
EPIDEMIOLOGY

Worth the Weight: Using Inverse Probability
Weighted Cox Models in AIDS Research

Ashley L. Buchanan,1 Michael G. Hudgens,1 Stephen R. Cole,2 Bryan Lau,3

and Adaora A. Adimora,4 for the Women’s Interagency HIV Study

Abstract

In an observational study with a time-to-event outcome, the standard analytical approach is the Cox propor-
tional hazards regression model. As an alternative to the standard Cox model, in this article we present a method
that uses inverse probability (IP) weights to estimate the effect of a baseline exposure on a time-to-event
outcome. IP weighting can be used to adjust for multiple measured confounders of a baseline exposure in order
to estimate marginal effects, which compare the distribution of outcomes when the entire population is exposed
versus when the entire population is unexposed. For example, IP-weighted Cox models allow for estimation of
the marginal hazard ratio and marginal survival curves. IP weights can also be employed to adjust for selection
bias due to loss to follow-up. This approach is illustrated using an example that estimates the effect of injection
drug use on time until AIDS or death among HIV-infected women.

Introduction

Survival analysis is often used in infectious disease
research to compare the time to occurrence of clinical

events between treatment or exposure groups.1 Randomized
trials are the gold standard to estimate exposure effects on
survival time, but are not always ethical or feasible. Although
observational studies may provide estimates of effects when
trial data are unavailable, the estimates they yield are often
riddled with confounding.2 Informally, confounding occurs
when the exposure and outcome share a common cause. The
standard approach in survival analysis to account for multiple
measured confounders is the Cox proportional hazards re-
gression model.3

As an alternative to the standard Cox model, we present a
method in this article that uses inverse probability (IP)
weights to estimate the effect of a baseline exposure on
survival time. Under certain assumptions, results from an IP-
weighted Cox model of observational data can be interpreted
in a manner similar to a randomized trial with no drop out
(i.e., loss to follow-up). In particular, unlike the standard Cox
model, this approach allows for the estimation of marginal
effects that compare the distribution of outcomes when the
entire population is exposed versus when the entire popula-
tion is unexposed.4 For example, this IP-weighted approach
yields marginal Kaplan–Meier5 type survival curve estimates

that account for confounding by measured covariates.6,7

Informally, each participant is weighted to create a pseudo-
population in which (1) exposure is not associated with
covariates such that (measured) confounding is eliminated,
and (2) drop out is not associated with exposure or covariates
such that selection bias due to drop out is eliminated.8 This
approach is akin to survey sampling weighting used to esti-
mate a quantity in the population.9,10 Herein, we refer to IP
weighting as standardization, in which the standardization is
to the entire population under two different exposures.7,11 We
illustrate this standardization method through an example
that estimates the effect of injection drug use (IDU) on AIDS-
free survival among HIV-infected women.

Motivating Example: AIDS-Free Survival
Among Injection Drug Users

The Women’s Interagency HIV Study (WIHS) is a pro-
spective, observational, multicenter study of women living
with HIV and women at risk for HIV infection in the United
States.12 A total of 4,129 women (1,065 HIV-uninfected
women) were enrolled between October 1994 and December
2012 at six U.S. sites. An institutional review board at each
site approved study procedures and all study participants
provided written informed consent. We were interested in
determining if AIDS-free survival among HIV-infected
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women differed by IDU, accounting for possible confound-
ing by factors measured at baseline and selection bias due to
drop out by factors measured during study follow-up. We
estimated the hazard ratio and the absolute risk difference at
10 years to quantify this effect.

The study sample consisted of 1,164 women enrolled in
WIHS who were alive, HIV infected, and free of AIDS on
December 6, 1995.13 The endpoint was either death or a di-
agnosis of AIDS. Women who did not reach this endpoint by
December 6, 2005 were censored at that time or at the last
visit at which they were known to be alive and AIDS free,
whichever came first. A history of IDU at WIHS enrollment
is denoted as X = 1 (X = 0 otherwise). The baseline covariates
African American race, age, and nadir CD4 count (in cells/ll)
measured from WIHS enrollment to baseline (i.e., December
6, 1995) are denoted by the vector Z. The time-varying
covariate antiretroviral therapy (ART) initiation during study
follow-up is denoted by Z(t), where Z(t) = 1 if an individual
starts ART before time t since baseline and Z(t) = 0 otherwise.

Inverse Probability Weighted Cox Models

Researchers are often interested in estimating effects of an
exposure fixed at study entry. IP-weighted Cox models are a
method to compare the timing of clinical events under two
different exposures. An appealing feature of the IP-weighted
Cox model is that the results from this method can be inter-
preted in a manner similar to results from randomized trials
with no drop out. An IP-weighted Cox model is fit by max-
imizing a weighted partial likelihood, where participant i who
died or was diagnosed with AIDS at time t from baseline
contributes the term

exp (b̂Xi)

�
+

j2R(t)

bwj(t) exp (b̂Xj)

( )ŵi(t)

(1)

where R(t) is the risk set at time t and exp(b) is the marginal
hazard ratio for a unit difference in exposure X accounting for
confounding and selection bias measured by covariates
through the estimated IP weight ŵi(t) (discussed below).14

When the estimated IP weight ŵj(t)¼ 1 for all j 2 R(t),
Eq. (1) is the usual contribution to the partial likelihood for
the standard (i.e., unweighted) Cox model (see the Appen-
dix). A slight modification of the likelihood is needed in the
presence of tied survival times. The robust variance estima-
tor15 can be employed to account for the fact that the IP
weights are estimated.16 See the Appendix for a review of
inference for the standard (i.e., unweighted) Cox proportional
hazards model.

The estimated IP weight ŵi(t) is the product of an esti-
mated time-fixed IP exposure weight ŵ1i and an estimated
time-varying IP drop out weight ŵ2i(t) for each participant i
at each survival time t. The time-fixed IP exposure weights
are constructed to account for confounding by covariates
measured at baseline. The IP exposure weights essentially
create a pseudopopulation in which exposure is not asso-
ciated with covariates, thus eliminating (measured) con-
founding. For example, if non-African Americans are more
likely to report IDU than African Americans, then an Af-
rican American in the study who reports IDU will be up-
weighted because she is representing more participants.
Different versions of these weights have been proposed. It is

generally recommended to use the (estimated) stabilized IP
exposure weight ŵ1i defined as the ratio of the estimated
marginal probability of having the exposure that partici-
pant i had, formally P̂(Xi¼ xi), to the estimated covariate-
conditional probability of having the exposure that participant
i had, formally P̂(Xi¼ xijZi), where Zi are the measured
covariates for participant i assumed sufficient to adjust for
confounding. Details on estimating the IP exposure weights
using the observed data are provided in the next section tai-
lored to the example.

The time-varying IP drop out weights ŵ2i(t) are con-
structed to account for possible selection bias due to drop
out.14 The IP drop out weights essentially create a pseudo-
population as if no participants had dropped out. Participants
last observed alive and AIDS free for more than 1 year prior
to December 6, 2005 were considered drop outs. Participants
receive a time-varying weight that corresponds to their
probability of remaining free from drop out. This stabilized
IP weight ŵ2i(t) is defined as the ratio of the estimated
marginal probability of remaining free of drop out, formally
P̂(Di > tjXi), where Di is the time from baseline to drop out
for participant i, to the estimated covariate-conditional prob-
ability of remaining free of drop out, formally P̂(Di >
tjZi, Zi(t), Xi), where Zi and Zi(t) are the measured common
causes of drop out and the study outcome for participant i up
to time t. (Note the covariates in the drop out model can be
different from the covariates in the exposure weight model.)
Details on estimating the IP drop out weights using the ob-
served data are provided in the next section tailored to the
example.

Standardized survival curve estimates can be obtained by
fitting an IP-weighted Cox model stratified by exposure with
no covariates and then nonparametrically estimating the
baseline survival functions for the two strata.7 In the absence
of weighting, these survival curve estimates will be (as-
ymptotically) equivalent to Kaplan–Meier estimates obtained
separately for each of the exposure stratum.17

For all Cox models presented below, we employed Efron’s
method to account for events that occurred on the same
date.18 We obtained confidence intervals for the risk differ-
ence at 10 years using a nonparametric bootstrap with 200
random samples with replacement.19 The data analysis for
this article was conducted using SAS software version 9.3
(SAS Institute Inc., Cary, NC). SAS code for analyses in the
present article is provided in the Supplementary Material;
Supplementary Data are available online at www.liebert
pub.com/aid

Illustrative Example

The 1,164 women were 58% African American; the me-
dian age was 36 years and the median nadir CD4 count
was 349 cells/ll at baseline (Table 1). At enrollment, 38% of
women reported a history of IDU. During follow-up, 664
(57%) of women initiated ART. Women were followed for
up to 10 years with a total of 7,090 person-years during which
579 (50%) developed AIDS or died and 117 (10%) dropped
out of the study.

In analyses that did not account for covariates, women with
a history of IDU had notably worse AIDS-free survival than
women without a history of IDU (Fig. 1). The estimated
hazard ratio from the unadjusted Cox model was 1.72 (95%
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confidence interval (CI): 1.46, 2.03; Wald p value < 0.001),
suggesting that the hazard of AIDS or death for those with a
history of IDU was almost twice the hazard of those without a
history of IDU (Table 2). We assessed the proportional
hazards assumption graphically by examining whether the
log cumulative hazard function estimates (see Supplementary
Fig. S1) were approximately parallel. We also assessed this
assumption statistically by inclusion of a product term be-
tween history of IDU and time in the Cox model, for which
the Wald p value was 0.40. Neither graphical nor statistical
assessment suggested a meaningful departure from propor-
tional hazards.

We then obtained a standardized hazard ratio estimate
from the IP-weighted Cox model that involved two steps. In
the first step, using separate logistic regression models,
weights were estimated for the probability of exposure (i.e.,

history of IDU) and for the probability of not dropping out.
For the exposure weights, we fit logistic regression models
for both the numerator and denominator. The exposure model
for the numerator had no covariates, whereas the exposure
model for the denominator included age at baseline, race, and
nadir CD4 count, as well as all pairwise interactions. Age and
nadir CD4 were included as continuous variables using re-
stricted quadratic splines with four knots placed at the 5th,
35th, 65th, and 95th percentiles.20 For the drop out weights,
time was coarsened into months since baseline.21 Then, using
pooled logistic regression,22 the drop out model for the nu-
merator included only exposure (i.e., history of IDU) and
time (using restricted quadratic splines), whereas the drop out
model for the denominator included exposure, time (spline),
age (spline), race, nadir CD4 count (spline), and ART initi-
ation (time varying), as well as all pairwise interactions. In
the pooled logistic regression model, each person contributed
up to 120 records and the weights were cumulatively multi-
plied for each person. The estimated weights ŵi(t) had a mean
of 1.01 (with a standard deviation of 0.76), and ranged from
0.43 to 12.43 (see Supplementary Table S1). In the second
step, the IP-weighted Cox model was fit by weighting par-
ticipants according to their estimated weights, with out-
come time to AIDS or death, and history of IDU as the sole
covariate.

We obtained the estimated survival functions from an IP-
weighted Cox model with no covariates stratified by history
of IDU. After standardization for confounding and drop out
by IP weighting, survival curves showed an attenuated dif-
ference in AIDS-free survival compared to the survival
curves without accounting for any covariates (Fig. 1). Under
certain assumptions discussed below, the dashed black curve
can be interpreted as an estimate of the AIDS-free survival if
(contrary to fact) everyone had a history of IDU at enrollment
and did not drop out, whereas the solid black curve can be
interpreted as an estimate of the AIDS-free survival if (con-
trary to fact) no one had a history of IDU at enrollment and
everyone did not drop out.6,7 The standardized hazard ratio
from the IP-weighted Cox model was 1.53 (95% CI: 1.26,
1.85; Wald p value < 0.001) (Table 2). We again assessed the
proportional hazards assumption graphically by examining
whether the IP-weighted log cumulative hazard function es-
timates (see Supplementary Fig. S2) were approximately
parallel. We also assessed this assumption statistically by
inclusion of a product term between history of IDU and time,
for which the Wald p value was 0.18. Neither graphical nor
statistical assessment suggested a meaningful departure from
proportional hazards. From the standardized survival curves,

Table 1. Characteristics of 1,164 HIV-Infected Women in the Women’s Interagency HIV Study

December 6, 1995 Through December 6, 2005

History of injection
drug use (IDU)

No history of injection
drug use (IDU) Overall

Characteristicsa n = 439 n = 725 n = 1,164

Age (years) 40 (35, 44) 33 (29, 39) 36 (31, 41)
African American race 273 (62%) 399 (55%) 672 (58%)
Nadir CD4 + count (cells/ll) 352 (208, 522) 348 (216, 505) 349 (213, 517)
Initiated antiretrovirals (ARTs)b 208 (47%) 456 (63%) 664 (57%)

aMedian (interquartile range) or number (percent).
bDuring follow-up.

FIG. 1. Kaplan–Meier estimated AIDS-free survival
curves without accounting for any covariates (gray curves)
and standardized estimated AIDS-free survival curves [ac-
counting for age, race, nadir CD4, and antiretroviral therapy
(ART) initiation] (black curves) for 1,164 HIV-infected
women with and without a history of injection drug use
(IDU) in the Women’s Interagency HIV Study December 6,
1995 through December 6, 2005
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the 10-year risk of AIDS or death was 0.59 if (contrary to
fact) everyone had a history of IDU at enrollment and 0.46 if
(contrary to fact) no one had a history of IDU at enrollment.
The 10-year risk difference was 0.14 (bootstrap 95% CI:
0.06, 0.22). For comparison, we also estimated a covariate-
adjusted hazard ratio by including history of IDU, age
(spline), race, and nadir CD4 count (spline) directly in an
unweighted Cox model. The covariate-adjusted hazard ratio
estimate was 1.62 (95% CI: 1.35, 1.95; Wald p value < 0.001).

Discussion

IP-weighted Cox models and standardized survival curves
were presented as methods to compare the timing of clinical
events for two different exposure conditions under certain
assumptions. We compare this method to the traditional Cox
model and discuss assumptions and caveats below.

Although hazard ratio estimates from the IP-weighted and
covariate-adjusted Cox model were comparable in the WIHS
example above, the standardized (i.e., IP-weighted) method
provides several potential benefits over the covariate-
adjusted Cox model. First, the results from the standardized
approach may be interpreted in a manner similar to results
from a randomized trial with no drop out when only obser-
vational data are available (under certain assumptions dis-
cussed below). In particular, the estimated hazard ratio using
the standardized approach can be interpreted in the same way
as the (marginal) hazard ratio that would be obtained in a
randomized experiment such as a clinical trial in which there
is no confounding and no drop out. In contrast, a covariate-
adjusted Cox model hazard ratio does not necessarily equal
the marginal hazard ratio (even in the absence of unmeasured
confounding) because the Cox model is not collapsible for
the hazard ratio parameter.7,23 A regression model is said to
be collapsible for a parameter (in this case, the hazard ratio) if
the covariate-adjusted parameter is the same as the unad-
justed parameter.24

Second, the IP weighting approach yields standardized
survival curve estimates. Although the hazard ratio is a
common summary parameter to compare survival distribu-

tions between exposure groups, there are drawbacks to fo-
cusing inference on hazard ratios. For instance, the hazard
ratio can be difficult to interpret, especially when trying to
summarize the effect of a treatment or exposure.25 Presenting
estimated survival curves is an alternative to reporting hazard
ratios that may be more interpretable because survival curves
summarize all information from baseline up to any time t.
The IP-weighted approach leads to Kaplan–Meier type sur-
vival curve estimates that are standardized to the entire
population under two different exposures at baseline while
accounting for confounding by multiple covariates. A cov-
ariate-adjusted Cox model does not afford such survival
curve estimates.4,6–7

Third, the IP-weighted approach with drop out weights
requires a weaker assumption about censoring than the cov-
ariate-adjusted Cox model.8,26,27 The adjusted Cox model
assumes that the censoring hazard is independent of survival
time conditional on being at risk, exposure, and baseline
covariates, whereas the IP-weighted Cox model makes the
weaker assumption that censoring is independent condi-
tional on being at risk, exposure, baseline covariates, and
time-varying covariates.27,28 Specifically, if there are mea-
sured time-varying covariates predictive of censoring and
survival time, the IP-weighted approach will yield consistent
estimates of the marginal hazard ratio, whereas the covariate-
adjusted Cox model estimator will not be consistent for the
marginal or conditional hazard ratio.8,14,28

Results using standardization by IP weights also have, in
general, a different interpretation than results from an un-
adjusted Cox model. In particular, when exposure is con-
founded, the parameter of an unadjusted Cox model is a
measure of association and will generally differ from the
parameter of an IP-weighted Cox model (i.e., the marginal
hazard ratio), which is a measure of effect.14 On the other
hand, when exposure is unconfounded (e.g., as in random-
ized trials), the target parameter of both models is the
marginal effect. In this case, drop out weights might still be
employed to account for selection bias due to loss to follow-
up.29 Moreover, the use of IP drop out weights yields esti-
mators that are more efficient (i.e., less variable) than those

Table 2. Association of History of Injection Drug Use with Time to AIDS
or Death for 1,164 HIV-Infected Women in the Women’s Interagency

HIV Study December 6, 1995 Through December 6, 2005

History of injection
drug use (IDU)

No history of injection
drug use (IDU) Overall

n = 439 n = 725 n = 1,164

Unadjusted
AIDS cases and deaths 272 (62%) 307 (42%) 579 (50%)
Person-years 2,368 4,721 7,090
Hazard ratio (95% CI) 1.72 (1.46, 2.03) 1 —
10-year risk (95% CI) 0.64 (0.59, 0.68) 0.46 (0.42, 0.49) 0.53 (0.50, 0.56)
10-year risk difference (95% CI) 0.18 (0.13, 0.24) 0 —

Standardizeda

AIDS cases and deaths 248.49 (58%) 308.18 (43%) 556.67 (48%)
Person-years 3,730.97 7,582.69 11,313.66
Hazard ratio (95% CI) 1.53 (1.26, 1.85) 1 —
10-year risk (95% CI) 0.59 (0.54, 0.64) 0.46 (0.42, 0.49) 0.51 (0.47, 0.54)
10-year risk difference (95% CI) 0.14 (0.06, 0.22) 0 —

aIP weighted to account for confounding of exposure due to baseline covariates [age (spline), race, and nadir CD4 (spline)] and selection
bias due to loss to follow-up (covariates included exposure, time-varying ART initiation, and baseline covariates).
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from an unadjusted Cox model even when there is no se-
lection bias.28

The estimation of the hazard ratio and survival curves
using standardization by IP weights requires certain as-
sumptions to yield a valid inference about the exposure
effect. In particular, this approach assumes positivity, well-
defined exposures, correctly specified models, and no un-
measured confounding or selection bias. For each level
defined by the covariates, positivity means that there is a
positive probability of each level of exposure.16 For example,
positivity assumes African American women could possibly
have either a history of IDU or no history of IDU (and sim-
ilarly for non-African American women). On the other hand,
if African American women could never have a history of
IDU, the positivity assumption would be violated. Well-
defined exposures imply that there are not multiple versions
of exposure, or if there are, that they are unimportant.30–32

For instance, the duration of exposure to IDU in the example
is assumed to be irrelevant in the sense that an individual’s
time until AIDS or death is assumed to be the same regardless
of exposure duration. Alternatively, the marginal effects
being estimated can be viewed as average effects over the
distribution of IDU exposure. The standardized hazard ratio
estimator and survival curves require correctly specified IP
weights (i.e., correct covariate functional forms). It is also
assumed that sufficient sets of covariates have been measured
to effectively address confounding (i.e., no unmeasured
confounding)8,14 and selection bias due to drop out.28 In the
example, age, race, and nadir CD4 were assumed to be suf-
ficient to account for confounding and these baseline cov-
ariates, time-varying ART initiation, and exposure were
assumed to be sufficient to account for selection bias due to
drop out.

Typically, when assessing the effect of a baseline exposure,
one would not adjust for post-baseline covariates in order to
avoid potential selection bias.33,34 For example, post-baseline
covariates might be on the causal pathway from the exposure
to the outcome and adjusting for such covariates might lead to
attenuated estimates of the total effect of the exposure.27 In the
example, the time-varying covariate ART initiation was not
included in the covariate-adjusted Cox model. On the other
hand, time-varying ART initiation may be predictive of both
drop out and the survival time, so excluding that variable from
the Cox model has the potential to introduce selection bias. In
contrast, the use of IP drop out weights provides a valid ap-
proach to adjusting for a time-varying covariate associated
with drop out and survival.8,21

We discussed only exposure groups defined at baseline.
When interest focuses on exposures that change over time,
methods must be adapted accordingly. When a time-varying
covariate is a risk factor for the outcome, predicts later ex-
posure, and is affected by prior exposure, standard statisti-
cal methods (e.g., Cox models with time-varying covariates)
are biased and fail to provide consistent estimators of ef-
fects.21,35,36 IP weighting can be used to fit marginal struc-
tural Cox models of time-varying exposures in the presence
of such time-varying confounders.14 For example, in HIV-
infected individuals, CD4 count is a risk factor for death,
predicts subsequent treatment with ART, and is affected by
prior treatment; thus, the marginal structural Cox model is
appropriate for assessing the effect of time-varying ART on
overall survival while adjusting for time-varying CD4 count.

In the illustrative example, we estimated the total effect of
IDU history on time to AIDS or death, which included the
indirect effect mediated through ART and the direct effect
not mediated through ART. Estimating the direct and indi-
rect effects of IDU separately may be of interest and can be
obtained by fitting marginal structural models using IP
weights as long as all relevant data are available for these
models.37

We suggest using expert knowledge to determine which
covariates to adjust for prior to model fitting. Many epide-
miologists would retain a possible confounder if its inclusion
changes the estimate of association by more than 10% or 20%
and a great deal of precision is not sacrificed.38 Other ap-
proaches for determining which covariates to adjust for in a
model include conditioning on (i) all causes of the exposure
or outcome39 or (ii) a sufficient set of covariates based on a
causal directed acyclic graph40 informed by a priori beliefs or
knowledge.41 For the weight models, inclusion of covariates
that are unrelated to the exposure but related to the outcome
may yield effect estimates with smaller variance and no in-
crease in bias, so they should be included in the model;
however, inclusion of covariates that are related to the ex-
posure but not to the outcome may lead to effect estimates
with larger variance and no reduction in bias, so they should
be excluded from the model.41 Machine learning tech-
niques42,43 can be used as an alternative approach to logistic
regression for estimating weights.

Although the IP-weighted method used to analyze the
WIHS data attempts to adjust for confounding and selection
bias, the conclusions from the analysis are still subject to
the following considerations. Comparisons of groups from
observational studies may be susceptible to unmeasured con-
founding bias, as the assumption of no unmeasured con-
founding is untestable. Similarly, the IP-weighted method
assumes drop out is independent of the survival time condi-
tional on being at risk, exposure, baseline covariates, and
time-varying covariates. The absence of unmeasured cov-
ariates predictive of both censoring and survival times is also
an untestable assumption. Even in the absence of unmeasured
covariates, IP drop out weights could fail to correct for se-
lection bias if there is not a sufficient number of participants
during follow-up.26 The models for the IP weights need to be
correctly specified and sensitivity analysis should be per-
formed to assess the robustness of the effect estimates to model
misspecification.16 When there are longer follow-up periods
(specifically, a large number of participant assessments) or
near positivity violations, weights can become large, leading to
imprecise effect estimates. Truncating estimated weights of-
fers some solution to this problem, although results can be
sensitive to the choice of truncation cut-off points.16,44 Finally,
as with all methods, error in the measurement of exposure,
covariates, or the event status or times could bias the results.45

In conclusion, we have presented an example of survival
data pertinent to infectious disease research and illustrated
how to compare groups of study participants using the IP-
weighted Cox proportional hazards model. The methods
presented here have broad applicability in infectious disease
research. Careful use of this and other methods for survival
analysis will continue to enrich the evidence base in the field
of infectious diseases by providing answers to questions that
are difficult or impossible to answer well without explicitly
accounting for time. Inverse probability weighted Cox
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models provide a method to estimate covariate-standardized
hazard ratios and survival curves in observational studies,
and obtain information about effects of treatments or expo-
sures to prevent infectious diseases or their sequela.
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Appendix: Review of the Standard (Unweighted) Cox Proportional Hazards Model

Let uppercase letters denote random variables and lower-
case letters denote possible realizations of random variables
or constants. Let i¼ 1, . . . , n index the study participants.
Let Ti be the time from baseline to AIDS diagnosis or death,
Di be the time from baseline to study drop out, and Ci be
the time from baseline to administrative censoring. In prac-
tice, only the minimum of Ti, Di and Ci is observed, denoted
by T�i ¼min(Ti, Di, Ci). See Cole and Hudgens1 for a review
of univariate survival analysis methods.

The Cox proportional hazards regression model3 is one of the
most widely used statistical methods in biomedical research.
The univariate Cox model is defined as hi(t)¼ h0(t) exp (bXi),
where hi(t) is the hazard function for individuals with covariate
Xi, h0(t) is the reference hazard at time t for those with Xi = 0,
and b is the log hazard ratio for a one unit change in Xi.

Heuristically, Cox regression may be understood as a se-
ries of logistic regression models, where at each ordered
survival time, the log odds of the event are regressed on the
exposure groups and any covariates.18 The Cox model is a
semiparametric model because no assumption is placed on
the probability distribution for the reference survival time
distribution. Equivalently, the function h0(t) is left arbitrary.
The parameters of a Cox model are estimated using maxi-
mum partial likelihood.46 For the case of a single covariate
and assuming no tied survival times, participant i who had the
event at time t contributes the term

exp (bXi)
�

+
j2R(t)

exp (bXj)

to the partial likelihood function, where R(t) is the set of
participants at risk at time t. The partial likelihood is defined

as simply a product of these individual contributions for
events, or

L(b)¼ P
n

i¼ 1

exp (bXi)

Sj2R(Ti) exp (bXj)

� �Yi

where Yi is an event indicator (i.e., T�i ¼ Ti). Only events
contribute to the numerator of the likelihood due to the ex-
ponent Yi. There are several ways to handle tied survival
times, including methods ascribed to Peto and Peto,47 Bre-
slow,48 Efron,18 and an exact approach,27 which all return
the same results if there are no ties. In the presence of
moderate ties and if time is truly continuous, Efron’s ap-
proximation performs well compared to the other ap-
proaches.49

One of the central assumptions of the Cox model is that the
ratios of the hazards defined by levels of the covariates are
constant over time. This is the proportional hazards as-
sumption. The proportional hazards assumption can be as-
sessed by fitting the model h(t)¼ h0(t)exp (b1Xiþ b2Xit) and
testing the null hypothesis that b2 = 0, where Xit is a product
of the covariate and time t.

In general, a 1 - a Wald confidence interval (CI) for the

hazard ratio is defined as exp b̂� z1� a
2

ffiffiffiffiffiffiffiffiffiffi
V̂(b̂)

q� �
, where

z1� a
2

is the 1� a
2

percentile of a standard normal distribution

and V̂(b̂) is the estimated variance of b̂. A Wald test statistic

is defined as b̂ffiffiffiffiffiffiffi
V̂(b̂)
p
� �2

and is chi-squared distributed with 1

degree of freedom under the null hypothesis b = 0.
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