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Abstract

The development of alcohol-use disorders is thought to involve a transition from casual alcohol 

use to uncontrolled alcohol-seeking behavior. This review will highlight evidence suggesting that 

the shift toward inflexible alcohol seeking that occurs across the development of addiction 

consists, in part, of a progression from goal-directed to habitual behaviors. This shift in “response 

strategy” is thought to be largely regulated by corticostriatal network activity. Indeed, specific 

neuroanatomical substrates within the prefrontal cortex and the striatum have been identified as 

playing opposing roles in the expression of actions and habits. A majority of the research on the 

neurobiology of habitual behavior has focused on non-drug reward seeking. Here, we will 

highlight recent research identifying corticostriatal structures that regulate the expression of 

habitual alcohol seeking and a comparison will be made when possible to findings for non-drug 

rewards.

Keywords

Habit; goal-directed behavior; alcohol; prefrontal cortex; dorsal striatum; nucleus accumbens; 
orbitofrontal cortex

Introduction

Identification of the neurobiological substrates of habitual ethanol seeking may help to guide 

the development of novel therapeutic strategies that can enable restoration of behavioral 

control. While reducing ethanol-seeking habits is not expected to be a stand-alone cure for 

addiction, or a solution for all individuals with alcohol-use disorders, the ability to restore 

cognitive control over ethanol-seeking behaviors may enable traditional therapeutic 
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strategies. Despite the applicability of this model to addictive behavior (Everitt, 2014; 

Kalivas, 2008), a preponderance of the research into the neuroscience of habitual behavior 

has been performed with models of non-drug reward seeking (e.g., Yin & Knowlton, 2006), 

rather than ethanol. While it can be argued that the structures mediating non-drug habits 

regulate the development of habitual behavior in general, recent work suggests that alcohol 

reinforcers may differentially engage the neurocircuits that control behavioral flexibility 

(Barker, Taylor, De Vries, & Peters, 2014; Corbit, Nie, & Janak, 2012; Mangieri, Cofresí, & 

Gonzales, 2012; Shillinglaw, Everitt, & Robinson, 2014). In this review, we will focus on 

the novel application and extension of these findings to the development of habitual ethanol-

seeking behavior that, in part, characterizes alcohol-use disorders. We will provide a 

framework for the role of habitual processes in ethanol-seeking behavior and summarize 

findings presented at the 2014 Alcoholism and Stress Meeting in Volterra, Italy with the 

intention to highlight novel observations on the role for corticostriatal circuits in the 

regulation of ethanol-seeking behavior. (For a more in-depth review of the neuroanatomy of 

habitual processes in ethanol seeking, see Barker & Taylor, 2014, and O'Tousa & Grahame, 

2014).

Modeling conditioned behavior in alcohol-use disorders

In recent years, there has been a burgeoning interest in understanding drug seeking that is 

not mediated by the immediate rewarding properties of drugs of abuse. Work in both 

animals and humans has suggested drugs of abuse, including alcohol, are sought not only for 

their positive rewarding properties, but also out of habit (Adams, 1982; Dickinson, Wood, & 

Smith, 2002; Robbins & Everitt, 1999). In other words, while drugs of abuse are initially 

sought for their rewarding properties, over time and with repeated performance, drug 

seeking transitions to habitual reward-seeking behaviors that are more independent of the 

drug's immediate rewarding properties. These habitual behaviors can be either self-initiated 

or elicited by environmental or interoceptive stimuli. This may contribute to compulsive 

drug seeking which occurs despite negative consequences of drug taking. This suggests that 

early drug-seeking behavior may be more goal directed and performed in relation to the 

expected rewarding effects via an expected action-outcome relationship. In contrast, habitual 

behavior is thought to be less sensitive to changes in outcome value or action-outcome 

contingency (Adams, 1982; Adams & Dickinson, 1981; Colwill & Rescorla, 1985; 

Dickinson, 1985). These working definitions led to objective methods for assessing 

instrumental response strategy. By manipulating either the action-outcome contingency (a 

method called contingency degradation) or outcome value (often through outcome 

devaluation methods), it can be determined whether an action is being performed in a goal-

directed or habitual manner.

A significant literature implicates aberrant cue sensitivity and habit learning in addiction. In 

human addicts, drug-paired cues have been shown to elicit drug craving and motivate drug-

taking and approach behaviors (Koob & Volkow, 2010; Pickens et al., 2011; Sinha & Li, 

2007; Yoder et al., 2009). In rodent models, the ability of drug-paired cues to promote drug-

seeking and relapse-like behaviors has been well established using conditioned place 

preference (for review see Tzschentke, 1998) and cue-induced reinstatement paradigms 

(McFarland & Kalivas, 2001). In addition, reward-paired cues have been shown to 
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invigorate instrumental reward seeking through the use of Pavlovian-to-instrumental transfer 

(PIT) paradigms.

While a majority of what is known about cue-mediated reward seeking has focused on non-

drug rewards (e.g., sucrose) or psychostimulants, there is growing evidence that ethanol-

paired cues may impact reward-seeking behavior in ways that differ from these reinforcers. 

For example, in a study of PIT (conducted under extinction conditions), when rats were 

trained that a discrete cue predicted ethanol delivery, presentation of that same cue in the 

presence of a lever that previously earned ethanol resulted in enhanced responding (Corbit & 

Janak, 2007). These observations suggest that the motivational properties of the alcohol-

paired stimulus invigorated responding. This result is expected based on previous studies 

with non-drug reward. What was unique, however, about the alcohol-predictive cue was that 

when it was presented while animals had access to a lever that previously earned sucrose, 

sucrose-seeking behavior was also increased by the alcohol-predictive stimulus. Under 

particular training conditions, stimuli that predict a reward other than that earned by an 

instrumental response can also enhance instrumental responding – an effect known as 

general PIT. However, typically a stimulus that predicts a reward earned by another trained, 

but currently unavailable response does not increase and may even reduce responding 

(Corbit & Balleine, 2005; Nadler, Delgado, & Delamater, 2011). Thus, the finding that 

ethanol cues invigorate reward seeking in a general – potentially habitual – way, rather than 

in an outcome-specific manner, as is typical for cues paired with non-drug reward, is an 

important distinction between the effects of stimuli paired with alcohol compared to other 

rewards (Corbit & Janak, 2007; Glasner, Overmier, & Balleine, 2005). Furthermore, as 

general and specific PIT effects rely on independent neural circuits (Corbit & Balleine, 

2005, 2011; Corbit, Janak & Balleine, 2007), the observed general effect of alcohol-

predictive stimuli may indicate that alcohol-predictive stimuli recruit different neural 

substrates than stimuli paired with natural rewards. In addition, ethanol-paired contexts have 

been shown to render non-drug reward seeking insensitive to changes in outcome value 

(Ostlund, Maidment, & Balleine, 2010). This suggests that simply being exposed to ethanol-

paired contexts promotes a shift from goal-directed to habitual behavior. While it is unclear 

how exposure to these cues and contexts drives the expression of habitual behavior, one 

attractive idea is that drug-paired cues impinge upon cognitive resources that may be 

necessary for the expression of goal-directed actions (e.g., Jentsch & Taylor, 1999; Tiffany, 

1990).

Habitual behaviors are of particular interest in understanding persistent alcohol seeking that 

contributes to alcohol-use disorders. Indeed, alcoholics have been shown to have increased 

reliance on habit-like response strategies as well as activation of the neurocircuitry 

supporting habitual behavior, as compared to control subjects (Sjoerds et al., 2013). 

However, it is unclear whether these differences predate drug exposure and potentially 

represent increased risk for the development of alcohol-use disorders, or whether differences 

in response strategy selection in alcoholics result from chronic ethanol exposure itself. 

Importantly, work in animal models has demonstrated that there are both individual 

differences in risk for the formation of ethanol-seeking habits (Barker, Zhang, et al., 2014) 

as well as ethanol-induced changes in the development of habitual behaviors (Corbit et al., 

2012). In particular, prior to any ethanol exposure, it has been shown that individuals with 
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high Pavlovian approach toward a food reinforcer also show rapid development of ethanol-

seeking habits. This suggests that pre-existing differences in cue reactivity may predispose 

certain individuals toward loss of flexible ethanol seeking. Considerable evidence also 

indicates that ethanol itself may drive the development of habitual behaviors. Indeed, 

habitual control over ethanol self-administration has been shown to develop more rapidly 

than for non-drug reinforcers (Corbit et al., 2012; Dickinson et al., 2002). Recent work has 

also revealed that this is not due to the use of an ethanol reinforcer per se; indeed, self-

administered alcohol is not always sufficient to promote habit formation (Hay, Jennings, 

Zitzman, Hodge, & Robinson, 2013; Samson et al., 2004; Shillinglaw et al., 2014). Instead, 

ethanol exposure can produce changes in the neural circuits encoding goal-directed and 

habitual behaviors that ultimately facilitate the transition away from goal-directed actions to 

habitual behavior (Corbit et al., 2012).

Regulation of reward seeking within the striatum

A significant literature has identified striatal subregions as critical regulators of reward-

seeking behavior. While the ventral striatum is thought to be largely involved with cued 

outcome-mediated behaviors, the more dorsal aspects of the striatum appear to have distinct 

contributions to goal-directed and habitual reward-seeking behavior. The nucleus 

accumbens (NAc) can be subdivided into two primary subregions – the NAc shell and the 

core – with distinct network connectivity with the prefrontal cortex (PFC). The NAc shell 

receives extensive input from the more ventral infralimbic PFC, a structure known to be 

required for the expression of habitual behavior (Barker, Taylor, & Chandler, 2014; 

Coutureau & Killcross, 2003). The more dorsal prelimbic PFC, which plays a role in the 

acquisition of goal-directed actions (Killcross & Coutureau, 2003; Tran-Tu-Yen, Marchand, 

Pape, Di Scala, & Coutureau, 2009), more extensively innervates the NAc core. Though 

their precise roles differ, both the NAc core and NAc shell have been implicated repeatedly 

in the integration of reward information that is critical for the performance of Pavlovian and 

instrumental behaviors (Hart, Leung, & Balleine, 2014; O'Doherty et al., 2004). In 

particular, as with other reinforcers, NAc core and NAc shell inactivation differentially 

impact the effect of ethanol cues on behavior. For example, inactivation of NAc core, but 

not NAc shell, reduces conditioned responding for ethanol cues (Gremel & Cunningham, 

2008), as well as renewal of responding in non-ethanol paired contexts (e.g., LaLumiere & 

Kalivas, 2008; Peters, Kalivas, & Quirk, 2009). Further distinction between subregions of 

the NAc was observed with presentation of contextual and discrete ethanol cues which 

produced a dopamine response in the border between core and shell, but not in either region 

by itself (Howard, Schier, Wetzel, & Gonzales, 2009). However, inactivation of either 

structure reduced cued lever-responding in an ethanol-paired context, suggesting that the 

NAc shell may play a larger role in context-mediated ethanol-seeking behavior (Chaudhri, 

Sahuque, Schairer, & Janak, 2010). Importantly, lesions of the NAc shell do not prevent the 

expression of goal-directed actions for natural rewards, as measured by either contingency 

degradation or outcome devaluation measures (Corbit, Muir, & Balleine, 2001). However, to 

our knowledge, it has not yet been determined how loss of the NAc impacts response 

strategy in animals that are performing habitual reward seeking for either non-drug or 

ethanol reinforcers.
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The dorsomedial (DMS) and dorsolateral striatum (DLS) receive divergent, but overlapping, 

inputs from cortical and subcortical structures. The associative DMS receives extensive 

glutamatergic innervation from associative cortices (McGeorge & Faull, 1989; Pan, Mao, & 

Dudman, 2010; Voorn, Vanderschuren, Groenewegen, Robbins, & Pennartz, 2004), while 

DLS is highly innervated by sensory motor cortices (McGeorge & Faull, 1989; Pan et al., 

2010; Voorn et al., 2004). This dissociation in cortical inputs is mirrored in their apparent 

roles in goal-directed and habitual non-drug reward seeking – DMS is critical for the 

expression of goal-directed sucrose seeking (Yin, Knowlton, & Balleine, 2005; Yin, 

Ostlund, Knowlton, & Balleine, 2005), while DLS appears to be critical for the development 

and expression of habitual sucrose seeking (Yin, Knowlton, & Balleine, 2004, 2006). The 

majority of this research has investigated the contribution of these structures to the 

development of non-drug reward-seeking habits. However, exciting new work has 

highlighted the roles of these structures and circuits in the development of habitual ethanol 

seeking. Indeed, recent data indicate that treatments that decrease DLS function and/or 

output can restore goal-directed ethanol-seeking behavior (Corbit et al., 2012; Corbit, Nie, & 

Janak, 2014), suggesting an overlapping role for this structure for both non-drug and ethanol 

reinforcers.

To gain a greater understanding of the role of the DMS and DLS in both goal-directed and 

habitual ethanol-seeking behaviors, Fanelli and colleagues performed electrophysiological 

recordings from these structures in rats that had been trained to respond on one of two 

different reinforcement schedules – variable-interval or fixed-ratio – that engender habitual 

or goal-directed behavior, respectively (Fanelli, Klein, Reese, & Robinson, 2013). Under the 

fixed-ratio schedule, where animals are expected to seek the alcohol reward in a goal-

directed manner, DMS neuronal activity increased after the operant response and during the 

presentation of alcohol-paired cues and alcohol delivery. In contrast, DLS neuronal activity 

increased prior to as well as during the operant response, and thus was associated with 

instrumental performance. Interestingly, in animals self-administering ethanol under a 

variable-interval schedule, the general patterns of activity in the DMS and DLS were less 

distinct: more DLS neurons exhibited excitations to alcohol reinforcement (cues and reward 

delivery) while more DMS neurons showed excitation to the motor response than were 

observed under the fixed-ratio schedule. Of interest, Fanelli et al. (2013) reported that more 

anterior DMS neurons exhibited excitation upon reinforcement under fixed-ratio (‘goal-

directed’) conditions, while neurons that showed increased activity were more posterior in 

rats that had been trained on a habit-promoting schedule. Inactivation studies have shown 

that inhibition of either the anterior or posterior region of the DMS during training, but not 

during testing, impairs the acquisition of action-outcome associations required for goal-

directed behavior toward non-drug rewards (Corbit & Janak, 2010). In contrast, excitotoxic 

lesions of anterior DMS made before instrumental training do not disrupt goal-directed 

behavior in animals trained to make an instrumental response, while lesions of posterior 

DMS do disrupt this behavior (Yin, Ostlund, et al., 2005). Notably, inactivation of posterior 

DMS at the time of testing similarly impaired the expression of goal-directed behavior. One 

interpretation of these results is that while both the anterior and posterior DMS contribute to 

goal-directed behavior, the anterior DMS is required during the acquisition of this response 

strategy. Additionally, when examined in the same mouse in a task shifting between goal-
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directed and habitual actions, the same posterior DMS neuron would modulate activity more 

strongly during goal-directed than habitual actions, suggestive of an increased recruitment of 

DMS during goal-directed behaviors (Gremel & Costa, 2013). Supporting this hypothesis, 

many anterior DMS neurons were found to be phasically activated during alcohol-predictive 

cues, especially in rats employing a goal-directed behavioral strategy (Fanelli et al., 2013).

Striatal excitation to instrumental responses has also been reported for non-drug rewards and 

may be enhanced in response sequences (e.g., multiple lever presses) as opposed to single 

responses (Jin & Costa, 2010). While some studies have observed recruitment of DLS 

neuronal activation during habit formation (Kimchi, Torregrossa, Taylor, & Laubach, 2009), 

others have reported diminished activation as a motor task becomes well-learned (e.g., Tang 

et al., 2009). Notably, when the amount of training was equivalent and extensive (>6 weeks 

of training), rats performing under variable-interval or fixed-ratio schedules exhibited 

similar proportions of phasic firing of DLS and DMS neurons during ethanol reinforcement 

(Fanelli et al. 2013). This confirms that, similar to findings with non-drug reinforcers 

(Gremel & Costa, 2013), behavioral strategies do not arise from an “either-or” shift of 

neuronal processing between associative DMS and sensorimotor DLS circuits, but rather 

that they are both engaged during action selection, albeit with differential prominence to 

direct behavioral strategy.

In addition to extensive cortical innervation, both the DLS and DMS receive inputs from 

midbrain dopamine structures, and dopaminergic innervation of these striatal regions 

appears to be critical for the development of habitual behavior. Loss of dopaminergic 

innervation of the DLS has been shown to prevent the development of non-drug reward-

seeking habits (Faure, Haberland, Condé, & El Massioui, 2005). In contrast, 

psychostimulant exposure appears to facilitate habit formation for non-drug rewards (Nelson 

& Killcross, 2006, 2013; Schmitzer-Torbert et al., 2015), as appears to be the case for 

ethanol exposure (Corbit et al., 2012). Furthermore, as is the case with ethanol, 

psychostimulant-facilitated habits appear to be dependent on the same neuroanatomical 

substrates as normal habit learning (Schmitzer-Torbert et al., 2015). This suggests that 

alterations in dopamine signaling in these targets may drive the development of habitual 

reward seeking. Investigation of the effects of psychostimulant exposure on habit formation 

has implicated dopamine signaling and has revealed that amphetamine facilitation of 

habitual behavior can be reversed through nonspecific or D1 dopamine receptor antagonism 

(Nelson & Killcross, 2013). Interestingly, the effect of amphetamine exposure appears to be 

exacerbated by DA D2 antagonism. This is consistent with reports demonstrating that D2 

receptor function is reduced following chronic exposure to drugs such as cocaine (Volkow et 

al., 1993) and that resilience to cocaine use is accompanied by potentiation of glutamatergic 

inputs to D2 neurons (Bock et al., 2013). Related findings show that following chronic 

cocaine exposure, cocaine challenge produces a larger and more sustained calcium response 

in D1 than in D2 neurons in the dorsal striatum, suggesting that disrupted balance between 

direct and indirect output pathways and a relative dominance of the D1-containing direct 

pathway may contribute to compulsive behavior (Park, Volkow, Pan, & Du, 2013). While it 

is not clear at which site this effect is mediated, these findings may be consistent with the 

role of dopamine receptors in infralimbic PFC in regulating goal-directed actions (Barker, 
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Torregrossa, & Taylor, 2013), where D2 agonism can restore goal-directed behavior in non-

drug exposed animals.

In addition to a potential cortical effect, dopamine signaling within the dorsal striatum has 

also been shown to be critical for the expression of habitual behavior for psychostimulant 

rewards (Belin & Everitt, 2008). Functional disconnection of the NAc core-midbrain-DLS 

circuit (accomplished through unilateral inactivation of the NAc and contralateral dopamine 

antagonism within the DLS) disrupts stimulus-driven cocaine seeking (Belin & Everitt, 

2008). To determine the role of DLS dopamine signaling in ethanol-seeking habits, Corbit 

and colleagues (2014) infused a dopamine D2 receptor antagonist prior to testing in an 

outcome-devaluation paradigm. Notably, infusion of the D2 antagonist restored sensitivity 

to outcome devaluation, highlighting that ethanol, as other reinforcers, is highly dependent 

on DLS dopamine signaling. The hypothesis that DLS dopamine release is critical to the 

maintenance of habitual reward seeking is supported by evidence of dopamine transients, or 

brief dopamine release events, in the DLS to reward cues after extended training. In rats 

self-administering cocaine, dopamine transients were observed immediately after a 

reinforced lever press in the NAc early in training, and these signals persisted, albeit at a 

smaller amplitude, over 3 weeks (Willuhn, Burgeno, Everitt, & Phillips, 2012). In contrast, 

dopamine transients in the DLS were not apparent in the first week, but emerged with 

extended training. Similar data were obtained by Shnitko and Robinson (2015) in well-

trained rats self-administering sweetened alcohol or sucrose on a variable-interval schedule 

of reinforcement. Dopamine transients were time-locked to reinforced lever presses in the 

DLS and NAc, but not the DMS. Interestingly, DLS dopamine release was similar in rats 

self-administering sweetened alcohol or sucrose, suggesting that these reinforcement-

associated dopamine transients in the DLS reflect aspects of instrumental behavior rather 

than alcohol reward per se.

People with a history of alcohol-use disorders exhibit greater activity of the sensorimotor 

putamen (analogous to DLS in rodents) and use of stimulus-response strategies during 

instrumental learning as compared to matched controls (Sjoerds et al., 2013). While the 

effects of alcohol dependence on habit itself have not yet been reported in animal models, 

chronic alcohol exposure has been shown to alter DLS plasticity and the expression of other 

DLS-dependent behaviors (Depoy et al., 2013). In this study, Pavlovian-to-instrumental 

transfer (a task that measures the ability of reward-paired cues to invigorate instrumental 

responding) was reduced after chronic ethanol exposure. This indicates that the effects of 

ethanol exposure on stimulus-driven reward-seeking behaviors may be dependent upon the 

precise ethanol-exposure procedures and behavioral paradigms used.

Corticostriatal circuits and response-strategy selection

In addition to the unique contributions of striatal subregions to the expression of goal-

directed actions and habitual behaviors, cortical structures that project to the striatum are 

critical in the regulation of reward-seeking behavior. A majority of work pointing to cortical 

control of habitual behavior has implicated structures within the medial PFC, including the 

infralimbic and prelimbic subregions. The prelimbic PFC sends glutamatergic projections to 

the NAc core and DMS, as well as additional subcortical structures. This more dorsal 
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subregion of the medial PFC is necessary for the acquisition of goal-directed actions – 

lesions or inactivation of the prelimbic PFC prior to training produces premature expression 

of habitual reward seeking (Balleine & Dickinson, 1998; Corbit & Balleine, 2003; Killcross 

& Coutureau, 2003). Inactivation of prelimbic PFC does not acutely impair previously 

learned goal-directed actions (Ostlund & Balleine, 2005; Tran-Tu-Yen et al., 2009), 

suggesting that while prelimbic PFC is required for the acquisition of goal-directed actions, 

it is not critical for their expression.

The infralimbic PFC sends extensive ipsilateral projections to the NAc shell as well as the 

amygdala and is critical for the expression of habitual reward seeking. Lesioning infralimbic 

PFC prior to extended training appears to prevent the development (or expression) of 

habitual reward seeking (Killcross & Coutureau, 2003) and inactivation of this structure can 

restore goal-directed actions after they have been acquired (Coutureau & Killcross, 2003). 

As with the striatum, dopaminergic signaling within this structure appears to be critical for 

response strategy selection, because infusion of dopamine into infralimbic PFC restores 

goal-directed actions (Hitchcott, Quinn, & Taylor, 2007) that appear to be mediated by 

dopamine D2-like receptors (Barker et al., 2013). Notably, chronic intermittent ethanol 

exposure can impair D2/D4 receptor signaling within the infralimbic PFC, resulting in 

behavioral inflexibility in a set-shifting task (Trantham-Davidson et al., 2014). Though it has 

not yet been assessed, it is possible that alterations in ventromedial PFC dopamine signaling 

similarly impair the expression of goal-directed actions after chronic ethanol exposure. 

While these structures send extensive projections to striatal targets, and their interactions 

with the ventral striatum have been shown to be critical for reward-seeking behaviors, to our 

knowledge the role for direct interaction between infralimbic and prelimbic PFC and striatal 

targets in habitual reward seeking has not yet been determined.

The role of orbitofrontal cortex (OFC) in goal-directed and habitual behaviors has gained 

significant interest. As with prelimbic and infralimbic PFC, the OFC sends projections to 

targets within the striatum, including the ventrolateral portion of the striatum and the 

dorsomedial striatum. In primate models, both the lateral and medial OFC have been 

implicated in tasks related to behavioral flexibility, including processing outcome value and 

action-outcome contingencies in the medial OFC (e.g., Roberts, 2006) as well as credit 

assignment and reversal learning in the lateral OFC (c.f., Noonan, Kolling, Walton, & 

Rushworth, 2012). Reports investigating the role of these structures in habitual behavior 

suggest that lesions to the medial OFC do not impact sensitivity to outcome devaluation, 

indicating that goal-directed action is not dependent upon mOFC activity (Gourley, Lee, 

Howell, Pittenger, & Taylor, 2010). In contrast, lesions and chemogenetic inactivation to the 

lateral OFC impair sensitivity to change in outcome value, while optogenetic activation 

selectively increased goal-directed actions (Gremel & Costa, 2013). In addition, 

disconnection of the ventrolateral portion of the OFC from its target in the ventrolateral 

striatum also results in a loss of sensitivity to changes in action-outcome contingencies 

(Gourley et al., 2013). Together, these data suggest that the lateral OFC, and the interaction 

between OFC and ventrolateral striatum, are critical for flexible, goal-directed actions.

To gain a greater understanding of how the OFC interacts with striatal targets to drive the 

expression of goal-directed behaviors, Gremel and Costa (2013) investigated neuronal 
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activity of OFC and striatal targets in the same animal during instrumental habitual and 

goal-directed actions. These investigators trained the same mice on distinct schedules of 

reinforcement (random-interval versus random-ratio schedules) to engender both habitual 

and goal-directed actions, thereby allowing comparison of the same neurons during habitual 

versus goal-directed behavior. It was observed that activity of the same OFC and DMS 

neuron during outcome revaluation tests of goal-directedness were predictive of behavioral 

outcome – in other words, greater differences in neural activity in these structures were 

predictive of increased goal-directed action, but were not predictive of habitual actions. This 

suggests that modulation of activity within this OFC-striatal network may be critical for the 

expression of flexible, goal-directed behavior. It will be of interest to determine whether 

these findings obtained with food-restricted mice working to obtain food or a sweet taste 

will be similar with ethanol-reinforced behavior in the absence of food restriction.

Ethanol effects on corticostriatal function and the development of treatment strategies

Recent research has identified a number of conditions under which ethanol exposure can 

alter behavioral flexibility. Habit models have shown that ethanol-seeking habits may 

develop more rapidly than those for non-drug rewards in animals that are self-administering 

ethanol (Corbit et al., 2012; Dickinson et al., 2002). Importantly, while animals self-

administer pharmacologically relevant doses in recent studies of habitual ethanol seeking 

(0.4–2.0 g ethanol per kg body weight, varying by study), these doses are not likely to be 

sufficient to engender dependence. However, relatively low doses of ethanol are sufficient to 

facilitate habitual sucrose seeking as well (Corbit et al., 2012), suggesting that low doses of 

ethanol may produce general impairments in behavioral flexibility. Few, if any, studies of 

habitual ethanol seeking have reported blood ethanol concentrations achieved during self-

administration. This information is likely to be crucial for understanding the precise effects 

of ethanol exposure on the development of habitual behavior. While the effects of chronic, 

high levels of ethanol or binge-like ethanol consumption on habitual behavior have not yet 

been reported, a number of studies have identified ethanol-induced alterations in behavioral 

flexibility that appear to be mediated by dysregulation of corticostriatal circuits (DePoy et 

al., 2013; Depoy et al., 2014). The majority of studies using the outcome devaluation task to 

study habitual control of alcohol seeking have used the specific-satiety method to devalue 

alcohol at test. This raises the possibility that acute intoxication might somehow promote 

habitual responding. One could argue that intoxication rather than altered representation of 

value suppresses responding for alcohol early in training but no longer does so after 

extended training, perhaps due to tolerance. The same would not be true, however, for 

animals that drink alcohol in the home cage but learn to self-administer sucrose. These 

animals show the same time course for the development of habitual control as animals self-

administering alcohol but, importantly, as these animals are satiated on sucrose in the 

devaluation test, they are not acutely intoxicated. Thus while acute alcohol undoubtedly 

affects striatal activity (e.g. Yin et al., 2007), it seems more likely that adaptations as a 

consequence of long-term exposure to alcohol are responsible for the shift in behavioural 

and neural control (e.g., Wang et al., 2010). The conditioned taste aversion method of 

devaluation provides an alternative means for manipulating the value of alcohol and is 

typically conditioned over several days prior to testing. Therefore, animals do not consume 

alcohol and, thus, are not intoxicated on the test day. This method can be used where the 
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impact of the acute effects of alcohol is a concern for interpreting results. Of note, where 

this method has been used, results support the same general conclusion that alcohol 

promotes more rapid habit formation than rewards such as food (Dickinson, Wood & Smith, 

2002).

Unlike the clear relationship between psyschostimulants and dopamine signaling, ethanol 

exposure has profound effects on multiple neurotransmitter and neuromodulator systems 

(for review, see Barker & Taylor, 2014). Of particular relevance to this symposium, which 

highlighted work investigating the mechanisms by which ethanol acts on corticostriatal 

circuits to alter response strategy selection, alcohol significantly alters glutamate and 

dopamine signaling. Ethanol is well known to increase dopamine concentrations in dorsal 

and ventral striatum, as well as the medial PFC (Imperato & Di Chiara, 1986; Robinson, 

Howard, McConnell, Gonzales, & Wightman, 2009; Schier, Dilly, & Gonzales, 2013; Yim, 

Schallert, Randall, Bungay, & Gonzales, 1997). In addition, chronic ethanol exposure alters 

dopamine receptor signaling in the ventromedial PFC (Trantham-Davidson et al., 2014) such 

that D2/D4 (but not D1) signaling is impaired. This observation appears to be consistent 

with the identified role of infralimbic D2-like signaling in the expression of goal-directed 

sucrose seeking. Alcohol also inhibits activity within PFC neurons in a dopamine-dependent 

manner (Tu et al., 2007) that likely impacts subsequent glutamatergic signaling in 

subcortical projection targets. Indeed, both acute and chronic ethanol exposure impact 

glutamate signaling within corticostriatal circuits. Acutely, ethanol inhibits NMDA receptor 

function in both the cortex and subcortical targets including the striatum (Woodward, 2000; 

Yin, Park, Adermark, & Lovinger, 2007), and repeated ethanol exposure has been shown to 

produce sensitized glutamate release in the NAc (Szumlinski et al., 2007). Chronic ethanol 

exposure results in increases in extracellular glutamate in the NAc (Griffin, Haun, 

Hazelbaker, Ramachandra, & Becker, 2013), as well as alterations in both metabotropic and 

ionotropic glutamate receptor expression that could be related to the expression of 

behavioral inflexibility (Kroener et al., 2012; Meinhardt et al., 2013). While dopamine and 

glutamate signaling in the dorsolateral striatum have been directly implicated in the 

expression of habitual ethanol seeking (Corbit et al., 2014; Shnitko & Robinson, 2015), and 

while the normal functioning of these systems is likely to be altered by chronic exposure to 

alcohol, the precise mechanisms through which alcohol exposure impacts these signaling 

pathways in regions responsible for goal-directed and habitual behaviors to ultimately 

facilitate the acquisition and expression of habitual reward seeking, remain to be elucidated.

Data suggest that ethanol exposure acts not only to alter the corticostriatal circuitry that 

underlies the transition from action and habit, but also that ethanol-paired cues can both 

promote ethanol seeking (e.g., Barker, Torregrossa, & Taylor, 2012; Corbit & Janak, 2007) 

and independently impair the ability to perform goal-directed behavior (Ostlund et al., 

2010). With this in mind, ongoing work is exploring behavioral and pharmacological means 

for improving extinction of ethanol-related stimuli with the aim of reducing their impact on 

behavior (Leung & Corbit, unpublished).

The studies presented in this symposium generally use animal models of instrumental 

behavior in which goal-directed and habitual behaviors are operationally defined to be 

distinct and therefore can be independently measured. These behavioral paradigms appear to 
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have good construct validity for modeling the human condition. Indeed, homologous 

structures have been implicated in the expression of habitual behavior in humans as in 

rodents (Balleine & O'Doherty, 2010; Tricomi, Balleine, & O'Doherty, 2009).

While habitual alcohol seeking models only one component of addictive behavior, we 

believe that a greater understanding of ethanol's effects on the neuroanatomical substrates of 

habitual behavior will lead to the development of novel pharmacotherapeutic and behavioral 

strategies for the reduction of alcohol-seeking behavior. For example, one prediction is that 

drugs such as naltrexone that pharmacologically reduce alcohol reward or craving 

(O'Malley, Krishnan-Sarin, Farren, Sinha, & Kreek, 2002) might be less effective in heavy 

drinkers with strong habitual drinking strategies. Indeed, Hay and colleagues (Hay et al., 

2013) found that naltrexone was less effective in reducing self-administration and cue-

induced reinstatement of alcohol seeking in rats that were trained on habit-promoting 

reinforcement schedules as compared to goal-directed rats. By increasing the ability to 

regulate alcohol-seeking behaviors, we expect future manipulations will enable greater self-

control in individuals, thereby preventing initiation and relapse of cue-elicited drinking.
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Fig. 1. 
Corticostriatal circuits in the regulation of response strategy selection. Cortical structures 

extensively innervate the striatum with a gradient in topographic projections. More ventral 

regions of the medial PFC predominantly project to the more ventral regions of the striatum 

– critical for stimulus-outcome associations, motivation, and potentially integrating 

information to drive goal-directed actions. More dorsal PFC structures largely project to 

more dorsal subregions of the striatum. In particular, prelimbic PFC projects to ventral 

striatum regions, as well as the dorsomedial striatum which is critical for goal-directed 

actions. Sensorimotor cortices, in contrast, send significant projections to the dorsolateral 

striatum, critical for the performance of stimulus-response habits. PrL: prelimbic prefrontal 

cortex; OFC: orbitofrontal cortex; IfL: infralimbic prefrontal cortex; DLS: dorsolateral 

striatum; DMS: dorsomedial striatum; VLS: ventrolateral striatum; NAcC: nucleus 

accumbens core; NAcS: nucleus accumbens shell; S-R: stimulus response; A-O: action-

outcome; S-O: stimulus-outcome.
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