CD4⁺ T-Cell Decline after the Interruption of Antiretroviral Therapy in ACTG A5170 Is Predicted by Differential Expression of Genes in the Ras Signaling Pathway*

Maryanne T. Vahey,¹ Zhining Wang,² Zhaohui Su,³ Martin E. Nau,² Amy Krambrink,³ Daniel J. Skiest,⁴ and David M. Margolis⁵

Abstract

Patterns of expressed genes examined in cryopreserved peripheral blood mononuclear cells (PBMCs) of seropositive persons electing to stop antiretroviral therapy in the AIDS Clinical Trials Group Study A5170 were scrutinized to identify markers capable of predicting the likelihood of CD4⁺ T-cell depletion after cessation of antiretroviral therapy (ART). A5170 was a multicenter, 96-week, prospective study of HIV-infected patients with immunological preservation on ART who elected to interrupt therapy. Study entry required that the CD4 count was greater than 350 cells/mm³ within 6 months of ART initiation. Median nadir CD4 count of enrollees was 436 cells/mm³. Two cohorts, matched for clinical characteristics, were selected from A5170. Twenty-four patients with an absolute CD4 cell decline of less that 20% at week 24 (good outcome group) and 24 with a CD4 cell decline of >20% (poor outcome group) were studied. The good outcome group had a decline in CD4⁺ Tcell count that was 50% less than the poor outcome group. Significance analysis of microarrays identified differential gene expression (DE) in the two groups in data obtained from Affymetrix Human FOCUS GeneChips. DE was significantly higher in the poor outcome group than in the good outcome group. Prediction analysis of microarrays (PAM-R) identified genes that classified persons as to progression with greater than 80% accuracy at therapy interruption (TI) as well as at 24 weeks after TI. Gene set enrichment analysis (GSEA) identified a set of genes in the Ras signaling pathway, associated with the downregulation of apoptosis, as significantly upregulated in the good outcome group at cessation of ART. These observations identify specific host cell processes associated with differential outcome in this cohort after TI.

Introduction

The LIFESAVING ADVANTAGES OF ANTIRETROVIRAL THERAPY (ART) are evident. So too are the challenges faced by persons who fail therapy, experience significant adverse side effects from treatment, or suffer treatment fatigue. As more is learned about ART and treatment modalities evolve, persons who initiated ART under previous guidelines to "hit early and hit hard" would not currently be placed on ART.^{1,2} At the other end of the spectrum are persons whose treatment

options are crucially narrowed due to multidrug resistance or drug-related toxicities. Several studies have evaluated therapy interruption (TI) in closely monitored clinical trials involving primarily chronically infected persons on sustained ART with stable suppression of viremia and preserved CD4⁺ T-cell counts (generally above 350 cells/ μ l).^{3–7} In addition to possibly alleviating the significant clinical side effects and other burdens of prolonged ART, TI was initially postulated to induce the emergence of a more drug-sensitive virus (wild type) in persons with multidrug resistance^{8,9} or

¹Division of Retrovirology, The Walter Reed Army Institute of Research, Rockville, Maryland 20850.

²The Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, Maryland 20850.

³Statistical and Data Analysis Center, Harvard School of Public Health, Boston, Massachusetts.

⁴Baystate Medical Center, Springfield, MA and Tufts University School of Medicine, Medford, Massachusetts.

⁵The Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

^{*}The opinions or assertions contained herein are the private views of the authors, and are not to be construed as official, or as reflecting the views of the Department of the Army or the Department of Defense. None of the authors has commercial or other associations that might pose a conflict of interest. The Affymetrix data sets used to derive the observations discussed in this article can be accessed at: http://www.ncbi.nlm.nih.gov/geo/ under the accession numbers: GSE 10924.

VAHEY ET AL.

in an increase in HIV-specific immunity following cycles of TI.^{10–13} Enhanced HIV-specific immune response, mediated by the expansion of CD8⁺ T cells, was postulated to enhance T-cell turnover rates¹⁴ and speed of viral clearance,¹¹ lower viral set point, and/or to delay viral rebound, even if temporarily.^{7,12,15}

Encouraging observations reporting modest association between increased HIV-specific CD8⁺ memory cells and suppression of viral replication in the earliest trials of TI16,17 involving small numbers of persons were discounted as the preponderance of evidence from larger studies in chronically infected persons with several rounds of TI of varying duration failed to define clear benefits of TI.5-7,12,13,15,18-20 TI in acute or early HIV infection was associated with similar viral rebound.^{10,21} Explanations for these observations include the failure of the transient and modest HIV-specific immunity and the associated expansion of CD8⁺ T cells generated by TI to generate an effective long-term control of viral replication.11,12,15 Additionally, reservoirs of persistent replication competent virus may be preserved even during sustained ART and emerge during TI.^{10,13,15} Concomitant with viral rebound following TI, drug-resistant variants may emerge.22

Transient increases in CD4⁺ T cells, modest expansion of viral-specific immunity, the fleeting emergence of wild-type virus, and some association with a temporarily lowered rate of clinical progression are seen after TI in some studies. However, the repercussions of viral rebound and the inability of the TI-associated immune response to result in a substantial and durable reduction in viral set point make the use of TI untenable in the clinical management of seropositive persons.²³ The SMART study, the largest interventional study conducted in HIV-seropositive persons, recently revealed that TIs are associated with a significant increase in risk of morbidity and mortality from events, many cardiovascular in nature, not previously considered to be HIV-associated and suggested that there was no benefit associated with TI in any subpopulation of patients in the study.²⁴

Nevertheless, in the context of research to identify correlates of disease progression, samples derived from TI clinical studies have the potential to provide critical information on the performance and utility of the gold standard correlates of HIV disease progression, such as CD4⁺ T-cell levels, viral load, and definitive clinical endpoints, as they can be assessed dynamically, in the short term, and in the context of extensive clinical evaluation. Importantly, these well-documented clinical studies also offer the opportunity to evaluate new and novel approaches to the assessment of risk of disease progression. The identification of biomarkers, in turn, builds the collection of tools for the assessment of both drug interventions for the control of HIV disease and the performance of vaccines for the prevention of HIV disease.

We studied samples from persons enrolled in a TI trial, ACTG 5170, which determined that the incidence of clinical endpoints was reduced and that the time to these endpoints was prolonged in persons with higher CD4⁺-cell nadir on ART, lower viral loads prior to ART, and a viral load below detection at TI.⁶ We sought to determine if patterns of gene expression in the peripheral blood mononuclear cell (PBMC) compartment, a type of sample consistently and easily available from clinical studies, might be correlated with the course of disease upon TI. Our findings identified specific host-cell processes in the PBMC compartment that are associated with differential outcome after TI.

Materials and Methods

Clinical specimens

PBMCs were obtained with informed consent from study volunteers enrolled in ACTG 5170, a multicenter clinical trial approved by local human use institutional review boards. Eligibility criteria for ACTG 5170 included confirmed HIV-1 infection, age > 12, CD4 count > 350 cells/mm³ immediately prior to first ART, CD4 count > 350 cells/mm³, plasma HIV-1 RNA viral load < 55,000 copies/ml at screening, currently receiving ART with ≥2 drugs for ≥6 months, and Karnofsky score ≥70.⁶

A5170 was a multicenter, 96-week, prospective study of HIV-infected patients with immunological preservation on ART who elected to interrupt therapy. Study entry required that the CD4 count was greater than 350 cells/mm³ within 6 months of ART initiation. Median nadir CD4 count of enrollees was 436 cells/mm³. Two cohorts, matched for clinical characteristics, were selected from A5170. Twenty-four

TABLE 1. DESCRIPTIVE STATISTICS FOR THE STUDY GROUPS

Statistic	Good outcome group (n = 24)	Poor outcome group $(n = 24)^a$	p values
			,
CD4 cells at week 0	798.35 ± 224.30	900.71 ± 236.46	0.146
CD4 cells at week 24	675.13 ± 212.31	499.54 ± 165.45	$4.00 imes 10^{-3}$
Delta CD4 cells	-123.23 ± 127.31	-401.17 ± 204.05	$1.22 imes 10^{-7}$
Viral load at week 0	1.716 ± 0.064	1.726 ± 0.067	0.157
Viral load at week 24	3.467 ± 0.832	4.432 ± 0.828	$5.96 imes 10^{-4}$
Delta viral load	1.716 ± 0.856	2.705 ± 0.817	$6.43 imes 10^{-4}$
Gender	23 M/1F	22 M/2 F	
Age	41.50 ± 8.85	41.00 ± 6.71	0.650

Values are the mean \pm the standard deviation. *p* values were determined using the Wilcoxon rank-sum test. Viral load is expressed as \log_{10} copies of viral RNA per milliliter of plasma. Values of viral load below the assay cut off of 50 copies were scored as 50 copies. CD4⁺ T-cell levels are expressed as number of cells per milliliter.

^aClinical data for two of the samples in the poor outcome group were taken at week 12 and 16 and for one of the samples in this group at week 4. GeneChip data was within 6–8 weeks of the clinical data. One sample in the poor outcome group had both clinical and GeneChip data from week 32.

patients with an absolute CD4 cell decline of less that 20% at week 24 (good outcome group) and 24 with a CD4 cell decline of >20% (poor outcome group) were studied. The good outcome group had a decline in CD4⁺ T-cell count that was 50% less than the poor outcome group. The good outcome group never reinitiated ART over the course of the study while nine persons in the poor outcome group reinitiated ART at a CD4⁺ T-cell decline of >40%. PBMCs were collected by Histopaque-Ficoll (Sigma, St. Louis, MO) gradient centrifugation and were cryopreserved. Samples were assessed for gene expression patterns at the time of cessation of ART (week 0 in our study) and at 24 weeks after TI.

Standard measures of disease progression

The Roche Amplicor HIV Monitor test (version 1.5: Roche Diagnostics, Basel, Switzerland) was used to determine plasma viral load.

Peripheral blood lymphocyte subset analysis was performed on a FACS Calibur flow cytometer (Becton-Dickinson, Mountain View, CA) using a panel of mouse anti-human monoclonal antibodies according to the manufacturer.

Gene expression profile analysis using Affymetrix GeneChips

Preparation of cellular RNA and subsequent processing for GeneChip analysis were performed as described previously²⁵ using the Agilent 2100 Bioanalyzer system (Agilent Technologies, Santa Clara, CA) to assess the integrity and quantity of RNA and the Affymetrix Human Focus GeneChip (Affymetrix, Santa Clara, CA). This platform consists of 8700 probe sets and assesses 8500 transcripts for 8400 full-length and fully annotated genes.

GeneChips with a scaling factor greater than 50 and an array outlier percentage greater than 5% on dCHIP2005²⁶ were

A	Poor group at wk 0	Poor group at wk 24		Functional categories of	No. of genes	p values
				Response to virus M phase of mitotic cell cycle Mitotic sister chromatid sourcestion	12 9 4	4.58E-11 3.44E-05 6.28E-04
				Regulation of progression through cell cy Inflammatory response	cle 12 8	1.57E-03 1.81E-03
			\langle	Innate immune response Chemotaxis Regulation of apoptosis	5 6 9	2.39E-03 3.65E-03 8.80E-03
				Regulation of programmed cell death DNA metabolism Cellular defonse response	9 13 5	9.09E-03 9.15E-03 1.06E-02
				Humoral immune response Positive regulation of programmed cell do	eath 6	1.15E-02 1.15E-02 1.15E-02
				Apoptosis Cation homeostasis	5 11 5	1.67E-02 1.90E-02
				Complement activation	3	3.64E-02
				Functional Categories of 208 down regulated genes	No. of genes	p values
				Protein biosynthesis	58	2.13E-26
			\mathcal{I}	Macromolecule biosynthesis	59	5.33E-25
				Cellular protein metabolism	75	6.07E-07
				Regulation of protein biosynthesis	7	9.28E-03
				Regulation of cellular biosynthesis	7	1.14E-02
B	Good group at wk 0	Good group at wk 24] [Functional categories of	No. of genes	p value
				51 up regulated genes response to virus	5	8.18E-05
			\prec	cellular defense response	4	3.35E-03
				biopolymer catabolism	5	5.16E-03
				protein catabolism	4	2.80E-02
	-2.0 Green: down regu	lated		1:1	Red: U	Jp regulated 2.0

FIG. 1. Differential gene expression at 24 weeks after cessation of ART. (**A**) Differential expression in poor outcome group. There were 133 genes upregulated and 208 genes downregulated at significant level of false discovery rate (FDR) < 1%. On the left is a heat map showing the magnitudes of gene expression changes (see Supplementary Table 1 for expression values of each gene in each sample). Gene ontology (GO) categories of these 133 up- and 208 downregulated genes are shown on the right. Only categories whose *p* values are less than 0.05 are listed. The *p* values of each GO category were determined by the online tool, DAVID. (**B**) Differential expression in the good outcome group. Unlike the poor outcome group, the number of differentially expressed genes in the good outcome group was much less. There were only 51 genes upregulated from week 0 to week 24 at FDR < 1% significant level, and no genes downregulated at FDR < 1% significant level.

eliminated from further analysis. CEL files were normalized at the probe level using the robust multichip average method²⁷ built into the BioConductor package Affy-1.12.2. Genes scored as absent in all 96 samples were eliminated from analysis.

The Affymetrix datasets used to derive the observations discussed in this article can be accessed at: http://www.ncbi. nlm.nih.gov/geo/ under the accession numbers: GSE 10924.

Gene expression data analysis methods

Differentially expressed genes were identified by using the statistical program Significance Analysis of Microarrays (SAM) version 3.0^{28} and cluster analysis of microarray datasets was performed using MultiExperiment Viewer available at http://www.tigr.org/software/microarray. shtml. SAM identifies genes whose expression has significantly changed by leveraging a set of gene-specific *t* tests. Genes are assigned a score derived from the change in expression relative to the standard deviation for all measurements made for that gene. Genes that exceed a threshold are scored as statistically significant. The percentage of genes being called significant by chance is measured by false discovery rate (FDR). We used a cutoff of FDR < 1% for SAM, which is very stringent.

The functions and biological classifications of differentially expressed genes were analyzed by the web-based tool, DAVID, which sorts gene lists into functional profiles using broad gene ontology categories by associated biological processes.²⁹ Ontology groupings for genes overlap by nature of the fact that the products of genes may have multiple functions.

Class prediction was performed using an academic software package, Prediction Analysis of Microarray with R (PAM-R), which implemented the nearest shrunken centroid algorithm.³⁰ The software provides a k-fold cross-validation method to estimate the predicting capability of the resultant classifier set of genes. PAM-R is available at http://www. bioconductor.org. PAM-R is an iterative analytical method that uses sets of individual genes, called classifier sets, that together are capable of assigning samples to a given group.

Gene set enrichment analysis (GSEA) or R-GSEA and MSigDB (Molecular Signatures DataBase of gene sets) were used to identify differentially expressed sets of genes. Both the software and geneset database were downloaded from the website of The Broad Institute of MIT and Harvard (http://www.broad.mit.edu). GSEA identifies sets of related genes, as opposed to individual genes, associated with biological pathways that are coregulated and are associated with progression after TI in our study. We used GSEA's default statistical cutoff FDR < 0.25.

Independent confirmation of GeneChip expression data

To confirm observations from the gene chip data, Taq-Man[®] Gene Expression Assays (Applied Biosystems, Foster

\land	Functional categories of 15 genes unique in good outcome group	No. of genes	p values
15	Biopolymer catabolism	4	0.001087564
	Protein catabolism	3	0.016571123
	Cellular macromolecule catabolism	3	0.037432451
	Functional categories of 36 genes common to both groups	No. of genes	p values
36+	Response to virus	5	1 57E-05
	Cellular defense response	4	0.001020
	Nucleotide biosynthesis	3	0.040293
	Functional categories of 97 genes unique to poor outcome group	No. of genes	p values
	Response to virus	7	1.00E-05
	M phase of mitotic cell cycle	7	3.51E-04
l)	Mitotic sister chromatid segregation	3	0.007269
	Regulation of progression through cell cycle	9	0.008299
9/	Positive regulation of programmed cell death	n 5	0.019083
	Apoptosis	9	0.022421
/	Regulation of apoptosis	7	0.022696
/	Regulation of programmed cell death	7	0.023250
/ 1			0.042512
/	Chemotaxis	4	0.042313

FIG. 2. Survey of the distribution of genes significantly upregulated in the poor and good outcome groups. The numbers of genes in the ontological groups as determined by DAVID are given as well as the associated *p* values for each. Common to both groups were genes associated with viral infection. Distinct in the poor and good outcome groups were genes associated with catabolism and in the poor group were those associated with apoptosis, programmed cell death, and progression through the cell cycle.

City, CA) optimized for microarray validation (3' *most*) were used to detect NFKB1, RELA, RAF1, and PIK3CA in three randomly chosen, matched sets of good and poor outcome samples. The fluorescence signals were measured in real time using ABI HT7900 and critical threshold (CT) values were output from the software SDS2.1. Glyceraldehyde 3-phosphate dehydrogenase was used as internal control to calculate fold changes of target genes in good versus poor outcome samples by the $2^{-\Delta\Delta CT}$ method.

Results

Demographic and clinical characteristics of the study group

There were 96 samples in the study set. Table 1 summarizes the characteristics of the good and poor outcome groups at week 0 (at cessation of ART) and 24 weeks later. The drop in $CD4^+$ T cells in the samples in the good outcome group was 50% less than the corresponding matched sample in the poor

Patients

FIG. 3. Classification analysis for outcome at week 0 and at week 24 after the cessation of antiretroviral therapy. (**A**) Prediction analysis of microarrays (PAM-R) analysis of classification and prediction at week 0 showing an 81% accuracy in classification by the 53 genes in the classifier set. (**B**) PAM-R analysis of classification and prediction at week 24 showing an 83% accuracy in classification by the 176 genes in the classifier set. The *x*-axis (numbers 1 through 48) shows the patients in the analysis with numbers 1–24 belonging to the good outcome group and numbers 25–48 to the poor outcome group. For each patient, there are two symbols. A triangle indicates the probability, shown on the *y*-axis, of a patient being predicted to belonging in the good outcome group, and a cross indicates the probability of the same patient being predicted as belonging to the poor outcome group. If a triangle is above a cross, the patient is classified as belonging to the good outcome group. For a given patient, the sum of all probabilities is always equal to 1.

outcome group. The good outcome group was characterized by a mean loss of 123.23 cells over the study period, and the poor outcome group by a mean loss of 401.17 cells (Wilcoxon rank-sum test, $p = 1.22 \times 10^{-7}$). At study entry, the two groups had no significant difference in plasma viral load, CD4⁺ T-cell levels, or age. At week 24, there was a significant difference between the two groups in CD4⁺ T cells, viral load, and the mean change in both these parameters since study entry. The groups do not differ in gender or race as 94% were male, 6% female and 67% were Caucasian, 19% were African-American, 10% Hispanic, and 4% Asian/Pacific Islander. There was no significant difference in the ART history in the two groups (data not shown). Principal component analysis indicated that expression profiles of samples in the poor outcome group taken at weeks 4, 12, 16, and 32 were not outliers.

Differential gene expression is associated with progression after the cessation of ART

SAM using study entry (week 0) as baseline, with an FDR of 1%, was used to identify genes that exhibited a significant change in expression level over the 24-week study period.

FIG. 4. Functional categories of genes comprising the classification sets at week 0 and at week 24. (**A**) Pie chart of those functional categories in the classifier set at week 0 that were annotated by DAVID at biological process level 5. Genes associated with progression through the cell cycle are included. (**B**) Pie chart of those functional categories in the classifier set at week 24 that were annotated by DAVID. Genes associated with the regulation of apoptosis and cell cycle predominated. Only genes with *p* value of < 0.05 are shown.

Differentially expressed (DE) genes were annotated using the DAVID database to determine significantly enriched gene ontology (GO) functional categories with a cutoff p value of 0.05. The complete list of differentially expressed genes is given in the Appendix.

More differential expression was observed in the poor outcome group over the study period than in the good outcome group at an FDR of 1%. Figure 1 is a heat map showing the upregulation of 133 genes and the downregulation of 208 genes in the poor outcome group over the 24-week period. Also shown are the remarkably few genes, 51 upregulated and no significantly downregulated genes, whose expression was significantly changed over the study period in the good outcome group. Corresponding GO functional categories are also shown. Genes associated with response to viral infection were among those upregulated. The DE genes that were downregulated at week 24 were dominated by those associated with biosynthesis and metabolism.

In the good outcome group, 51 genes were differentially expressed over the study period and none were downregulated. Genes associated with response to viral infection and cellular defense predominated the set of upregulated genes in the good outcome group.

Figure 2 displays a Venn diagram of the differences and similarities between DE in the good and poor outcome groups in genes that are upregulated over the 24-week period. There were 15 genes that were upregulated and were unique to the good outcome group. Thirty-six upregulated genes were observed in both outcome groups, and 97 upregulated genes were unique to the poor outcome group. The major functional categories that comprise the upregulated genes shared by both groups were those associated with response to virus (five genes) and with cellular defense response (four genes). Functional categories unique to the poor outcome group included apoptosis, inflammatory response, and the positive regulation of programmed cell death, and those associated with catabolism were uniquely upregulated in the good outcome group.

DE of sets of genes is capable of classifying patients as to progression after the cessation of ART with greater than 80% accuracy

PAM-R was used to leverage a 10-fold cross-validation method to identify sets of classifier genes capable of sorting samples into good and poor outcome groups. Figure 3(A) and (B) show the results of PAM-R at study entry and week 24, respectively. The graph in Fig. 3(A) shows that, leveraging the expression of a distinct set of genes, samples can be assigned to the good or poor group with an overall accuracy of 81% at study entry. The resolution of the assignment of samples to the two groups increased significantly by 24 weeks, shown in Fig. 3(B), as indicated by the increase in the separation of the probability of assignment to the correct group shown on the ordinate. Figure 4(A) and (B) show pie charts of the known functional categories of the 53 genes comprising the 81% accurate classifier set at study entry and the 176 genes comprising the 83% accurate classifier set at week 24.

Of the genes in the 53 gene classifier set at study entry

that can be annotated by DAVID and have a p value of less than 0.05, genes associated with the regulation of progression through the cell cycle were observed. In the 176 gene classifier set at week 24, genes associated with the regulation of apoptosis and progression through the cell cycle dominate and those associated with the immune re-

FIG. 5. Gene set enhancement analysis and identification of genes in the Ras signaling pathway associated with the regulation of apoptosis at week 0. (A). Heat map showing the differential expression of genes in the Ras signaling pathway in the two outcome groups. (B) Network of Ras signaling pathway genes identified by gene set enrichment analysis. The expression of genes whose annotations are given in red ink was independently confirmed by reverse-transcriptase polymerase chain reaction. ERK 1/2, extracellular signal regulated kinase; Ras, Regulator GTPase, rat sarcoma viral oncogene; PIK3 CA, phosphatidylinositol e kinase catalytic subunit A isoform; RAC1, Ras-related botulinum toxin substrate 1; PIP3 phosphoinositide binding protein 3; RAF1, vraf 1 murine leukemia viral oncogene homolog 1; NFKB1, nuclear factor of kappa light polpeptide gene enhancer in B cells 1; RELA, vref reticuloendotheliosis viral oncogene homolog A.

sponse, viral infection, and proliferation are also represented.

High-resolution gene set enrichment analysis identified genes in the Ras pathway that are specifically associated with the downregulation of apoptosis and that are differentially enriched in samples from patients with good outcome

High-resolution gene set enrichment analysis was used to identify sets of genes known as "core enrichment genes," which are differentially expressed at week 0, the point of cessation of ART. The results of this analysis are shown in Fig. 5(A) and (B). Figure 5(A) displays a heat map showing the expression of the set of core enrichment genes in the Ras family that were identified by GSEA as being upregulated in the good outcome group. The Ras genes identified by GSEA were associated with the modulation of apoptosis. The functional pathway of these genes is shown in Fig. 5(B). The expression of genes whose annotations are shown in red ink in Fig. 5(B) were independently confirmed by reverse-transcriptase (RT) polymerase chain reaction (PCR).

Real-time PCR confirmed the expression of the genes in the Ras pathway that were upregulated in the good outcome group

Table 2 summarizes the confirmation by RT PCR of the DE in randomly chosen, matched samples from the good and poor outcome groups at the time of cessation of ART and identified by the expression data as genes associated with the regulation of apoptosis in the Ras signaling pathway. The correlation coefficient for the concordance of these two independent means of deriving the data was r = 0.93.

Discussion

The goal of this study was to ascertain if, prior to ART interruption, distinct patterns of gene expression might be associated with disease progression or outcome in persons who stop ART. A second goal of the study was to use these patterns to identify biological and cellular processes that might account for such an association. Clearly, the good and poor outcome groups were indistinguishable by demographic and traditional clinical features at the time of cessation of ART (week 0) and were by week 24 significantly divergent in clinical status. Accordingly, there are definitive patterns of gene expression associated with the two groups at week 24. Although this might be expected after clinical progression has occurred, the observation that gene expression patterns that are associated with outcome at week 24 can be identified at week 0 is highly significant.

Genes associated with apoptosis are shown by the three levels of analysis used in our study to be indicative of differential outcome. SAM analysis indicates that these genes are uniquely upregulated by week 24 in the poor outcome group. The more stringent classification analysis indicates that by week 24, genes associated with the regulation of apoptosis are represented in the 176 genes capable of classification of samples into two divergent groups with an accuracy of 83%. Classification analysis also indicates that there are patterns of gene expression that are capable of distinguishing the two groups at week 0. The analysis presented in Fig. 3(A and B) is critical for several reasons in that: (1) it demonstrates the degree to which expression profiles can distinguish differential outcome after TI and 24 weeks later and (2) it shows that such profiles can distinguish differential outcome as early as study entry when the traditional markers of CD4⁺ T-cell levels and viral load are indistinguishable. In addition, this analysis provides the collection of genes that drive the prediction of outcome and that include those associated with the regulation of cell cycle and apoptosis as shown in Fig. 4(A and B). These data prompted the GSEA, which confirmed and extended the identification of the modulation of apoptosis as the underlining functional pathway that distinguished good and poor outcome persons.

The extensive scrutiny of gene expression at week 0 by GSEA identified a set of genes, as opposed to individual genes, that are associated with the regulation of apoptosis in the Ras signaling pathway. Independent confirmation of the differential expression data generated by gene chip analysis, using RT-PCR in both good and poor outcome samples, further substantiated the pivotal role of this gene family in disease course immediately after the cessation of ART. Taken together, these data indicated that the regulation of apoptosis may play a significant role in the pathogenesis of disease after the cessation of ART. Furthermore, as there appeared to be little difference in HIV pathogenesis after the initial establishment of viral set point following infection and after the reestablishment of viral set point following TI, the regulation of apoptosis may play an important role in HIV pathogenesis throughout the course of HIV infection. Observations in the nonhuman primate model report a species-specific, divergent immune response in a natural host (sooty mangabey) and a nonnatural host (rhesus macaque) that is evident from the time of infection with

TABLE 2. RT-PCR CONFIRMATION OF THE UPREGULATION OF RAS SIGNALING PATHWAY IN GOOD OUTCOME GROUP AT WEEK 0

PIK3CA		RAF1		NFKB1		RELA	
RT-PCR	GeneChip	RT-PCR	GeneChip	RT-PCR	GeneChip	RT-PCR	GeneChip
1.89	1.54	1.43	1.18	0.69	0.79	1.29	1.12
3.33 4.06	4.91 4.25	1.00 2.03	1.86 2.46	1.89 5.00	2.24 5.28	1.63 1.86	2.11 1.37

Values in the table are the fold changes of good versus matched poor samples. For each gene, the left column is fold change detected by RT-PCR and the right column is fold changes measured by GeneChip in three sets of samples. Correlation coefficient of GeneChip and RT-PCR data is 0.93. The fold change was calculated by $2^{-\Delta\Delta CT}$ method using GAPDH as internal control. RT, reverse-transcriptase; PCR, polymerase chain reaction.

uncloned simian immunodeficiency virus, sooty mangabey (SIVsm). Both hosts developed high levels of viremia but in the sooty mangabey, an attenuated immune response was correlated with an absence of CD4⁺ T-cell decline and simian immunovirus (SIV)-associated pathogenesis. These observations suggest that the host response to infection plays a critical role in SIV, and by extension, HIV, pathogenesis.³¹ Similar observations have been reported in three HIV-seropositive persons who are long-term nonprogressors.³²

The Ras signaling pathway is the specific gene family associated by GSEA with differential outcome after TI. Ras, named for its association with rat sarcoma viral oncogenes, is an extensively studied small guanosine triphosphatase protein³³ that relays extracellular signals to intracellular signaling cascades. The protein plays a pivotal role in the complex positive and negative feedback loops that modulate cell survival and cell death, as well as cell proliferation and differentiation.^{34–36} Understandably, this protein has been scrutinized by the oncology field as a potential drug target to halt the transformation and unchecked growth associated with cancer.³⁷ In our study, the cascade of the convoluted Ras signaling pathway that is associated with differential outcome after TI involved impingement on PI3K (also known as PIK3CA, phosphatidylinositol 3 kinase catalytic subunit, alpha isoform) and ERK (extracellular signal regulated kinase)/RAF 1 (vraf1 murine leukemia viral oncogene homolog 1). Among the myriad of regulatory pathways involving Ras, the pathway associated with good outcome in our study modulates antiapoptotic processes.35,38,39 Gene expression patterns of PI3K, RELA (v-rel riticuloendotheliosis viral oncogene, homolog A), NFkB1 (nuclear factor of kappa light chain polypeptide gene enhancer in B cells 1), and RAF 1 identified by GSEA support the conclusion that this cascade, which directs the downregulation of apoptosis,35,38,39 is associated with differential outcome in our study.

Modulation of cell survival by the Ras signaling pathway has been shown to depend on cell type and level of gene expression.^{38,40} However, the assessment of the transcriptional patterns within the total PBMC compartment cannot pinpoint causal processes within a particular cellular subcompartment or to a specific functional protein. Nevertheless, downregulation of apoptosis in the good outcome group, as assessed in the PBMC compartment, was associated with a statistically significant, fourfold less decline in CD4⁺ T cells than observed in the poor outcome group. This observation is consistent with that of van Grevenynghe and colleagues, who reported that the central memory CD4⁺ T cells of elite controllers were less susceptible to Fas-regulated apoptosis.⁴¹ It is also important to note that persons with higher CD4⁺ cell nadir while on ART exhibited a delayed time to the development of primary clinical end points in the study from which these samples were drawn.⁶ Observations from the SMART study that addressed outcome during episodic antiretroviral therapy guided by CD4⁺ T cell counts showed a significantly increased risk of opportunistic infections and death compared with continuous therapy, which was postulated to be due to a decline in CD4⁺ T cells and concomitant increase in viral load.²⁴ Furthermore, that gene expression patterns associated with the downregulation of apoptosis in the good outcome group could be distinguished so early (week 0) may indicate that such patterns had been established prior to the cessation of ART.

The identification of a set of genes definitively associated with the downregulation of cell death as an attribute of the good outcome group is a reasonable point of departure for future studies on specific subpopulations of cells or in animal models that might confirm and extend our observations to specific cell types or tissues. Ultimately, candidate biomarkers such as these, determined in well controlled clinical studies in which the traditional makers of viral load and CD4⁺ T cells are well characterized, will need to be evaluated in prospective clinical studies.

Acknowledgments

We thank M. Pochyla for expert technical laboratory work and Dr. Gustavo Kijak and Mr. Eric Sanders-Buell, all of the Henry M. Jackson Foundation, for advice on the design and execution of RT-PCR. We also thank Dr. Jerome Kim, Armed Forces Research Institute of the Medical Sciences, Bangkok, for helpful advice in the initial stages of this work and Dr. Emil Lesho, Walter Reed Army Institute of Research, for scrutiny of the final draft. This work was supported in part by Cooperative Agreement no. W81XWH-04-2-0005 between the U.S. Army Medical Research and Materiel Command and the Henry M. Jackson Foundation for the Advancement of Military Medicine. This work was supported by the Statistical and Data Management Center under the National Institute of Allergy and Infectious Disease grant no. 5U01 AI38855 and in part by the AIDS Clinical Trials Group funded by the National Institute of Allergy and Infectious Diseases grant no. AI-68636. The parent ACTG study from which these samples were derived, was funded by grants: AI025915, AI027666, AI27670, AI25897, AI25868, RR00046, AI50410, AI46386, RR00047, AI 27665, RR00096, AI 27664, AI46381, AI032783, AI045008, AI27660, AI46370, AI 27673, A125903, AI27658, RR00044, AI27661, AI39156, and AI25859.

References

- Carpenter CC, Fischl MA, Hammer SM, et al. Antiretroviral therapy for HIV infection in 1997: updated recommendations of the International AIDS Society-USA panel. JAMA 1997;277:1962–1969.
- Hammer SM, Saag MS, Schechter M, et al. Treatment for adult HIV infection: 2006 recommendations of the International AIDS Society-USA panel. JAMA 2006;296:827–843.
- Boschi A. Tinelli C, Ortolani P, et al. CD4+ cell count guided treatment interruptions in chronic HIV infected patients with response to highly active antiretroviral therapy. AIDS 2004;18:2381–2389.
- Ananworanich J, Gayet-Agenon A, LaBraz M, et al. CD4 guided scheduled treatment interruption compared to continuous therapy for patients infected with HIV-1: results of the Staccato randomized trial. Lancet 2006;368:459–465.
- Cardiello PG, Hassink E, Ananworanich J, et al. A prospective randomized trial of structured treatment interruption for patients with chronic HIV type 1 infection. Clin Infect Dis 2005;40:594–600.
- Skiest DJ, Su Z, Havlir DV, *et al.* Interruption of antiretroviral treatment in HIV-infected patients with preserved immune function is associated with a low rate of clinical progression: a prospective study by AIDS Clinical Trials Group 5170. J Infect Dis 2007;195:1426–1436.
- 7. Davey RT, Bhat N, Yoder C, *et al*. HIV-1 and T cell dynamics after interruption of highly active antiretroviral therapy

(HAART) in patients with a history of sustained viral suppression. Proc Natl Acad Sci U S A 1999;96:15109–15114.

- Delaugerre C, Valantin MA, Mouroux M, et al. Re-occurrence of HIV-1 drug mutations after treatment re-initiation following interruption in patients with multiple treatment failure. AIDS 2001;15:2189–2191.
- Miller V, Sabin C, Hertogs K, et al. Virological and immunological effects of treatment interruptions in HIV-1 infected patients with treatment failure. AIDS 2000;14: 2857–2867.
- Kaufmann DE, Lichterfeld M, Altfeld M, et al. Limited durability of viral control following treated acute HIV infection. PLoS Med 2004;1:137–147.
- Oxenius A, McLean, AR, Fischer M, et al. Human immunodeficiency virus specific CD8+ T cell responses do not predict viral growth and clearance rates during structured intermittent antiretroviral therapy. J Virol 2002;76:10169–10176.
- 12. Oxenius A, Price DA, Gunthard HF, *et al.* Stimulation of HIV specific cellular immunity by structured treatment interruption fails to enhance viral control in chronic HIV infection. Proc Natl Acad Sci U S A 2002;99:13747–13752.
- Ortiz GM, Wellons M, Brancato J, et al. Structured antiretroviral treatment interruptions in chronically HIVinfected subjects. Proc Natl Acad Sci U S A 2001;98: 13288–13293.
- 14. Lempicki RA, Kovacs JA, Baseleer MW, et al. Impact of HIV-1 infection and highly active antiretroviral therapy on the kinetics of CD4+ and CD8+ T cell turnover in HIV-infected patients. Proc Natl Acad Sci U S A 2000;97:1377–13783.
- 15. Frost SDW, Martinez-Picado J, Ruiz L, Clotet B, and Leigh Brown AJ. Viral dynamics during structured treatment interruptions of chronic human immunodeficiency virus type 1 infection. J Virol 2002;76:968–979.
- Ruiz L, Carcelain G, Martinez-Picado J, et al. HIV dynamics and T cell immunity after three structured treatment interruptions in chronic HIV-1 infection. AIDS 2001;15:F19–F27.
- Garcia F, Plana M, Vidal C, et al. Dynamics of viral load rebound and immunological changes after stopping effective antiretroviral therapy. AIDS 1999;13:F79–F86.
- Papasasvvas E, Kostman JR, Mounzer K, et al. Randomized, controlled trial of therapy interruption in chronic HIV-infection. PLoS Med 2004;1:218–228.
- Molto J, Ruiz L, Romeu J, et al. Influence of prior structured treatment interruptions on the length of time without antiretroviral treatment in chronically HIV-infected subjects. AIDS Res Hum Retroviruses 2004;12:1283–1288.
- Lawrence J, Mayers DL, Huppler-Hullsiek K, et al. Structured treatment interruption in patients with multidrug-resistant human immunodeficiency virus. New Engl J Med 2003; 349:837–846.
- Steeck H, Jessen H, Alter G, et al. Immunological and virological impact of highly active antiretroviral therapy initiated during acute HIV-1 infection. J Infect Dis 2006;194: 734–739.
- Schweighardt B, Ortiz GM, Grant RM, et al. Emergence of drug-resistant HIV-1 variants in patients undergoing structured treatment interruptions. AIDS 2002;16:2342–2344.
- Koup RA. Reconsidering early HIV treatment and supervised treatment interruptions. PLoS Med 2004;1:109–110.
- El-Sadr WM and Members of the SMART Study Group. CD4+ Count–Guided Interruption of Antiretroviral Treatment the Strategies for Management of Antiretroviral Therapy (SMART) Study Group. New Engl J Med 2006; 355: 2283–2296.

- 25. Vahey MT, Nau ME, Taubman M, et al. Patterns of gene expression in peripheral blood mononuclear cells of rhesus macaques infected with SIVmac251 and exhibiting differential rates of disease expression. AIDS Res Hum Retroviruses 2003;19:369–387.
- Li C, Wong W. Model based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci U S A 2001;98:31–36.
- 27. Irizarry RA, Bolstad BM, Collin F, et al. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 2003;31:e15.
- 28. Tusher VG, Tibshirani R, and Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 2001;98:5116–5121.
- 29. Dennis G, Sherman BT, Hosack DA, et al. DAVID: Database for annotation, visualization and integrated discovery. Genome Biol 2003;4:P3.
- 30. Tibshirani R, Hastie T, Narasimhan B, and Chu G. Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci U S A 2002;99:6567–6572.
- 31. Silvestri G, Fedanov A, Germon S, *et al.* Divergent host responses during primary simian immunodeficiency virus SIVsm infection of natural sooty mangabey and nonnatural rhesus macaque hosts. J Virol 2005;79:4043–4054.
- Choudhary SK, Vrisekoop N, Jansen CA, et al. Low immune activation despite high levels of pathogenic human immunodeficiency virus type 1 results in long term asymptomatic disease. J Virol 2007;81:8838–8842.
- 33. Vojtek AB and Der CJ. Increasing complexity of the Ras signaling pathway. J Biol Chem 1998;273:19925–19928.
- 34. Cox AD and Der CJ. The dark side of Ras: regulation of apoptosis. Oncogene 2003;22:8999–9006.
- 35. Kolch W. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J 2000;351:289–305.
- Chang F, Steelman LS, Shelton JG, *et al.* Regulation of cell cycle progression and apoptosis by the Ras/Raf/MEK/ERK pathway (review). Int J Oncol 2002;22:469–480.
- Blum R and Kloog Y. Tailoring Ras pathway inhibitor combinations for cancer therapy. Drug Resist Updat 2005;8: 369–380.
- Bonni A, Brunet A, West AE, Sandeep RD, Takasu MA, and Greenberg ME. Cell survival promoted by the Ras-MAPK signaling pathway by transcription dependent and independent mechanisms. Science 1999;286:1358–1362.
- Downward J. Ras signaling and apoptosis. Curr Opin Genet Dev 1998;8:49–54.
- 40. Chen CY, Liou J, Forman LW, and Faller DV. Differential regulation of discrete apoptotic pathways by Ras. J Biol Chem 1998;273:16700–16709.
- 41. van Grevenynghe J, Procopio FA, He Z, *et al.* Transcription factor FOXO3a controls the persistence of memory CD4+ T cells during HIV infection. Nat Med 2008;14:266–274.

Address reprint requests to: Maryanne T. Vahey, Ph.D. Deputy Director Division of Retrovirology United States Military HIV Research Program 1600 East Gude Drive Rockville, MD 20850

E-mail: mvahey@hivresearch.org

Appendix:	Full Annotati	on Information	n for Differentiall'	(EXPRESSED	Genes
-----------	---------------	----------------	----------------------	------------	-------

ProbesetIDs	Sumbols	PublicID	UniGeneID	Chromosome location	Gene title
	eymeere	1	carrectitel		
Good outcom	e group: 51 up :	regulated gene	es	1 40 40 00	
206486_at	LAG3	NM_002286	Hs.409523	chr12p13.32	Lymphocyte-activation gene 3
203554_x_at	PHGI	NM_004219	HS.350966	chr5q35.1	Pituitary tumor-transforming 1
202589_at	I I IVIS SEDDINIC1	NM_000062	HS.392338	chr10p11.32	Somin populate synthetase
200900_at	JERT IINGI	INIVI_000002	115.304390	ciii 11q12-q13.1	(C1 inhibitor) member 1
209773_s_at	RRM2	BC001886	Hs.226390	chr2p25-p24	Ribonucleotide reductase M2
					polypeptide
206666_at	GZMK	NM_002104	Hs.277937	chr5q11-q12	Granzyme K (granzyme 3; tryptase II)
218039_at	NUSAP1	NM_016359	Hs.615092	chr15q15.1	Nucleolar and spindle-associated protein 1
214453_s_at	IFI44	NM_006417	Hs.82316	chr1p31.1	Interferon-induced protein 44
207840_at	CD160	NM_007053	Hs.488237	chr1q21.1	CD160 molecule
206513_at	AIM2	NM_004833	Hs.281898	chr1q22	Absent in melanoma 2
204439_at	IFI44L	NM_006820	Hs.389724	chr1p31.1	Interferon-induced protein 44-like
205483_s_at	ISG15	NM_005101	Hs.458485	chr1p36.33	ISG15 ubiquitin-like modifier
200629_at	WARS	NM_004184	Hs.497599	chr14q32.31	Tryptophanyl-tRNA synthetase
204747_at	IFIT3	NM_001549	Hs.47338	chr10q24	Interferon-induced protein with
204639 at	ADA	NM 000022	Hs 255479	chr20a12-a13 11	Adenosine deaminase
204009_at	HTR3A	AI005205	Hs 413899	chr11a231	5-hydroxytryptamine (serotonin)
210010_5_dt	1111021	11,000200	113.410077	ciii11q20.1	receptor 3A
201649 at	UBE2L6	NM 004223	Hs 425777	chr11a12	Ubiquitin-conjugating enzyme E2L 6
204224 s at	GCH1	NM 000161	Hs 86724	chr14a?? 1-a?? ?	GTP cyclobydrolase 1 (dopa-responsive
201221_0_ut	Genn	1000101	110.00721	enii 1922.1 922.2	dystonia)
217933_s_at	LAP3	NM_015907	Hs.570791	chr4p15.32	Leucine aminopeptidase 3
213060_s_at	CHI3L2	U58515	Hs.514840	chr1p13.3	Chitinase 3-like 2 /// chitinase 3-like 2
209040_s_at	PSMB8	U17496	Hs.180062	chr6p21.3	Proteasome (prosome, macropain)
200887_s_at	STAT1	NM_007315	Hs.651258	chr2q32.2	Signal transducer and activator
				1	of transcription 1, 91kDa
204246_s_at	DCTN3	NM_007234	Hs.511768	chr9p13	Dynactin 3 (p22)
202086_at	MX1	NM_002462	Hs.517307	chr21q22.3	Myxovirus (influenza virus) resistance 1
218400_at	OAS3	NM_006187	Hs.528634	chr12q24.2	2'-5'-oligoadenylate synthetase 3, 100kDa
203153_at	IFIII	NM_001548	Hs.20315	chr10q25-q26	Interferon-induced protein with tetratricopentide repeats 1
218943 s at	DDX58	NM 014314	Hs.190622	chr9p12	DEAD (Asp-Glu-Ala-Asp) box
_10/10_0_ut	22700		11011/0022		polypeptide 58
205241_at	SCO2	NM_005138	Hs.567405	chr22q13.33	SCO cytochrome oxidase-deficient
203232 e at	ΔΤΥΝΙ	NM 000332	He 13/1961	chr6p23	Ataxin 1
203232_5_at	PSMF1	NM 006263	Hs 75348	chr14a11 2	Proteasome (prosome macronain)
200014_at	I SIVILI	11111_000205	115.7 0040	chi14q11.2	activator subunit 1
201274_at	PSMA5	NM_002790	Hs.485246	chr1p13	Proteasome (prosome, macropain)
	000		TT (50000	1 0 01 01	subunit, alpha type, 5
206991_s_at	CCR5	NM_000579	Hs.450802	chr3p21.31	Chemokine (C-C motif) receptor 5
210046_s_at	IDH2	U52144	Hs.596461	chr15q26.1	Isocitrate dehydrogenase 2 (NADP+),
201762_s_at	PSME2	NM_002818	Hs.434081	chr14q11.2	Proteasome (prosome, macropain)
215332 e at	CD8B	AW296309	He 105667	chr2n12	CD8h molecule
204415_at	IFI6	NM 022873	Hs 523847	chr1p35	Interferon alpha-inducible protein 6
202095_s_at	BIRC5	NM_001168	Hs.514527	chr17q25	Baculoviral IAP repeat-containing 5
200923_at	LGALS3BP	NM_005567	Hs.514535	chr17q25	(survivin) Lectin, galactoside-binding, soluble,
204455					3 binding protein
204655_at	CCL5	NM_002985	Hs.514821	chr17q11.2-q12	Chemokine (C-C motif) ligand 5
218350_s_at	GMNN	NM_015895	Hs.234896	chr6p22.2	Geminin, DNA replication inhibitor
209/14_s_at	CDKN3 MVL (P	AF213033	Hs.84113	cnr14q22	Cyclin-dependent Kinase Inhibitor 3
204175_at	IVI I LOD	INIVI_002475	F15.032/31	cnr12q13.13	muscle and non muscle
200633_at	UBB	NM_018955	Hs.356190	chr17p12-p11.2	Ubiquitin B /// ubiquitin B

APPENDIX: FULL ANNOTATION INFORMATION FOR DIFFERENTIALLY EXPRESSED GENES (CONTINUED)

ProbesetIDs	Symbols	PublicID	UniGeneID	Chromosome location	Gene title
44673_at	SIGLEC1	N53555	Hs.31869	chr20p13	Sialic acid binding Ig-like lectin 1,
210243_s_at	B4GALT3	AF038661	Hs.321231	chr1q21-q23	sialoadhesin UDP-Gal:betaGlcNAc beta 1,4-
200961_at 204798_at	SEPHS2 MYB	NM_012248 NM_005375	Hs.118725 Hs.531941	chr16p11.2 chr6q22-q23	Selenophosphate synthetase 2 V-myb myeloblastosis viral oncogene homolog (avian)
204279_at	PSMB9	NM_002800	Hs.132682	chr6p21.3	Proteasome (prosome, macropain) subunit, beta type, 9
215313_x_at	HLA-A	AA573862	Hs.181244	chr6p21.3	Major histocompatibility complex, class I. A
212203_x_at	IFITM3	BF338947	Hs.374650	chr11p15.5	Interferon induced transmembrane protein 3 (1-8U)
202411_at Poor outcome	IFI27 group: 133 upr	NM_005532 regulated genes	Hs.532634	chr14q32	Interferon, alpha-inducible protein 27
214453_s_at	ĬFI44	NM_006417	Hs.82316	chr1p31.1	Interferon-induced protein 44
204439_at 204747_at	IFI44L IFIT3	NM_006820 NM_001549	Hs.389724 Hs.47338	chr1p31.1 chr10q24	Interferon-induced protein 44-like Interferon-induced protein with tetratricopeptide repeats 3
219863_at 203153_at	HERC5 IFIT1	NM_016323 NM_001548	Hs.26663 Hs.20315	chr4q22.1 chr10q25-q26	Hect domain and RLD 5 Interferon-induced protein with tetratricopentide repeats 1
200986_at	SERPING1	NM_000062	Hs.384598	chr11q12-q13.1	Serpin peptidase inhibitor, clade G
202748_at	GBP2	NM_004120	Hs.386567	chr1p22.2	Guanylate binding protein 2,
205483_s_at 218400_at	ISG15 OAS3	NM_005101 NM_006187	Hs.458485 Hs.528634	chr1p36.33 chr12q24.2	ISG15 ubiquitin-like modifier 2'-5'-oligoadenylate synthetase 3, 100kDa
206486_at 202086_at	LAG3 MX1	NM_002286 NM_002462	Hs.409523 Hs.517307	chr12p13.32 chr21q22.3	Lymphocyte-activation gene 3 Myxovirus (influenza virus)
200923_at	LGALS3BP	NM_005567	Hs.514535	chr17q25	Lectin, galactoside-binding, soluble,
44673_at	SIGLEC1	N53555	Hs.31869	chr20p13	Sialic acid binding Ig-like lectin 1, sialoadhesin
202270_at	GBP1	NM_002053	Hs.62661	chr1p22.2	Guanylate binding protein 1, interferon-inducible
202145_at 205241_at	LY6E SCO2	NM_002346 NM_005138	Hs.521903 Hs.567405	chr8q24.3 chr22q13.33	Lymphocyte antigen 6 complex, locus E SCO cytochrome oxidase deficient
200211_40	0001	1000100	11010 07 100		homolog 2 (yeast)
201786_s_at	ADAR	NM_001111	Hs.12341	chr1q21.1-q21.2	Adenosine deaminase, RNA-specific
208436_s_at 218039_at	NUSAP1	NM_016359	Hs.615092	chr15q15.1	Nucleolar and spindle-associated
204224_s_at	GCH1	NM_000161	Hs.86724	chr14q22.1-q22.2	GTP cyclohydrolase 1 (dopa-responsive dystonia)
218350_s_at	GMNN	NM_015895	Hs.234896	chr6p22.2	Geminin, DNA replication inhibitor
204415_at	IFI6	NM_022873	Hs.523847	chr1p35	Interferon, alpha-inducible protein 6
203358_s_at 204994_at	EZH2 MX2	NM_004456 NM_002463	Hs.444082 Hs.926	chr7q35-q36 chr21q22.3	Enhancer of zeste homolog 2 (Drosophila) Myxovirus (influenza virus) resistance 2
203554_x_at 212203_x_at	PTTG1 IFITM3	NM_004219 BF338947	Hs.350966 Hs.374650	chr5q35.1 chr11p15.5	Pituitary tumor-transforming 1 Interferon induced transmembrane protein 3 (1-8U)
202411_at 212185_x_at	IFI27 MT2A	NM_005532 NM_005953	Hs.532634 Hs.647371	chr14q32 chr16q13	Interferon, alpha-inducible protein 27 Metallothionein 2A
201702_S_at		NIM_010604	115.404001	chif14q11.2	activator subunit 2 (PA28 beta)
206914_at	CKIAM	INIVI_019604	ris.159523	cnr11q22-q23	Cytotoxic and regulatory 1 cell molecule
206991_s_at 207840_at	CCR5 CD160	NM_000579 NM_007053	Hs.450802 Hs.488237	chr3p21.31 chr1q21.1	Chemokine (C-C motif) receptor 5 CD160 molecule

GENE EXPRESSION AND CD4⁺ T-CELL DECLINE AFTER TI

APPENDIX: FULL ANNOTATION INFORMATION FOR DIFFERENTIALLY EXPRESSED GENES (CONTINUED)

				Chromosome	
ProbesetIDs	Symbols	PublicID	UniGeneID	location	Gene title
202589_at	TYMS	NM_001071	Hs.592338	chr18p11.32	Thymidylate synthetase
210797_s_at	OASL	AF063612	Hs.118633	chr12q24.2	2'-5'-oligoadenylate synthetase-like
206133_at	BIRC4BP	NM_017523	Hs.441975	chr17p13.2	XIAP associated factor-1
204655_at	CCL5	NM_002985	Hs.514821	chr17q11.2-q12	Chemokine (C-C motif) ligand 5
201649_at	UBE2L6	NM_004223	Hs.425777	chr11q12	Ubiquitin-conjugating enzyme E2L 6
204858_s_at	ECGF1	NM_001953	Hs.592212	chr22q13-22q13.33	Endothelial cell growth factor
		_		1 1	1 (platelet-derived)
200629_at	WARS	NM_004184	Hs.497599	chr14q32.31	Tryptophanyl-tRNA synthetase
204204_at	SLC31A2	NM_001860	Hs.24030	chr9q31-q32	Solute carrier family 31 (copper
				1 1	transporters), member 2
216526_x_at	HLA-C	AK024836	Hs.77961	chr6p21.3	Major histocompatibility complex,
				1	class I, C
205692_s_at	CD38	NM_001775	Hs.479214	chr4p15	CD38 molecule
221485_at	B4GALT5	AL035683	Hs.370487	chr20q13.1-q13.2	UDP-Gal:betaGlcNAc beta
				1 1	1,4-galactosyltransferase,
					polypeptide 5
218599_at	REC8L1	NM_005132	Hs.419259	chr14q11.2-q12	REC8-like 1 (yeast)
210046_s_at	IDH2	U52144	Hs.596461	chr15q26.1	Isocitrate dehydrogenase 2 (NADP+),
				*	mitochondrial
206513_at	AIM2	NM_004833	Hs.281898	chr1q22	Absent in melanoma 2
204211_x_at	EIF2AK2	NM_002759	Hs.131431	chr2p22-p21	Eukaryotic translation initiation factor
					2-alpha kinase 2
200887_s_at	STAT1	NM_007315	Hs.651258	chr2q32.2	Signal transducer and activator of
				1	transcription 1, 91kDa
203052_at	C2	NM_000063	Hs.408903	chr6p21.3	Complement component 2
206461_x_at	MT1H	NM_005951	Hs.438462	chr16q13	Metallothionein 1Ĥ
217933_s_at	LAP3	NM_015907	Hs.570791	chr4p15.32	Leucine aminopeptidase 3
204972_at	OAS2	NM_016817	Hs.414332	chr12q24.2	2'-5'-oligoadenylate synthetase 2,
				*	69/71kDa
202954_at	PAK3	NM_007019	Hs.93002	chrXq22.3-q23	p21 (CDKN1A)-activated kinase 3
202345_s_at	FABP5	NM_001444	Hs.632112	chr8q21.13	Fatty acid binding protein 5
					(psoriasis-associated)
218943_s_at	DDX58	NM_014314	Hs.190622	chr9p12	DEAD (Asp-Glu-Ala-Asp) box
					polypeptide 58
202484_s_at	MBD2	AF072242	Hs.25674	chr18q21	Methyl-CpG binding domain protein 2
202953_at	C1QB	NM_000491	Hs.8986	chr1p36.12	Complement component 1,
					q subcomponent, B chain
201315_x_at	IFITM2	NM_006435	Hs.174195	chr11p15.5	Interferon induced transmembrane
				1	protein 2 (1-8D)
205552_s_at	OAS1	NM_002534	Hs.524760	chr12q24.1	2',5'-oligoadenylate synthetase 1,
		B COOLOG <i>I</i>	TT 00 (000	1 0 05 04	40/46kDa
209773_s_at	RRM2	BC001886	Hs.226390	chr2p25-p24	Ribonucleotide reductase M2 polypeptide
219684_at	RTP4	NM_022147	Hs.43388	chr3q27.3	Receptor (chemosensory) transporter
004500	CVCI 10			1 4 01	protein 4
204533_at	CACLIU A D1C1	NM_001100	HS.632586	cnr4q21	Chemokine (C-X-C motif) ligand 10
203350_at	APIGI	INIM_001128	HS.461253	chr16q23	Adaptor-related protein complex 1,
202107	MCMO	NINA ODAEDC	II. 477401	-h201	gamma 1 subunit
202107_s_at	MCMZ	INIVI_004526	HS.477481	chr3q21	MCM2 minichromosome maintenance
015010		A A E729(2	II. 101044	-h-r(01 0	Maian historemunstikiliter community
215313_x_at	HLA-A	AA5/3862	HS.181244	chr6p21.3	place I
201000 -+	VDNIA 2	NIM 002266	Ha (22740	abr 17 a 22 1 a 22 2	Class I, A Kannanharin almha 2 (BAC achart 1
201000_at	NINAZ	INIVI_002200	FIS.032749	chr17q25.1-q25.5	importin alpha 1)
210254 at	IENIC	M20282	Uc 856	abr12a14	Inportin alpha 1)
210334_at	ITCAL	AC002210	H_{0} 174102	chi12q14 chr16p11.2	Integrin alpha I (antigon CD11A (p180))
$213475_{s_{at}}$		AC002310 A B007447	115.174103 $U_{0} 5149$	chillop11.2	TRAE type zing finger domain
55254_at	ΙΚΑΓDΙ	AD007447	115.0140	chi izq	containing 1
218662 e at	NCAPC	NM 022346	Hs 567567	chr4n15 33	Non-SMC condensin I compley
210002_3_at	110/11 0	1 1111_022340	113.007.007	CIII-1910.00	subunit G
208683 at	CAPN?	M23254	Hs 350899	chr1a41-a42	Calpain 2 (m/II) large subunit
203344 s at	RBBP8	NM 002894	Hs.546282	chr18a11 2	Retinoblastoma binding protein 8
203882 at	ISGE3G	NM 006084	Hs.1706	chr14q11.2	Interferon-stimulated transcription
Av				<u>1</u>	factor 3, gamma 48kDa

APPENDIX: FULL ANNOTATION INFORMATION FOR DIFFERENTIALLY EXPRESSED GENES (CONTINUED)

				Chromosome	
ProbesetIDs	Symbols	PublicID	UniGeneID	location	Gene title
203050_at 203258_at	TP53BP1 DRAP1	NM_005657 NM_006442	Hs.440968 Hs.356742	chr15q15-q21 chr11q13.3	Tumor protein p53 binding protein, 1 DR1-associated protein 1 (negative
203455_s_at	SAT1	NM_002970	Hs.28491	chrXp22.1	Spermidine/spermine N1-
203606_at	NDUFS6	NM_004553	Hs.408257	chr5p15.33	NADH dehydrogenase (ubiquinone) Fe-S protein 6, 13kDa
35974_at 205633_s_at 219209_at	LRMP ALAS1 IFIH1	U10485 NM_000688 NM_022168	Hs.124922 Hs.476308 Hs.163173	chr12p12.1 chr3p21.1 chr2p24.3-q24.3	Lymphoid-restricted membrane protein Aminolevulinate, delta-, synthase 1 Interferon induced with helicase C
207614_s_at 216950_s_at	CUL1 FCGR1A	NM_003592 X14355	Hs.146806 Hs.77424	chr7q36.1 chr1q21.2-q21.3	Cullin 1 Fc fragment of IgG, high-affinity Ia,
202446_s_at 214022_s_at	PLSCR1 IFITM1	AI825926 AA749101	Hs.130759 Hs.458414	chr3q23 chr11p15.5	Phospholipid scramblase 1 Interferon induced transmembrane
202863_at 204146_at 203236_s_at	SP100 RAD51AP1 LGALS9	NM_003113 BE966146 NM_009587	Hs.369056 Hs.591046 Hs.81337	chr2q37.1 chr12p13.2-p13.1 chr17q11.1	SP100 nuclear antigen RAD51 associated protein 1 Lectin, galactoside-binding, soluble, 9
207181_s_at	CASP7	NM_001227	Hs.9216	chr10q25	(galectin 9) Caspase 7, apoptosis-related cysteine
219938_s_at	PSTPIP2	NM_024430	Hs.567384	chr18q12	Proline-serine-threonine phosphatase
203217_s_at	ST3GAL5	NM_003896	Hs.415117	chr2p11.2	ST3 beta-galactoside alpha- 2,3-sialyltransferase 5
219212_at 204929_s_at	HSPA14 VAMP5	NM_016299 NM_006634	Hs.534169 Hs.172684	chr10p13 chr2p11.2	Heat shock 70kDa protein 14 Vesicle-associated membrane protein 5 (myobrevin)
243_g_at 220966_x_at	MAP4 ARPC5L	M64571 NM_030978	Hs.517949 Hs.132499	chr3p21 chr9q33.3	Microtubule-associated protein 4 Actin-related protein 2/3 complex, subunit 5-like
202735_at	EBP	NM_006579	Hs.30619	chrXp11.23-p11.22	Emopamil binding protein (sterol isomerase)
203805_s_at	FANCA	AW083279	Hs.567267	chr16q24.3	Fanconi anemia, complementation group A
204279_at	PSMB9	NM_002800	Hs.132682	chr6p21.3	Proteasome (prosome, macropain) subunit, beta type, 9
204175_at 200814_at	ZNF593 PSME1	NM_015871 NM_006263	— Hs.75348	chr1p36.11 chr14q11.2	Zinc finger protein 593 Proteasome (prosome, macropain)
204780_s_at	FAS	AA164751	Hs.244139	chr10q24.1	activator subunit 1 Fas (TNF receptor superfamily,
219159_s_at 219716_at 205569_at	SLAMF7 APOL6 LAMP3	NM_021181 NM_030641 NM_014398	Hs.517265 Hs.257352 Hs.518448	chr1q23.1-q24.1 chr22q12.3 chr3q26.3-q27	SLAM family member 7 Apolipoprotein L, 6 Lysosomal-associated membrane
219148_at 207509_s_at	PBK LAIR2	NM_018492 NM_002288	Hs.104741 Hs.43803	chr8p21.2 chr19q13.4	PDZ binding kinase Leukocyte-associated immunoglobulin- like recentor 2
221345_at 203755_at	FFAR2 BUB1B	NM_005306 NM_001211	Hs.248056 Hs.631699	chr19q13.1 chr15q15	Free fatty acid receptor 2 BUB1 budding uninhibited by benzimidazoles 1 homolog beta (yeast)
202702_at 221816_s_at 202688_at	TRIM26 PHF11 TNFSF10	NM_003449 BF055474 NM_003810	Hs.485041 Hs.535080 Hs.478275	chr6p21.3 chr13q14.3 chr3q26	Tripartite motif-containing 26 PHD finger protein 11 Tumor necrosis factor (ligand) superfamily, member 10
204639_at 204162_at 204804_at 203868_s_at	ADA KNTC2 TRIM21 VCAM1	NM_000022 NM_006101 NM_003141 NM_001078	Hs.255479 Hs.414407 Hs.632402 Hs.109225	chr20q12-q13.11 chr18p11.32 chr11p15.5 chr1p32-p31	Adenosine deaminase Kinetochore associated 2 Tripartite motif-containing 21 Vascular cell adhesion molecule 1

GENE EXPRESSION AND CD4⁺ T-CELL DECLINE AFTER TI

APPENDIX: FULL ANNOTATION INFORMATION FOR DIFFERENTIALLY EXPRESSED GENES (CONTINUED)

ProbesetIDs	Symbols	PublicID	UniGeneID	Chromosome location	Gene title
207375_s_at 219211_at 206247_at	IL15RA USP18 MICB	NM_002189 NM_017414 NM_005931	Hs.524117 Hs.38260 Hs.211580	chr10p15-p14 chr22q11.21 chr6p21.3	Interleukin 15 receptor, alpha Ubiquitin specific peptidase 18 MHC class I polypeptide-related
202870_s_at	CDC20	NM_001255	Hs.524947	chr1p34.1	Cell division cycle 20 homolog
208901_s_at 209666_s_at	TOP1 CHUK	J03250 AF080157	Hs.592136 Hs.198998	chr20q12-q13.1 chr10q24-q25	(S. cerevisiae) Topoisomerase (DNA) I Conserved helix-loop-helix ubiquitous
219607_s_at	MS4A4A	NM_024021	Hs.325960	chr11q12	Membrane-spanning 4-domains,
206919_at	ELK4	NM_021795	Hs.497520	chr1q32	ELK4, ETS-domain protein
215171_s_at	TIMM17A	AK023063	Hs.20716	chr1q32.1	Translocase of inner mitochondrial
202068_s_at	LDLR	NM_000527	Hs.213289	chr19p13.3	Low density lipoprotein receptor
204009_s_at	KRAS	W80678	Hs.505033	chr12p12.1	v-Ki-ras2 Kirsten rat sarcoma viral
205687_at 202087_s_at 216598_s_at 214933_at	UBPH CTSL CCL2 CACNA1A	NM_019116 NM_001912 S69738 AA769818	Hs.3459 Hs.418123 Hs.303649 Hs.501632	chr16p12 chr9q21-q22 chr17q11.2-q12 chr19p13.2-p13.1	Ubiquitin-binding protein homolog Cathepsin L Chemokine (C-C motif) ligand 2 Calcium channel, voltage-dependent,
203420_at	FAM8A1	NM_016255	Hs.95260	chr6p22-p23	P/Q type, alpha 1A subunit Family with sequence similarity 8,
203964_at 208969_at	NMI NDUFA9	NM_004688 AF050641	Hs.54483 Hs.75227	chr2p24.3-q21.3 chr12p13.3	member A1 N-myc (and STAT) interactor NADH dehydrogenase (ubiquinone) 1
201664_at	SMC4	AL136877	Hs.58992	chr3q26.1	Structural maintenance of chromosomes 4
Poor outcome 201892_s_at	group: 208 dov IMPDH2	vnregulated ge NM_000884	enes Hs.476231	chr3p21.2	IMP (inosine monophosphate)
211937_at	EIF4B	NM_001417	Hs.292063	chr12q13.13	Eukaryotic translation initiation
200651_at	GNB2L1	NM_006098	Hs.5662	chr5q35.3	Guanine nucleotide binding protein
203685_at 221476_s_at 218253_s_at 200005_at	BCL2 RPL15 LGTN EIF3S7	NM_000633 AF279903 NM_006893 NM_003753	Hs.150749 Hs.381219 Hs.497581 Hs.55682	chr18q21.33 chr3p24.2 chr1q31-q32 chr22q13.1	B-cell CLL/lymphoma 2 Ribosomal protein L15 Ligatin Eukarvotic translation initiation
219452_at 205019_s_at 210908_s_at 214167_s_at 205259_at	DPEP2 VIPR1 PFDN5 RPLP0 NR3C2	NM_022355 NM_004624 AB055804 AA555113 NM_000901	Hs.372633 Hs.348500 — Hs.448226 Hs.163924	chr16q22.1 chr3p22 chr12q12 chr12q24.2 chr4q31.1	factor 3, subunit 7 zeta Dipeptidase 2 Vasoactive intestinal peptide receptor 1 Prefoldin subunit 5 Ribosomal protein, large, P0 Nuclear receptor subfamily 3, group C,
210027_s_at	APEX1	M80261	Hs.73722	chr14q11.2-q12	member 2 APEX nuclease (multifunctional DNA
200089_s_at 201433_s_at 220755_s_at 200705_s_at	RPL4 PTDSS1 C6orf48 EEF1B2	AI953886 NM_014754 NM_016947 NM_001959	Hs.644628 Hs.292579 Hs.640836 Hs.421608	chr15q22 chr8q22 chr6p21.3 chr2q33-q34	Ribosomal protein L4 Phosphatidylserine synthase 1 Chromosome 6 open reading frame 48 Eukaryotic translation elongation factor 1 beta 2
200024_at 201064_s_at	RPS5 PABPC4	NM_001009 NM_003819	Hs.378103 Hs.169900	chr19q13.4 chr1p32-p36	Ribosomal protein S5 Poly(A) binding protein, cytoplasmic 4 (inducible form)
218997_at	POLR1E	NM_022490	Hs.591087	chr9p13.2	Polymerase (RNA) I polypeptide E, 53kDa
210715_s_at	SPINT2	AF027205	Hs.31439	chr19q13.1	Serine peptidase inhibitor, Kunitz type, 2 (continued)

APPENDIX: FULL ANNOTATION INFORMATION FOR DIFFERENTIALLY EXPRESSED GENES (CONTINUED)

ProhacatIDc	Sumbole	DublicID	11niConoID	Chromosome	Cana titla
	Symbols	TubliciD	uniGeneiD	100011011	Gene title
202283_at	SERPINF1	NM_002615	Hs.645378	chr17p13.1	Serpin peptidase inhibitor, clade F (alpha-2 antiplasmin
200937_s_at	RPL5	NM_000969	Hs.532359	chr1p22.1	Ribosomal protein L5
216520_s_at	TPT1	AF072098	Hs.374596	chr13q12-q14	Tumor protein, translationally controlled 1
219549_s_at	RTN3	NM_006054	Hs.473761	chr11q13	Reticulon 3
219922_s_at	LTBP3	NM_021070	Hs.289019	chr11q12	Latent transforming growth factor beta binding protein 3
219892_at	TM6SF1	NM_023003	Hs.513094	chr15q24-q26	Transmembrane 6 superfamily member 1
208631_s_at	HADHA	U04627	Hs.516032	chr2p23	Hydroxyacyl-coenzyme A dehydrogenase
218495_at	UXT	NM_004182	Hs.172791	chrXp11.23-p11.22	Ubiquitously-expressed transcript
206559_x_at	EEF1A1	NM_001403		chr6q14.1	Eukaryotic translation elongation factor 1 alpha 1
200858_s_at	RPS8	NM_001012	Hs.512675	chr1p34.1-p32	Ribosomal protein S8
217747_s_at	RPS9	NM_001013	Hs.546288	chr19q13.4	Ribosomal protein S9
206760_s_at	FCER2	NM_002002	Hs.465778	chr19p13.3	Fc fragment of IgE, low affinity II, receptor for (CD23)
200032_s_at	RPL9	NM_000661	Hs.513083	chr4p13	Ribosomal protein L9 /// ribosomal protein L9
201258_at	RPS16	NM_001020	Hs.397609	chr19q13.1	Ribosomal protein S16
205987_at	CDIC	NM_001765	Hs.132448	chr1q22-q23	CD1c molecule
206492_at	FHIT	NM_002012	Hs.196981	chr3p14.2	Fragile histidine triad gene
222212_s_at	LASS2	AK001105	Hs.643565	chr1q21.2	(<i>S. cerevisiae</i>)
204153_s_at	MFNG	NM_002405	Hs.517603	chr22q12	MFNG O-fucosylpeptide 3-beta-N-acetylglucosaminyltransferase
216032_s_at	ERGIC3	AF091085	Hs.472558	chr20pter-q12	ERGIC and golgi 3
218084_x_at	FXYD5	NM_014164	Hs.333418	chr19q12-q13.1	FXYD domain containing ion transport
207339_s_at	LTB	NM_002341	Hs.376208	chr6p21.3	regulator 5 Lymphotoxin beta (TNF superfamily,
201276 at	DADED	A E267862	LL- E(7228	abr 10 a 12	member 3) DAPER member DAS encorrent family
206337_at	CCR7	NM_001838	Hs.370036	chr17q12-q21.2	Chemokine (C-C motif) receptor 7 ///
221558 s at	I FF1	A E288571	Hc 555047	chr/1a22 a25	Lymphoid onhancer hinding factor 1
221558_s_at 214437_s_at	SHMT2	NM_005412	Hs.75069	chr12q12-q14	Serine hydroxymethyltransferase 2
203233 at	II /R	NM 000418	He 513457	chr16p11 2-12 1	Interleukin 4 receptor
200200_at	RPLP2	NM 001004		chr11p15 5-p15 4	Ribosomal protein large P2
203787 at	SSBP2	NM 012446	Hs.102735	chr5a14.1	Single-stranded DNA binding protein 2
208754 s at	NAP1L1	AL162068	Hs.524599	chr12a21.2	Nucleosome assembly protein 1-like 1
210189 at	HSPA1L	D85730	Hs.558337	chr6p21.3	Heat shock 70kDa protein 1-like
200082 s at	RPS7	AI805587	Hs.534346	chr2p25	Ribosomal protein S
200034 s at	RPL6	NM 000970	Hs.528668	chr12g24.1	Ribosomal protein L6
201050_at	PLD3	NM_012268	Hs.257008	chr19q13.2	Phospholipase D family, member 3
203385_at	DGKA	NM_001345	Hs.524488	chr12q13.3	Diacylglycerol kinase, alpha 80 kDa
200010_at	RPL11	NM_000975	Hs.388664	chr1p36.1-p35	Ribosomal protein L11
203509_at	SORL1	NM_003105	Hs.368592	chr11q23.2-q24.2	Sortilin-related receptor, L(DLR class) A repeats-containing
200652_at	SSR2	NM_003145	Hs.74564	chr1q21-q23	Signal sequence receptor
201136_at	PLP2	NM_002668	Hs.77422	chrXp11.23	Proteolipid protein 2 (colonic epithelium-enriched)
210949_s_at	EIF3S8	BC000533	Hs.535464	chr16p11.2	Eukaryotic translation initiation
212191 x at	RPL13	AW574664	Hs.410817	chr16a24.3	Ribosomal protein L13
209368 at	EPHX2	AF233336	Hs.212088	chr8p21-p12	Epoxide hydrolase 2. cytoplasmic
208697_s_at	EIF3S6	BC000734	Hs.405590	chr8q22-q23	Eukaryotic translation initiation factor 3. subunit 6.48 kDa
208764_s_at	ATP5G2	D13119	Hs.524464	chr12q13.13	ATP synthase, H+ transporting, mitochondrial F0 complex, subunit C2 (subunit 9)

APPENDIX: FULL ANNOTATION INFORMATION FOR DIFFERENTIALLY EXPRESSED GENES (CONTINUED)

				Chromosome	
ProbesetIDs	Symbols	PublicID	UniGeneID	location	Gene title
200823 x at	RPL29	NM 000992	Hs.425125	chr3p21.3-p21.2	Ribosomal protein L29
200936 at	RPL8	NM 000973	Hs.178551	chr8a24.3	Ribosomal protein L8
201106 at	GPX4	NM 002085	Hs.433951	chr19p13.3	Glutathione peroxidase 4 (phospholipid
_		_		1	hydroperoxidase)
203413_at	NELL2	NM_006159	Hs.505326	chr12q13.11-q13.12	NEL-like 2 (chicken)
203818_s_at	SF3A3	NM_006802	Hs.77897	chr1p34.3	Splicing factor 3a, subunit 3, 60 kDa
200081_s_at	RPS6	BE741754	Hs.408073	chr9p21	Ribosomal protein S6 /// ribosomal
217860_at	NDUFA10	NM_004544	Hs.277677	chr2q37.3	NADH dehydrogenase (ubiquinone)
				1	1 alpha subcomplex
208771_s_at	LTA4H	J02959	Hs.524648	chr12q22	Leukotriene A4 hydrolase
219528_s_at	BCLIIB	NM_022898	Hs.510396	chr14q32.2	B-cell CLL/lymphoma 11B (zinc finger
221502 a at	DDI 21	BC001662	U_{2} 460472	chr2a112	protein) Pibesemal protein L 21
$221090 s_at$	TOMM7	NM 019059	He 380920	chr2q11.2 chr7p15.3	Translocase of outer mitochondrial
201012_5_at		11111_019039	115.300920	CIII7P15.5	membrane 7 homolog (veast)
200023 s at	EIF3S5	NM 003754	Hs.516023	chr11p15.4	Eukarvotic translation initiation
				I - I	factor 3, subunit 5 epsilon
39318_at	TCL1A	X82240	Hs.2484	chr14q32.1	T-cell leukemia/lymphoma 1A
203547_at	CD4	U47924	Hs.631659	chr12pter-p12	CD4 molecule /// CD4 molecule
207895_at	NAALADL1	NM_005468	Hs.13967	chr11q12	N-acetylated alpha-linked acidic
000110			TT 0000 000	1 0 0 0	dipeptidase-like 1
203113_s_at	EEFID	NM_001960	Hs.333388	chr8q24.3	Eukaryotic translation elongation factor
200717 x at	RPL7	NM 000971	Hs.571841	chr8q21.11	Ribosomal protein L7
208703_s_at	APLP2	BG427393	Hs.370247	chr11q23-q25	Amyloid beta (A4) precursor-like
				1 1	protein 2
213093_at	PRKCA	AI471375	Hs.531704	chr17q22-q23.2	Protein kinase C, alpha
200695_at	PPP2R1A	NM_014225	Hs.467192	chr19q13.33	Protein phosphatase 2 (formerly 2A)
202179_at	BLMH	NM_000386	Hs.371914	chr17q11.2	Bleomycin hydrolase
200817_x_at	RPS10	NM_001014	Hs.645317	chr6p21.31	Ribosomal protein S10
200965_s_at	ABLIM1	NM_006720	Hs.438236	chr10q25	Actin binding LIM protein 1
201005_at	CD9	NM_001769	Hs.114286	chr12p13.3	CD9 molecule
209504_s_at	PLEKHBI	AF081583	Hs.445489	chr11q13.5-q14.1	Pleckstrin homology domain containing
200933_x_at	KPS4X ICAM2	NM_002162	HS.446628	chrAq13.1	Kibosomal protein S4, X-linked
204949_at	DRMY	A 1452524	H_{2} 220112	chrYq26 2	RNA hinding motif protein V linked
213702_x_at 203581 at	$R \Delta R / \Delta$	RC002438	He 206160	chr1a/2-a/3	RABIA member RAS oncogene family
200001_at	OARS	NM 005051	Hs 79322	chr3n21 3-n21 1	Glutaminyl-tRNA synthetase
202862 at	FAH	NM 000137	Hs.73875	chr15a23-a25	Fumarylacetoacetate hydrolase
					(fumarylacetoacetase)
205039_s_at	IKZF1	NM_006060	Hs.488251	chr7p13-p11.1	IKAROS family zinc finger 1 (Ikaros)
200008_s_at	GDI2	D13988	Hs.299055	chr10p15	GDP dissociation inhibitor 2 /// GDP
010504	TT 14	1000055	11 50 1001	1 11 011 010	dissociation inhibitor 2
210786_s_at	FLII	M93255	Hs.504281	chr11q24.1-q24.3	Friend leukemia virus integration 1
204///_s_at	MAL TEDANIA	INIVI_002371	HS.80395	chr2cen-q13	Mal, 1-cell differentiation protein
209204_{s_at}	CPY1	NIM 000581	He 76686	chr11p15.5	Clutathiona porovidasa 1
200730_{s_at}	SOX4	ΔΙ 136179	He 6/13010	chr6p21.3	SRV (sev determining region V)-box 4
201417_at	FBL N5	NM 006329	Hs 332708	chr14a32.1	Fibulin 5
200036 s at	RPL10A	NM_007104	Hs.546269	chr6p21.3-p21.2	Ribosomal protein L10a
200053 at	SPAG7	NM 004890	Hs.90436	chr17p13.2	Sperm associated antigen 7
200018_at	RPS13	NM_001017	Hs.446588	chr11p15	Ribosomal protein S13
212271_at	MAPK1	AA195999	Hs.431850	chr22q11.2	Mitogen-activated protein kinase 1
200763_s_at	RPLP1	NM_001003	Hs.356502	chr15q22	Ribosomal protein, large, P1
208822_s_at	DAP3	U18321	Hs.516746	chr1q21-q22	Death associated protein 3
214470_at	KLRB1	NM_002258	Hs.169824	chr12p13	Killer cell lectin-like receptor subfamily B,
217969 at	C11orf?	NM 013265	Hs 277517	chr11a13	Chromosome 11 open reading frame?
220753 s at	CRYL1	NM 015974	Hs.370703	chr13a12.11	Crystallin, lambda 1
200602_at	APP	NM_000484	Hs.651215	chr21q21.2-21q21.3	Amyloid beta (A4) precursor protein
—				1 I	(peptidase nexin-II, Alzheimer disease)

APPENDIX: Full Annotation Information for Differentially Expressed Genes (Continued)

				Chromosome	
ProbesetIDs	Symbols	PublicID	UniGeneID	location	Gene title
	5				
206343_s_at	NRG1	NM_013959	Hs.453951	chr8p21-p12	Neuregulin 1
203723_at	ITPKB	NM_002221	Hs.528087	chr1a42.13	Inositol 1.4.5-trisphosphate 3-kinase B
219700_at	PLYDC1	NM_020405	He 125036	chr17a211	Plevin domain containing 1
21)/00_at	DDC2 A	AI 256115	H_{0} 256572	$chr/q^{21.1}$	Pibecomal protein S2A
200099_S_at	NF 55A	AL550115	HS.330372	chr4q51.2-q51.5	Ribosoniai protein 55A
200013_at	RPL24	NM_000986	Hs.477028	chr3q12	Ribosomal protein L24 / / / ribosomal
					protein L24
201256_at	COX7A2L	NM_004718	Hs.339639	chr2p21	Cytochrome c oxidase subunit VIIa
					polypeptide 2 like
200716_x_at	RPL13A	NM_012423	Hs.523185	chr19q13.3	Ribosomal protein L13a
208591 s at	PDE3B	NM_000922	Hs.445711	chr11p15.1	Phosphodiesterase 3B, cGMP-inhibited
204612_at	PKIA	NM_006823	Hs 433700	$chr8a^{21}1^2$	Protein kinase (cAMP-dependent
201012_ut	11011	14111_000020	110.1007.00	emoq	(atalytic) inhibitor alpha
217080 at	HSD17B11	NM 016245	Hc 282084	chr4a221	Hydroxystoroid (17 bota)
217909_at	113D17D11	1010243	115.202904	CIII4q22.1	debedre serves 11
	TODA		TT 01 0010	1 4 7 94 99	denydrogenase 11
204628_s_at	ITGB3	NM_000212	Hs.218040	chr17q21.32	Integrin, beta 3 (platelet glycoprotein
					IIIa, antigen CD61)
201968_s_at	PGM1	NM_002633	Hs.1869	chr1p31	Phosphoglucomutase 1
212063 at	CD44	BE903880	Hs.502328	chr11p13	CD44 molecule (Indian blood group)
218918 at	MAN1C1	NM 020379	Hs.197043	chr1p35	Mannosidase, alpha, class 1C.
					member 1
200093 c at	HINT1	NI32864	Hc 183305	chr5a31 2	Histiding triad nucleotide hinding
200095 <u></u> 8_at	1111111	1132004	115.405505	CIII5q51.2	motoin 1
00(000)	DACAO	NIN (0070(0	11 0(0100	1 12 24	
206220_s_at	RASA3	NM_007368	Hs.369188	chr13q34	RAS p21 protein activator 3
221564_at	PRMT2	AL570294	Hs.154163	chr21q22.3	Protein arginine methyltransferase 2
220948_s_at	ATP1A1	NM_000701	Hs.371889	chr1p21	ATPase, Na+/K+ transporting,
					alpha 1 polypeptide
211954 s at	RANBP5	BC000947	Hs.643743	chr13q32.2	RAN binding protein 5
201350_at	FLOT2	NM 004475	Hs.514038	chr17a11-a12	Flotillin 2
202554 s at	CSTM3	AI 527430	Hs 2006	chr1p133	Glutathione S-transferase M3 (brain)
202004_0 at	EIE2C12	A E085258	$U_{0} 21/250$	chr10a12.2	Eukamotic translation initiation
221494_X_at	EIF3312	AF003330	115.514559	chi 19q13.2	factor 2 subunit 12
2000(2	DDI 01	A TO 40010	II. (4 7 000	1 2 11 2	Diharamal matrix 1.21
200962_at	KPL31	AI348010	Hs.647888	chr2q11.2	Ribosomal protein L31
201030_x_at	LDHB	NM_002300	Hs.446149	chr12p12.2-p12.1	Lactate dehydrogenase B
200644_at	MARCKSL1	NM_023009	Hs.75061	chr1p35.1	MARCKS-like 1
204490_s_at	CD44	M24915	Hs.502328	chr11p13	CD44 molecule (Indian blood group)
204718 at	EPHB6	NM 004445	Hs.380089	chr7q33-q35	EPH receptor B6
210978 s at	TAGLN2	BC002616	Hs.517168	chr1a21-a25	Transgelin 2
208852 s.at	CANX	AI761759	Hs 651169	chr5a35	Calnexin
220606 s_{-at}	C17orf48	NM 020233	Hs 47668	chr17p131	Chromosome 17 open reading frame 48
220000_3_at	ELT2	NM 004119	Hc 507590	chr13a12	Eme related tyrosing kinaso 3
200074_at	FEE0	NIVI_004119	IIS.307390	chillogiz	Fullementia translation alargetion
204102_s_at	EEFZ	INIM_001961	HS.515070	chr19pter-q12	Eukaryotic translation elongation
					factor 2
202247_s_at	MTA1	BE561596	Hs.525629	chr14q32.3	Metastasis associated 1
208692_at	RPS3	U14990	Hs.334176	chr11q13.3-q13.5	Ribosomal protein S3
200094_s_at	EEF2	AI004246	Hs.515070	chr19pter-q12	Eukaryotic translation elongation
				* *	factor 2
217990 at	GMPR2	NM 016576	Hs.368855	chr14a12	Guanosine monophosphate reductase 2
200012 x at	RPL21	NM_000982	Hs 632169	chr13a122	Ribosomal protein I 21
200012_x_at	NONO	NM_007363	He 533282	chrYa131	Non-POIL domain containing
200007_3_at		14141_007.505	113.333202	clinq15.1	octamor hinding
200706	CONCI	D C000107	II. 70101	1.5.22.24	C alla C1
208796_s_at	CUNGI	BC000196	HS./9101	cnr5q32-q34	Cyclin GI
215739_s_at	TUBGCP3	AJ003062	Hs.224152	chr13q34	Tubulin, gamma complex associated
					protein 3
208478_s_at	BAX	NM_004324	Hs.631546	chr19q13.3-q13.4	BCL2-associated X protein
200674_s_at	RPL32	NM_000994	Hs.265174	chr3p25-p24	Ribosomal protein L32
208645 s at	RPS14	AF116710	Hs.381126	chr5q31-q33	Ribosomal protein S14
212032 s at	PTOV1	AL046054		chr19a13.33	Prostate tumor overexpressed gene 1
218338 at	PHC1	NM 004426	Hs 305985	chr12n13	Polyhomeotic homolog 1 (Drosonhila)
210000_at		$\frac{10171}{1001752}$	$H_{0} = 50000000000000000000000000000000000$	chr11p12	Catalaça
201402_dl		NIVI_001702	115.002002 11-000540	chi10-24	
202731_at	rdCD4	INIVI_014456	пs.232543	chr10q24	rrogrammed cell death 4 (neoplastic
001116	DOD		TT 4210-1	1 4 6/6 5/7	transformation inhibitor)
201118_at	PGD	NM_002631	Hs.464071	chr1p36.3-p36.13	Phosphogluconate dehydrogenase
212642_s_at	HIVEP2	AL023584	Hs.510172	chr6q23-q24	Human immunodeficiency virus type I
					enhancer binding protein 2

GENE EXPRESSION AND CD4⁺ T-CELL DECLINE AFTER TI

APPENDIX: FULL ANNOTATION INFORMATION FOR DIFFERENTIALLY EXPRESSED GENES (CONTINUED)

ProbesetIDs	Symbols	PublicID	UniGeneID	Chromosome location	Gene title
202736_s_at	LSM4	AA112507	Hs.515255	chr19p13.11	LSM4 homolog, U6 small nuclear RNA
208768_x_at 201049_s_at 200074_s_at 65588_at 206686_at	RPL22 RPS18 RPL14 LOC388796 PDK1	D17652 NM_022551 U16738 AA827892 NM_002610	Hs.515329 Hs.627414 Hs.446522 Hs.400876 Hs.470633	chr1p36.3-p36.2 chr6p21.3 chr3p22-p21.2 chr20q11.23 chr2q31.1	Ribosomal protein L22 Ribosomal protein S18 Ribosomal protein L14 Hypothetical LOC388796 Pyruvate dehydrogenase kinase,
200022_at	RPL18	NM_000979	Hs.515517	chr19q13	Ribosomal protein L18 /// ribosomal
201622_at	SND1	NM_014390	Hs.122523	chr7q31.3	Staphylococcal nuclease and tudor
217870_s_at 220773_s_at 200804_at	CMPK GPHN TEGT	NM_016308 NM_020806 NM_003217	Hs.11463 Hs.208765 Hs.35052	chr1p32 chr14q23.3 chr12q12-q13	Cytidylate kinase Gephyrin Testis enhanced gene transcript (BAX inhibitor 1)
202105_at	IGBP1	NM_001551	Hs.496267	chrXq13.1-q13.3	Immunoglobulin (CD79A) binding protein 1
200061_s_at	RPS24	BC000523	Hs.356794	chr10q22-q23	Ribosomal protein S24 /// ribosomal protein S24
200095_x_at	RPS10	AA320764	Hs.645317	chr6p21.31	ribosomal protein S10 /// ribosomal rotein S10
204892_x_at	EEF1A1	NM_001402	Hs.586423	chr6q14.1	Eukaryotic translation elongation factor 1 alpha 1
202213_s_at 200002_at	CUL4B RPL35	AI650819 NM_007209	Hs.102914 Hs.182825	chrXq23 chr9q34.1	Cullin 4B Ribosomal protein L35 /// ribosomal
200990_at 203865_s_at	TRIM28 ADARB1	NM_005762 NM_015833	Hs.467408 Hs.474018	chr19q13.4 chr21q22.3	Tripartite motif-containing 28 Adenosine deaminase, RNA-specific, B1 (RED1 homolog rat)
220001_at 215813_s_at 208700_s_at	PADI4 PTGS1 TKT	NM_012387 S36219 L12711	Hs.522969 Hs.201978 Hs.89643	chr1p36.13 chr9q32-q33.3 chr3p14.3	Peptidyl arginine deiminase, type IV Prostaglandin-endoperoxide synthase 1 Transketolase (Wernicke-Korsakoff syndrome)
202990_at 212716_s_at	PYGL EIF3S12	NM_002863 AW083133	Hs.282417 Hs.314359	chr14q21-q22 chr19q13.2	Phosphorylase, glycogen Eukaryotic translation initiation factor 3, subunit 12
209185_s_at 221989_at 214359_s_at	IRS2 RPL10 HSP90AB1	AF073310 AW057781 AI218219	Hs.442344 Hs.534404 Hs.509736	chr13q34 chrXq28 chr6p12	Insulin receptor substrate 2 Ribosomal protein L10 Heat shock protein 90kDa alpha (cytosolic) class B member 1
201393_s_at 201257_x_at 205408_at	IGF2R RPS3A MLLT10	NM_000876 NM_001006 NM_004641	Hs.487062 Hs.356572 Hs.30385	chr6q26 chr4q31.2-q31.3 chr10p12	Insulin-like growth factor 2 receptor Ribosomal protein S3A Myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, Drosophila)
218679_s_at	VPS28	NM_016208	Hs.418175	chr8q24.3	Vacuolar protein sorting 28 homolog (S. cerevisiae)
202096_s_at 211558_s_at 205055_at	TSPO DHPS ITGAE	NM_000714 U26266 NM_002208	Hs.202 Hs.79064 Hs.513867	chr22q13.31 chr19p13.2-p13.1 chr17p13	Translocator protein (18 kDa) Deoxyhypusine synthase Integrin, alpha E (antigen CD103, human mucosal lymphocyte antigen 1
204867_at 200971_s_at	GCHFR SERP1	NM_005258 NM_014445	Hs.631717 Hs.518326	chr15q15 chr3q25.1	GTP cyclohydrolase I feedback regulator Stress-associated endoplasmic reticulum protein 1
203579_s_at	SLC7A6	AI660619	Hs.334848	chr16q22.1	Solute carrier family 7 (cationic amino acid transporter, y+ system), member 6
39249_at 203408_s_at 204454_at	AQP3 SATB1 LDOC1	AB001325 NM_002971 NM_012317	Hs.234642 Hs.517717 Hs.45231	chr9p13 chr3p23 chrXq27	Aquaporin 3 (Gill blood group) Special AT-rich sequence binding protein 1 Leucine zipper, down-regulated in cancer 1

ProbesetIDs	Symbols	PublicID	UniGeneID	Chromosome location	Gene title
205026_at	STAT5B	NM_012448	Hs.632256	chr17q11.2	Signal transducer and activator of transcription 5B
212257_s_at	SMARCA2	AW131754	Hs.298990	chr9p22.3	SWI/SNF related, matrix associated
220500_s_at	RABL2B	NM_007082	Hs.446425	chr22q13.33	RAB, member of RAS oncogene family-like 2B
212400_at	FAM102A	AL043266	Hs.568044	chr9q34.11	Family with sequence similarity 102, member A
202974_at	MPP1	NM_002436	Hs.496984	chrXq28	Membrane protein, palmitoylated 1, 55 kDa
213566_at	RNASE6	NM_005615	Hs.23262	chr14q11.2	Ribonuclease, RNase A family

APPENDIX: FULL ANNOTATION INFORMATION FOR DIFFERENTIALLY EXPRESSED GENES (CONTINUED)