2-

hour test period, F(2, 38) = 9.870, p < 0.001. Interestingly, the effect of the lower dose of 

SB appeared to be short-lived as only the higher dose significantly blunted EtOH drinking 

over the full 2 hours (p < 0.001). This effect of the higher dose across the 2-hour test period 

appears to be driven by the effect at the first hour as no differences were observed during the 

second hour of testing. Similar to the hourly consumption, drug order did not impact total 

EtOH drinking behavior, F(2, 17) = 0.862, p = 0.481.

In accordance with the drinking data, treatment with SB significantly reduced measured 

BECs as well (Fig. 3B), F(2, 59) = 4.312, p = 0.018. Further probing of this effect indicated 
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animals treated with the higher dose of SB exhibited significantly lower BECs relative to 

vehicle treated animals (p = 0.013). Finally, order of drug presentation did not affect 

measured BECs, F(1, 56) = 0.729, p = 0.539.

Treatment with SB Attenuates Binge-Like Saccharin Consumption

The previous experiment demonstrated that pharmacological inhibition of the OX1R is 

capable of reducing excessive EtOH consumption in a DID paradigm. Interestingly, a recent 

study by Anderson and colleagues (2014) observed that systemic treatment with SB reduces 

binge-like sucrose consumption, which suggests the OX system modulates binge-like 

consumption of general, salient reinforcers beyond EtOH. However, as sucrose and EtOH 

are both reinforcing sources entailing caloric properties, it remains to be seen whether or not 

these effects are due alterations in caloric need. Thus, the next experiment sought to 

characterize the effects of SB on saccharin, a salient, noncaloric reinforcer.

Analysis of hourly intake revealed SB significantly reduced saccharin consumption (Fig. 4; 

main effect of dose: F(2, 38) = 4.231, p = 0.022). Further probing of this main effect showed 

only the higher dose (10.0 mg/kg) of SB significantly attenuated saccharin intake after 

Bonferroni’s correction (p = 0.011). A significant main effect of time indicated all animals 

drank more saccharin during the first hour than the second (main effect of time: F(1, 38) = 

11.756, p = 0.003). The dose by time interaction effect did not reach significance, F(2, 38) = 

1.089, p = 0.347. Additionally, SB significantly reduced total saccharin intake across the full 

2-hour test period, F(2, 38) = 4.231, p = 0.022. Similar to the hourly consumption, follow-up 

tests revealed only the higher dose of SB significantly attenuated saccharin intake after 

Bonferroni’s correction (p = 0.011). As with the previous experiment, drug order did not 

affect hourly, F(2, 17) = 0.024, p = 0.977 or total, F(2, 17) = 0.018, p = 0.982 saccharin 

drinking behavior. Together, findings from this experiment indicate the effect of reduced 

binge-like drinking following pharmacological inhibition of the OX1R via SB is not specific 

to EtOH but appears to blunt consumption of salient caloric (EtOH) and noncaloric 

(saccharin) reinforcers.

Treatment with SB Does Not Affect Locomotor Activity

Perhaps one of the most widely studied functions of the OX system is its role in sleep and 

arousal (for review, see De Lecea, 2012). To rule out the possibility that our observed 

effects of SB on EtOH or saccharin consumption could be secondary to the effects of SB on 

general motor behavior, the next experiment sought to test the effects of SB on open-field 

locomotor activity. Simple t-tests showed that, relative to vehicle, treatment with the 10.0 

mg/kg dose of SB had no discernable effect on immediate locomotor activity during the first 

15 minutes of testing, t(18) = 0.2129, p = 0.834, nor across the entire 2-hour test period, 

t(18) = 1.630, p = 0.1204 (Fig. 5). Together, these data demonstrate that our observed effects 

of SB on the consumption of salient reinforcers are not a consequence of impaired 

locomotor activity.
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DISCUSSION

Through our series of experiments, we demonstrated that binge-like consumption of a salient 

reinforcer using the DID model resulted in a marked reduction of hypothalamic OX IR. 

Similarly, blocking the OX1R signaling via SB protects against excessive EtOH 

consumption. Interestingly, this effect is not specific to EtOH as treatment with SB also 

reduced binge-like consumption of saccharin; however, no other nonspecific effects were 

observed as SB did not significantly alter locomotor activity.

The observations made here confirm and extend several findings reported previously. First, 

exposure to EtOH has previously been shown to alter hypothalamic OX peptide IR and 

mRNA (Lawrence et al., 2006; Morganstern et al., 2010). Our experiments demonstrate that 

binge-like consumption of EtOH reduces the number orexin-A IR neurons in the 

hypothalamus. Interestingly, these effects were not specific to EtOH as a similar pattern of 

effects was found in animals that experienced binge-like sucrose consumption. Moreover, 

these effects were most prominent in the LH, a subregion of the hypothalamus believed to 

be more strongly associated with reward-related behaviors (Harris et al., 2005). Further, our 

animals showed minimal changes in OX IR levels in the PFA following binge-like 

consumption of a salient reinforcer, a subregion postulated to be more involved in stress and 

arousal (Harris and Aston-Jones, 2006). Although our data indicated mice that experienced 3 

cycles of binge-like EtOH consumption showed reductions in OX IR in the PFA, this effect 

may be due to the fact that EtOH impacts normal sleep patterns (Ebrahim et al., 2013). 

Indeed, EtOH has been shown to promote sleep by inhibiting OX neurons in the PFA 

(Sharma et al., 2014). Together, these data provide support for the dichotomy of OX 

function between the LH and PFA.

Previous pharmacological studies have reported that EtOH consumption parallels OX 

signaling (Jupp et al., 2011; Lawrence et al., 2006; Moorman and Aston-Jones, 2009; 

Schneider et al., 2007). In light of these reports, we believe our observed reduction in LH 

OX IR reflects an increase in OX signaling. In this case, OX would be released from its 

presynaptic stores in response to consumption of salient reinforcers. As our IHC analysis 

measured the amount of peptide immediately following the last round of DID, a reduction in 

OX IR may be indicative of an increase in OX signaling although further testing, such as 

changes in OX mRNA following DID, is required to confirm this hypothesis. This finding 

would be consistent with previous observations that acute EtOH exposure causes a marked 

increase in OX mRNA and orexin-A peptide (Barson et al., 2014; Morganstern et al., 2010). 

Interestingly, it was also observed that chronic voluntary EtOH drinking causes a reduction 

in OX mRNA (Morganstern et al., 2010); thus, future studies would benefit from examining 

changes in OX following chronic binge-like EtOH drinking. Alternatively, a reduction in 

observed OX levels may reflect a compensatory reduction in the system, which has recently 

been observed following binge-like sucrose and saccharin drinking (Alcaraz-Iborra et al., 

2014).

Additionally, we observed that selective inhibition of the OX1R protected against excessive 

EtOH consumption using the DID procedure. This observation confirms several others that 

have reported that prior treatment with SB significantly reduces responding to EtOH in a 
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variety of paradigms (Anderson et al., 2014; Jupp et al., 2011; Moorman and Aston-Jones, 

2009; Voorhees and Cunningham, 2011). Notably, our mice exhibited robust EtOH intake, 

yet the BEC levels were slightly below binge criteria that may stem from the shortened 2-

hour test. What is more, our findings indicate the protective effect of SB is not specific to 

EtOH as we also observed that SB reduced excessive intake of saccharin, a noncaloric 

reinforcer. In fact, it has recently been reported that systemic SB protects against binge-like 

EtOH and sucrose intake (Alcaraz-Iborra et al., 2014; Anderson et al., 2014). Together with 

our observation that peripherally administered SB similarly blunts EtOH and saccharin 

drinking, these findings suggest the OX1R modulates the consumption of salient reinforcers 

regardless of caloric content. Although previous findings have demonstrated that the 

protective effect of SB is specific to EtOH and not sucrose (Jupp et al., 2011), this difference 

could be attributed to procedural differences. That is, the prior study used operant 

responding to EtOH and sucrose in alcohol-preferring (iP) rats, while the present study used 

the DID procedure in C57 mice.

Moreover, the recent report by Anderson and colleagues (2014) described similar success in 

using SB to significantly reduce binge-like EtOH drinking in C57s using the standard DID 

model. Interestingly, that same report found that only a high dose of SB (30.0 mg/kg) 

reduced binge-like EtOH drinking, while lower doses were ineffective. Although the 

effective dose of SB between this previous report and our current study is at variance with 

one another, there are methodological differences that may be able to explain this disparity. 

First, a great deal of variability in SB has been documented between different vendors and 

even different batches of the same vendor (Jupp et al., 2011; Mahler et al., 2012). The 

previous study used SB that was synthesized by one of the researchers at Lilly Research 

Laboratories, while we ordered ours from a private vendor. This may be of importance as 

the manner in which the compound is synthesized may alter its effectiveness (McElhinny et 

al., 2012). Therefore, the possibility that the different effective dose observed between our 

studies is due to some inherent difference between the 2 SB compounds cannot be ruled out.

Another difference between these 2 reports is the time intervals at which consumption data 

were measured. The previous study reported that only the 30.0 mg/kg dose of SB was 

effective in significantly reducing EtOH drinking over a 4-hour test period. However, our 

preliminary data using a lower dose suggested the effect of SB did not persist throughout the 

entire 4-hour test period (pilot data not shown) and prompted us to shorten the test period as 

well as take hourly measures to assess drinking over time. Using this design, we were able 

to discover that lower doses are indeed capable of reducing excessive EtOH consumption 

although the effect is short-lived.

Although this report demonstrates that inhibition of the OX system protects against binge-

like EtOH consumption, the systemic nature of our treatment procedure is unable to 

determine the locus of this effect. Future studies will attempt to identify the OX circuits that 

convey these effects via site-specific delivery of OX agents directly to candidate regions. 

The LH is known to be involved in reward-related behavior (DiLeone et al., 2003; Wise, 

1996), and OX neurons originated from the LH have been reported to project to key brain 

regions in the reward circuit (Marcus et al., 2001; Yoshida et al., 2005). Both the NAc shell 

and VTA are densely innervated by OX neurons and are known to be involved in reward-
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related behavior. Indeed, application of OX peptide causes a robust depolarization of the 

neurons within the shell of the NAc in vitro (Mukai et al., 2009). However, direct infusion 

of orexin-A into the NAc shell failed to alter EtOH consumption (Schneider et al., 2007) 

suggesting that OX signaling in this brain region may not modulate EtOH drinking behavior. 

On the other hand, it has been previously demonstrated that application of orexin-A alone 

initiates plastic changes in the VTA that facilitates activity in this region (Borgland et al., 

2006). Moreover, blocking OXRs in the VTA has been shown to protect against EtOH self-

administration (Srinivasan et al., 2012). Taken together, these findings suggest the OX 

neurons originating in the LH that project to the VTA may be a key circuit that modulates 

EtOH drinking.

Interestingly, recent evidence indicates behaviors such as motivation and reward are 

modulated by the interplay between OX and dynorphin signaling within the VTA. These 2 

neuropeptides, which have been shown to be expressed in the same presynaptic vesicles, 

may have an oppositional relationship such that the relative signaling between these 2 

peptides modulates behavior (Muschamp et al., 2014). In light of this recent discovery, our 

observed reduction in binge-like drinking behavior may be due not to a reduction in OX1R 

signaling, per se, but a reduction in OX1R signaling relative to dynorphin signaling. 

Although our manipulations were specific to the OX system, our assays are unable to speak 

to the state of the dynorphin system. Regardless of the activity in the dynorphin system, 

however, our data demonstrate that the OX system is engaged during binge-like EtOH 

drinking and suppressing signaling within this system blunts this behavior.

Finally, as the OX system is known to be critically involved in sleep and arousal (Chemelli 

et al., 1999), it was important to rule out the possibility that our observed effects of SB on 

responding to salient reinforcers were not due to an induction of a hypo-active state. Given 

that treatment with SB did not alter locomotor activity at any time point measured, it is 

unlikely that inhibiting the OX1R could have produced any effects on arousal that could 

have confounded our effects on binge-like consummatory behavior. However, our results on 

locomotor activity cannot rule out the possibility that SB may induce a state of anhedonia 

and/or amotivation. Indeed, a reduction in OX levels in the VTA and hypothalamus was 

observed in a rat social defeat model of depression (Nocjar et al., 2012). Future studies will 

explore the induction of a state of anhedonia and/or amotivation as a possible cause for 

reduced binge-like EtOH drinking.

Findings from the present report indicate that LH OX levels are blunted following binge-like 

consumption of EtOH and sucrose. Moreover, pharmacological inhibition of signaling onto 

the OX1R served to protect against excessive EtOH and saccharin consumption without 

altering locomotor activity. Together, these findings provide promise that targeting the OX 

system through OXR antagonists may serve as an effective treatment for alcohol use 

disorders.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Comparison of binge-like drinking behavior and hypothalamic orexin (OX) levels between 

mice exposed to 1 or 3 cycles of drinking-in-the-dark (DID). Mice with access to ethanol 

(EtOH) bottles drank comparable levels of EtOH on the final day of testing regardless of 

whether they experienced 1 or 3 cycles of DID (A). Similarly, mice that experienced 1 or 3 

cycles of DID consumed equivalent levels of sucrose (B). No differences in blood EtOH 

concentrations were observed in the mice that experienced either 1 or 3 cycles of binge-like 

EtOH drinking (C). Assessment of hypothalamic OX levels in these mice (D) revealed that, 

relative to animals with access to water, binge-like EtOH drinking caused a reduction in OX 

levels in the lateral hypothalamus (LH) of animals that experienced 1 or 3 cycles of EtOH as 

well as 1 or 3 cycles of sucrose. However, in the PFA, only animals that experienced 3 

cycles of EtOH displayed significant reductions in OX levels, while those that experienced 1 

cycle of EtOH as well as 1 or 3 cycles of sucrose exhibited no alterations in OX 

immunoreactivity (IR) in the PFA. LH, lateral hypothalamus; PFA, perifornical area of the 

hypothalamus; H2O, water group; 1E, 1-cycle EtOH group; 3E, 3-cycle EtOH group; 1S, 1-

cycle sucrose group; 3S, 3-cycle sucrose group; *denotes p < 0.05 relative to H2O group in 

the same region. Data are presented as mean ± SEM.
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Fig. 2. 
Binge-like ethanol (EtOH) drinking reduces hypothalamic orexin (OX) levels. The 

subregions of the hypothalamus investigated includes the LH, PFA, and DMH (A), 

photomicrographs from the 1-cycle EtOH (B), 3-cycle EtOH (C), water (D), 1-cycle sucrose 

(E), and 3-cycle sucrose (F) groups representing qualitative changes in OX expression. 

White scale bar in B–F = 10.0 μm. 3V, third ventricle; DMH, dorsomedial hypothalamus; f, 

fornix; LH, lateral hypothalamus; mt, mammillothalamic tract; PFA, perifornical area of the 

hypothalamus.
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Fig. 3. 
Pharmacological inhibition of the orexin-1 receptor reduces excessive ethanol (EtOH) 

consumption and blood EtOH concentration (BEC). Both the 5.0 mg/kg and 10.0 mg/kg 

doses of SB-334867 (SB) protected against excessive EtOH consumption during the first 

hour of testing relative to vehicle-treated controls; however, only the 10.0 mg/kg dose 

caused a significant reduction in EtOH drinking across the full 2-hour test period (A). Prior 

treatment with the 10.0 mg/kg dose of SB caused a significantly lower BEC relative to 

vehicle-treated controls (B). * denotes p < 0.05 relative to vehicle group at the same time 

point; †denotes p < .05 relative to 5.0 mg/kg group at the same time point. Data are 

presented as mean ± SEM.
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Fig. 4. 
Pharmacological inhibition of the orexin-1 receptor reduces excessive saccharin 

consumption. Both doses of SB significantly reduced excessive saccharin drinking over the 

2 hours of drinking-in-the-dark testing. This effect appears to be driven by the blunting of 

saccharin intake during the first, but not second hour of testing. * denotes p < 0.05 relative 

to vehicle group at the same time point. Data are presented as mean ± SEM.
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Fig. 5. 
Treatment with SB-334867 (SB) does not affect locomotor activity. The 10.0 mg/kg dose of 

SB had no discernable effects on locomotor activity across the full 2 hours of testing nor did 

it have any immediate effects during the first 15 minutes of locomotor testing (inset). Data 

are presented as mean ± SEM.
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