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Abstract

 Design—Persistent latently infected CD4+ T cells represent a major obstacle to HIV 

eradication. Histone deacetylase inhibitors (HDACis) are a proposed activation therapy. However, 

off-target effects on expression in host immune cells are poorly understood. We hypothesized that 

HDACi-modulated genes would be best identified with dose-response analysis.

 Methods—Resting primary CD4+ T cells were treated with 0.34, 1, 3, or 10 μM of the 

HDACi, SAHA, for 24 hours and subjected to microarray gene expression analysis. Genes with 

dose-correlated expression were filtered to identify a subset with consistent up or downregulation 

at each SAHA dose. Histone modifications were characterized in 6 SAHA dose-responsive genes 

by chromatin immunoprecipitation (ChIP-RT-qPCR).

 Results—A large number of genes were shown to be up (N=657) or downregulated (N=725) 

by SAHA in a dose-responsive manner (FDR p-value < 0.05, fold change ≥ |2|). Several genes 

(CTNNAL1, DPEP2, H1F0, IRGM, PHF15, and SELL) are potential in vivo biomarkers of SAHA 

activity. SAHA dose-responsive genes included transcription factors, HIV restriction factors, 

histone methyltransferases, and host proteins that interact with HIV. Pathway analysis suggested 

net downregulation of T cell activation with increasing SAHA dose. Histone acetylation was not 

correlated with host gene expression, but plausible alternative mechanisms for SAHA-modulated 

gene expression were identified.

 Conclusions—Numerous genes in CD4+ T cells are modulated by SAHA in a dose-

responsive manner, including genes that may negatively influence HIV activation from latency. 

Our study suggests that SAHA influences gene expression through a confluence of several 
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mechanisms, including histone modification, and altered expression and activity of transcription 

factors.
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 Introduction

The unsolved challenge for HIV treatment is to eradicate persistent latent reservoirs in 

infected individuals maintained on combination antiretroviral therapy (ART). “Shock and 

Kill” approaches have been proposed as cure strategies for HIV[1]. Treatment with drugs 

that activate HIV out of latency (shock), combined with continued ART to prevent the 

spread of infection, may allow the host immune system to eliminate latently infected cells 

(kill)[2]. Numerous drugs have been proposed to provide the shock in a shock and kill 

strategy towards an HIV cure, including: histone deacetylase inhibitors (HDACis), Protein 

Kinase C agonists (e.g., Ingenol derivatives and Bryostatin), Bromodomain inhibitors (e.g., 
JQ1), among others[3]. HDACis have been the most scrutinized class of compounds and 

includes suberoylanilide hydroxamic acid (SAHA, also known as vorinostat), which is 

approved by the FDA for the treatment of cutaneous T cell lymphoma[4].

The ability of SAHA to activate HIV has been assessed in two separate clinical trials 

(ClinicalTrials.gov registry numbers NCT01319383 and NCT01365065) with several others 

currently recruiting (NCT02475915, NCT02336074 and NCT01249443). Analysis of data 

from the completed trials indicates that SAHA induces the production of cell associated HIV 

RNA in the vast majority HIV-infected subjects but activation of HIV varies from donor to 

donor, and a concurrent increase in plasma HIV RNA associated with virions is difficult to 

detect[5–7]. Encouragingly, two other HDACis, panobinostat and romidepsin, may have 

greater potency for activating HIV[8, 9], and are currently being assessed in clinical trials 

(NCT01933594 and NCT01680094, respectively).

However, the off-target effects of these compounds are even less understood than for SAHA. 

Therefore, the full extent of SAHA’s clinical utility in a shock and kill strategy remains to 

be evaluated. Current clinical trials assess shock compounds in isolation and future studies 

are required to assess compounds in combinations. Due to SAHA’s ability to activate HIV 

transcription, it is plausible that SAHA will be included in future combination therapies in 

conjunction with compounds that can relieve the inhibition that is restricting virion 

production[7].

HDACis cause hyperacetylation of histones by preventing deacetylation, leading to 

chromatin unwinding and recruitment of transcriptional machinery[10]. HIV transcription is 

thought to occur at least partly through this mechanism at sites where HIV is integrated in 

the host genome, but activation may also involve non-histone targets, and is not yet fully 

understood[11]. It has been hypothesized that HDACis alter the expression of host genes that 

influence HIV activation, but the identities of these host genes are largely unknown[11]. The 

non-specific nature of histone acetylation suggests that widespread effects on host gene 
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expression are likely to occur, so it is also important to investigate the potential for off-target 

side effects of SAHA in immunocompromised patients. Furthermore, the optimal dosing 

regimen for SAHA has not yet been determined for HIV patients. The currently 

recommended oral dose of 400 mg, once daily, results in a peak serum concentration of 1.2 

μM[4]. Intravenous dosing results in peak serum concentration of 9.1 μM, and was 

surprisingly better tolerated than oral dosing in clinical trials for cancer[12].

Our laboratory previously reported minimal off-target effects on host gene expression for 

primary CD4+ T cells treated for 24 hours with 0.34 μM SAHA[13]. Only 37 of 1880 

significantly modulated genes had expression changes above 2-fold. However, SAHA-

modulated gene expression has not previously been examined over the entire concentration 

range relevant to HIV cure strategies. Our goal was to identify SAHA dose-responsive genes 

that could be used as in vivo biomarkers of SAHA activity. Primary CD4+ T cells were 

treated with 0.34, 1, 3, or 10 μM of SAHA. Genes consistently up or downregulated in a 

dose-dependent manner were identified. Host cell functions affected by these genes may 

have implications for the efficacy and safety of therapies for both HIV and cancer.

 Methods

 Isolation of primary CD4+ T cells

Human peripheral blood was drawn according to institutional review board approved 

protocols from 9 healthy HIV-seronegative donors by venipuncture and collected into 

sodium heparin containing tubes. Peripheral blood mononuclear cells (PBMCs) were 

collected from fresh whole blood by centrifugation. Primary CD4+ T cells were isolated 

from PBMCs with RosetteSep CD4+ Isolation Kits according to manufacturer protocol 

(Stem Cell Technologies). CD4+ T cells were incubated at 37°C, 5% CO2 overnight in 

RPMI-1640 with 5% human serum AB. CD4+ T cell purity and activation were assessed 

with flow cytometry. All samples included in microarray analysis had >95% purity with 

fewer than 10% activated cells (i.e., <10% expressing HLA-DR).

 SAHA treatment of primary CD4+ T cells

CD4+ T cells were aliquoted into 6-well plates; 5 million cells per well in 2 mL of media 

(RPMI-1640 with 5% human serum AB). These cells were treated with 0.34 μM, 1 μM, 3 

μM, or 10 μM SAHA (Merck) in 0.1% DMSO, or with only 0.1% DMSO, and incubated at 

37°C, 5% CO2 for 24 hours.

 Microarray analysis of gene expression

RNA was extracted from treated cells using Qiagen RNeasy kits according to manufacturer 

protocol. RNA integrity numbers (RINs) were determined with the Agilent 2100 

Bioanalyzer (Agilent Technologies). RNA samples submitted for microarray analysis (N=6) 

had RINs between 7.9 and 9.0 with an average RIN of 8.5. cRNA was generated and 

hybridized to IlluminaHT-12 v3 BeadChips (48,803 probes). Expression data were extracted 

with GenomeStudio (Illumina); genes with undetectable expression were excluded from 

analysis. The lumi package[14] in bioconductor was used to transform (variance-stabilizing) 

and normalize (robust spline) raw expression data. Genes significantly modulated across 
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SAHA doses were identified using a likelihood ratio test in the R package Isogene GX[15]. 

The familywise error rate was controlled using Bonferroni-adjusted p-values (p < 0.05). A 

subset of SAHA dose-responsive genes was identified and used in all subsequent analyses; 

included genes had consistent trends of up or downregulation across each increasing SAHA 

dose, and greater than 2-fold change in expression when comparing the highest dose (10 

μM) to DMSO-treated controls. Unless specified, all analyses were corrected for multiple 

comparisons using the Benjamini-Hochberg method[16] with an FDR-corrected p-value ≤ 

0.05 considered significant. Gene expression data are available at the Gene Expression 

Omnibus (http://www.ncbi.nlm.nih.gov/geo/): accession number GSE66994.

 Gene ontology (GO), pathway, and protein interaction network analysis

GO terms significantly over-represented for SAHA dose-responsive genes were identified 

using the BiNGO plugin for Cytoscape[17]. KEGG and BIOCARTA biological pathways 

significantly over-represented for SAHA dose-responsive genes were identified and 

characterized with DAVID[18, 19]. A direct protein interaction network (PIN) using a 

database of literature-curated protein-protein and protein-DNA interactions was constructed 

for SAHA dose-responsive genes using Metacore (Thomson Reuters).

 Real-Time Quantitative PCR (RT-qPCR)

Microarray expression data was confirmed by RT-qPCR for the top SAHA dose-responsive 

gene in samples (5 SAHA treatments in each of 6 donors), as described previously[13]. 

Briefly, RNA was reverse transcribed using qScript™ cDNA SuperMix (Quanta 

Biosciences). Expression was confirmed for the 3 most upregulated (CTNNAL1, H1F0, 

IRGM) and 3 most downregulated (DPEP2, PHF15, SELL) SAHA dose-responsive genes 

(Supplemental Table 1) with TaqMan® assays according to manufacturer protocols 

(TaqMan® Universal Master Mix II, ABI Prism 7900HT; Life Technologies). Expression 

data were normalized to RPL27; a gene previously determined to be non-responsive to 

SAHA[13]. The 2−ΔΔCt method[20] was used to determine fold change SAHA treated 

samples.

 Chromatin Immunoprecipitation (ChIP)

Three additional donors were recruited for ChIP analysis of SAHA-induced histone 

modifications. CD4+ T cells were isolated and treated with SAHA as described above. 

Chromatin was isolated and processed using ChIP-IT High Sensitivity kits (Active Motif) 

according to manufacturer’s instructions, except as noted. DNA was cross-linked to protein 

by a 5-minute incubation in fresh 1% formaldehyde and sheared to an average size of 500–

1500 base pairs by sonication in 0.1% SDS lysis buffer (Covaris M220 Sonicator; 6 minutes, 

6% duty factor, 200 counts per burst, 75 watts). DNA complexes were immunoprecipitated 

with ChIP-grade antibodies directed against total histone H3 (H3), acetylated-H3 Lysine 9 

(H3K9a), acetylated-total histone H4 (H4a), methylated-H3K4 (H3K4m), methylated-

H3K27 (H3K27m), and RNA polymerase II (Pol II). Following cross-link reversal and DNA 

purification, RT-qPCR was conducted using primers and probes (Supplemental Table 1) 

designed to span regions where histone modifications are known to occur; these regions 

were identified using the UCSC Genome Browser histone track (http://genome.ucsc.edu/)

[21]. Chromatin concentration was normalized to non-IP input control chromatin, and then 

Reardon et al. Page 4

AIDS. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.ncbi.nlm.nih.gov/geo/
http://genome.ucsc.edu/


histone acetylation or methylation for 6 SAHA dose-responsive test genes (CTNNAL1, 

DPEP2, H1F0, IRGM, PHF15, SELL) was normalized to total H3. The 2−ΔΔCt method was 

used to calculate enrichment of histone modifications; this value was log2 transformed for 

plotting. The significance of SAHA-modulated changes in histone modification was 

determined with a one-tailed, paired t-test (p ≤ 0.05). For each SAHA dose, RNA was 

isolated from treated donor samples for RT-qPCR validation of SAHA dose-responsiveness 

in test genes, as described above.

 Predicted transcription factor binding site analysis

The DiRE web server (http://dire.dcode.org) was used to identify transcription factor binding 

sites enriched in SAHA-modulated genes[22]. Predicted key transcription factors were 

ranked by an “importance” score reflecting a transcription factor’s association with genes 

that are co-expressed following treatment, as well as its occurrence in candidate regulatory 

elements. Predicted transcription factors with an importance score ≥ 0.1 were incorporated 

into protein networks with SAHA-modulated genes, as described above.

 Results

 SAHA dose-response genes

To examine the effect of SAHA on host function in CD4+ T-cells, we utilized microarray 

analysis to identify 3,477 genes with a SAHA dose-responsive trend. This set was filtered to 

retain only genes with a fold change ≥ 2 or ≤ −2 and a consistent trend in expression across 

each increasing SAHA dose. This filter identified 1,382 genes (Supplemental Table 2) 

whose expression was consistently responsive to dose, of which 657 were upregulated and 

725 downregulated. This higher confidence subset was used in all analyses of SAHA 

modulated gene expression, and is referred to hereafter as “dose-responsive genes”.

Our previous study in primary CD4+ T cells exposed to 0.34 μM SAHA for 24 hours 

identified 1,847 differentially expressed genes[13]. Only 29% of these genes were found to 

be dose-responsive across the concentration range of SAHA used in this study. This suggests 

that not all differentially expressed genes at this low dose of SAHA are truly dose-

responsive, indicating the risks of relying on a single dose to identify gene expression 

biomarkers for SAHA response.

RT-qPCR analysis of microarray samples (Figure 1) confirmed dose-responsive changes in 

expression and consistent trends of up or downregulation in all six test genes across each 

tested SAHA dose. These genes represent gene expression biomarkers of SAHA, which are 

relevant over the concentration range examined here (0.34 to 10 μM).

 SAHA dose-responsive genes associated with HIV replication

Literature-based searches identified host dose-responsive genes with prior evidence of 

involvement in HIV activation or replication. A number of SAHA dose-responsive genes 

(summarized in Table 1) have functions relating to histone methylation, transcription, HIV 

restriction, HIV protein interaction and cell surface receptors, which on the whole likely 

enhance HIV activation.
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 GO and pathway analysis of SAHA dose-responsive genes

GO terms for biological processes related to T-cell activation, apoptosis, and chromatin 

organization were significantly over-represented (Supplemental Figure 1). Repeated analysis 

using only SAHA-upregulated dose-responsive genes primarily retained GO terms related to 

chromatin organization (Supplemental Figure 2). In contrast, analysis using only 

downregulated genes identified terms related to T-cell activation and apoptosis 

(Supplemental Figure 3). Pathway mapping of dose-responsive genes identified significant 

pathways only in downregulated genes (FDR q-value < 0.05)[23]; In downregulated genes, 

significant KEGG and BIOCARTA pathways were focused on T-cell receptor signaling, 

apoptosis, and cytotoxic T-lymphocyte mediated immune response (Table 2). Further 

analysis of expression patterns for genes associated with the T-cell receptor signaling 

pathway (KEGG) suggests a possible SAHA-induced net decrease in T-cell activation 

(Supplemental Figure 4). There was no consistent trend in apoptosis-related gene 

expression, so the net effect of SAHA on apoptosis could not be predicted (data not shown). 

This is consistent with previous results showing no cytopathic effects from SAHA-induced 

HIV reactivation[24].

 SAHA-induced histone modification

We conducted ChIP-RT-qPCR assays in primary CD4+ T cells to determine whether 

histones were hyperacetylated (H3K9a and H4a) as a consequence of SAHA treatment. 

Having identified numerous SAHA-modulated histone methyltransferases (HMTs, Table 1), 

ChIP-RT-qPCR also examined histone methylation associated with gene activation (H3K4m) 

and repression (H3K27m). H3K4-methylation was selected because 5 of 11 HMTs 

modulated by SAHA are known to methylate this site[25–29]. The most strongly 

upregulated HMT, EZH2, methylates H3K27, causing transcriptional repression[30]. 

Histone modifications were studied in the three most upregulated genes and three most 

downregulated genes. Expression of these genes was confirmed in ChIP donor samples, 

demonstrating expression patterns similar to previously tested microarray samples (Figure 

1).

Histone markers of transcriptional activation (H3K9a, H4a, and H3K4m) were consistently 

enriched, often attaining significance in the three SAHA-upregulated genes (Figure 2a). 

Unexpectedly, histone acetylation was also detected in 2 of 3 SAHA-downregulated genes, 

DPEP2 and SELL (Figure 2b). H3K4-methylation was not significantly different from 

vehicle in any of the downregulated genes. Trends in pol II enrichment were generally 

consistent with the known patterns of expression for these genes; however, significance was 

reached only for IRGM (increased pol II, SAHA-upregulated) and PHF15 (decreased pol II, 

SAHA-downregulated). H3K27-methylation was not correlated with SAHA-modulated gene 

expression. The enrichment patterns of histone modifications associated with transcriptional 

activation were consistent with gene upregulation, but did not explain SAHA-induced gene 

downregulation.

 SAHA dose-responsive transcription factor modulation

A direct protein interaction network (Supplemental Figure 5) containing SAHA dose-

responsive genes identified key hubs through which SAHA may influence expression of 
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additional genes; as summarized in Table 3. The most connected hub in the protein network 

was the transcription factor, c-Myc. Other large hubs were mostly downregulated and 

corresponded to transcription factors or coactivators (C/EBPbeta, p300, ETS1 and STAT1). 

Several of these hubs (e.g., c-Myc, EZH2, and CDK2) were also among the most connected 

hubs in our previous study summarizing differential expression in primary CD4+ T cells 

treated with 0.34 μM SAHA[13].

We also explored the possibility that SAHA might modulate activity of transcription factors 

through other mechanisms (e.g., transcription factor acetylation). Candidate transcription 

factors were identified among SAHA-responsive genes using DiRE[22], to find enrichment 

in consensus transcription factor binding sites within regulatory elements of co-expressed 

genes. Transcription factor analysis identified 13 total candidate transcription factors among 

SAHA dose-responsive genes: 8 among upregulated and 5 among downregulated genes. The 

highest confidence predictions are shown in Supplemental Figure 6. SAHA treatment 

decreased expression of three predicted transcription factors (ETS1, STAT6, and the RUNX1 
component of Core Binding Factor) with enrichment for consensus binding sites in 

downregulated genes; all three were hubs in the PIN of SAHA-modulated genes. 

Furthermore, when SAHA-non-responsive, DiRE-predicted transcription factors were 

analyzed for interactions with SAHA dose-responsive genes, the resulting PIN had SP1, 

TAL1, and MYOD emerging as major hubs; with curated evidence of acting on 156, 35, and 

30 SAHA-modulated proteins, respectively (Table 3).

 Discussion

This study revealed large numbers of genes modulated by SAHA in a dose-dependent 

manner in primary CD4+ T cells. Six of the most dose-responsive genes were validated by 

RT-qPCR (CTNNALI, DPEP, H1F0, IRGM, PHF15, SELL), suggesting they could be 

useful in vivo biomarkers for monitoring SAHA activity in current (NCT02475915, 

NCT02336074 and NCT01249443) and future clinical trials, as well as in trials of other 

HDACis such as romidepsin and panobinostat (NCT01933594 and NCT01680094). 

Encouragingly, the SAHA gene expression biomarkers PH15 and H1F0 identified in this 

study appear to have broad applicability for other compartments and cell types (e.g., whole 

blood and PBMCs), in other species (e.g., mouse and rhesus macaques), and for other 

HDACis (e.g., panobinostat) (Drs. Richard Barnard and Bonnie Howell, Merck Inc., 

personal communication).

Acetylation of histones only partially explains the effects of SAHA on host cell gene 

expression [31–34]. ChIP-RT-qPCR based evaluation of histone modifications in the six 

most SAHA-dose responsive genes (Figure 2) demonstrated that increased histone 

acetylation was generally observed regardless of gene up or downregulation. The PIN of 

SAHA-modulated genes revealed several transcription factors that were major hubs (Table 

3). Therefore, by altering expression or activity of transcription factors, it is plausible that 

SAHA influences secondary effects (including downregulation) on scores of other genes.

This study identified several SAHA dose-responsive host genes that may contribute to 

SAHA’s ability to facilitate HIV activation (Table 1). With respect to enhancing HIV 
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activation, the protein products of IRGM and HSP70 have demonstrated direct interactions 

with HIV proteins to promote viral replication[35, 36] and were strongly upregulated by 

SAHA. Furthermore, several HIV restriction factors, APOBEC3G, APOBEC3F, EV12B and 

TRIM22[37] were downregulated in a dose-dependent manner by SAHA. Downregulation 

of MYC, the most connected hub in our PIN, is likely to be an important contributor to HIV 

activation by SAHA, as we have reported previously[13]. The transcription factor SP1 had 

predicted binding sites in a large proportion of upregulated genes and was a major hub when 

combined in a PIN with SAHA-modulated genes. Although no change in SP1 expression 

was detected, HDACi treatment can acetylate the SP1 protein, enhancing its ability to bind 

the HIV LTR and promote viral transcription[11]. Thus, SAHA may alter SP1 activity by 

direct acetylation without changing its expression, contributing to HIV activation. In 

contrast, with respect to repressing HIV activation, several transcription factors (ETS1, 
CEBPB, LEF1) shown to bind the HIV LTR and activate HIV transcription[38–40] were 

downregulated by SAHA. Furthermore, two cell surface molecules (CCL5/RANTES and 

ITGAL/CD11a) downregulated by SAHA are thought to enhance cell-to-cell transmission of 

the activated virus [41–43]. Finally, a number of histone methyltransferases were modulated 

by SAHA with half being upregulated and half downregulated (Table 1). This represents a 

heterogenous signal with respect to HIV activation where broad and specific 

methyltransferase inhibitors have been shown to activate HIV from latency [44, 45]. These 

observations support recent findings from the gene expression analysis of samples from 

clinical trials with SAHA suggesting that multiple mechanisms may contribute to HIV 

activation[7]. Beyond the ability to directly activate HIV through the relaxation of 

chromatin, SAHA may operate through indirect mechanisms by modulating host genes some 

of which appear to have positive and others negative roles with respect to HIV activation. 

For the majority of the genes listed in Table 1, SAHA induced changes in expression would 

likely favor HIV activation from latency. However, recent evidence suggests that HIV 

activation from latency may also require removal of an as yet unknown post-transcriptional 

block[46]; no obvious candidates for such an activity emerged from our results.

Analysis of functional categories and pathways associated with SAHA-modulated genes 

revealed categories related to T-cell activation and suggested possible downregulation of T-

cell receptor activation. Several studies implicate T-cell activation as an essential component 

for efficient HIV infection and replication. Possible consequences of SAHA impeding T-cell 

activation may include decreased HIV transcription and translation, which may diminish 

eradication of infected cells during ART. This is consistent with a recent study in a primary 

CD4+ T cell latency model showing that SAHA treatment resulted in only a modest increase 

in HIV protein despite a 3-fold increase in HIV transcription[46]. Our data suggest that T-

cell receptor activation may require particular scrutiny when evaluating dosing regimens for 

SAHA, or future analogues with increased bioavailability or potency.

The possible utilization of SAHA to activate latent HIV is still being evaluated in clinical 

trials, so it is too early to know whether it will have a key role in a shock and kill approach 

to an HIV cure. In the event that SAHA does not show the desired efficacy on its own, it 

may still be used as part of a combination therapy with other latency activating compounds. 

Our results indicated plausible alternative mechanisms of action for SAHA that may help to 

identify additional therapies or adjuvants that can be used to maximize the effectiveness of a 
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cure strategy. This current study was focused on gene expression in primary resting CD4+ T 

cells because these cells are considered the primary reservoir of latent HIV infection in the 

peripheral blood. Future work will profile the effects of SAHA and other latency reversing 

agents in PBMCs, as well as other cell subsets and tissues to further elucidate the effects of 

SAHA.

In summary, the primary outcome of this work was the identification of gene expression 

biomarkers of SAHA administration (CTNNALI, DPEP, H1F0, IRGM, PHF15, SELL). 

These results further indicated other possible mechanisms through which SAHA may affect 

activation of HIV from latency. Our data suggest that SAHA alters host gene expression 

through the combined action of multiple mechanisms, including histone acetylation, histone 

methylation, and altered expression and possible acetylation of transcription factors. These 

results may be used to identify targets for future knockdown or overexpression studies using 

in vitro HIV latency models to determine the contribution of host genes to the SAHA-

induced activation of HIV.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. RT-qPCR confirmation of SAHA dose-responsive gene expression
Gene expression changes induced by SAHA were confirmed by RT-qPCR in the same RNA 

samples used for microarray analysis (Donors 1–6). RT-qPCR analysis was also used to 

confirm expression changes for the six most strongly SAHA dose-responsive genes in 

primary CD4+ T cells used in ChIP analysis (Donors 7–9). (a) The top 3 dose-responsive 

upregulated genes, and (b) the top 3 dose-responsive downregulated genes. Abbreviations 

are as follows: CTNNAL1, catenin (cadherin-associated protein), alpha-like 1; H1f0, H1 

histone family, member 0; IRGM, immunity-related GTPase family, M; DPEP2, Dipeptidase 

2; PHF15, PHD finger protein 15; SELL, Selectin L
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Figure 2. ChIP-RT-qPCR analysis of histone modifications for the top six genes SAHA dose-
responsive genes
Histone modifications and Pol II occupancy were examined in the promoters of the (a) 3 

most upregulated (CTNNAL1, H1F0, IRGM) and (b) 3 most downregulated (DPEP2, 

PHF15, SELL) SAHA dose-responsive genes when comparing a SAHA treatment of 10μM 

to vehicle. Fold enrichment of immunoprecipitated chromatin upon SAHA treatment is 

plotted on the log2 scale with error bars representing the standard error of the mean. 

Significant enrichment was assessed in a paired t-test and reported at the 0.1 (*) and 0.05 

(**) cut-offs. Abbreviations are as follows: H3K9a, acetylated H3 Lysine 9; H4a, acetylated 

total Histone H4; H3K4m, methylated H3K4; H3K27m, methylated H3K27; Pol II, RNA 

polymerase II.
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Table 1

SAHA dose-responsive genes with potential roles in HIV activation or replication1.

Category Gene Maximum fold change (10 μM SAHA)

Restriction Factors EV12B −17.6

TRIM22 −7.7

APOBEC3G −5.5

APOBEC3F −3.1

HIV protein interactors IRGM 34.3

HSP70 (HSPA2) 7.7

Histone methyltransferases EZH2 13.3

SETD3 5.2

SMYD2 5.2

SETD8 3.0

SETDB1 2.9

SETD1A 2.5

SETD1B −5.2

SMYD4 −4.6

SETMAR −3.9

MLL5 −3.3

EHMT2 −3.1

Transcription Factors MYC −10.9

LEF1 −5.7

ETS1 −3.1

CEBPB −2.4

Cell surface molecules CCL5 (RANTES) −15.6

CD11a (ITGAL) −13.1

1
Fold change was calculated by comparing expression between the 10 μM dose of SAHA and the untreated control.
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Table 2

Pathway categories significantly enriched (q-value ≤ 0.05) for SAHA dose-responsive genes.

Category Pathway1 Genes q-value2

T cell receptor signaling/
activation

Lck and Fyn tyrosine kinases in initiation of TCR 
activation (BIOCARTA)

CD3D, CD3E, LCK, CD247, ZAP70, 
CD4

2.38E-04

Activation of Csk Inhibits Signaling through TCR 
(BIOCARTA)

CD3D, CD3E, LCK, CD247, ZAP70, 
CD4

1.12E-03

T-Cell Receptor Signaling Pathway (KEGG) PTPN6, CARD11, CD3D, CD3E, 
CD40LG, MAPK13, LCK, CD247, 
ZAP70, CD4, CD28

3.38E-03

The Co-Stimulatory Signal During T-Cell Activation CD3D, CD3E, LCK, CD247, ITGB2 1.44E-02

T-Cell Receptor and CD3 Complex CD3D, CD3E, CD247 3.69E-02

Role of Tob in T-Cell Activation CD3D, CD3E, CD247, CD28 4.55E-02

Apoptosis HIV Induced T-Cell Apoptosis (BIOCARTA) CD3D, CD3E, CD247, CD4, CD28 1.30E-03

Cytotoxic T cell function T-Cytotoxic Cell Surface Molecules (BIOCARTA) ITGAL, CD3D, CD3E, CD247, 
ITGB2, CD28

2.66E-04

CTL Mediated Immune Response Against Target 
Cells (BIOCARTA)

ITGAL, CD3D, CD3E, CD247, 
ITGB2

5.31E-03

Cell surface molecules T-Helper Cell Surface Molecules (BIOCARTA) ITGAL, CD3D, CD3E, CD247, 
ITGB2, CD4, CD28

2.36E-05

Adhesion Molecules on Lymphocyte (BIOCARTA) ITGAL, CD44, SELL, ITGB2, 
ITGA4

1.30E-03

Monocyte and its Surface Molecules (BIOCARTA) ITGAL, CD44, SELL, ITGB2, 
ITGA4

2.18E-03

Neutrophil and its Surface Molecules (BIOCARTA) ITGAL, CD44, SELL, ITGB2 1.10E-02

Cell Adhesion Molecules (BIOCARTA) ITGAL, CD40LG, SELL, ICAM3, 
NLGN2, ITGB2, CD4, ITGA4, 
CD226, CD28

2.85E-02

Immune Function Primary Immunodeficiency (KEGG) CD3D, CD3E, CD40LG, LCK, 
ZAP70, CD4

3.69E-02

1
Pathways identified with DAVID v6.7; analysis utilized curated pathway databases KEGG and BIOCARTA.

2
q-value: FDR-adjusted p-value (Storey, 2003).
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Table 3

Major hubs (>20 edges) in the protein interaction network of SAHA dose-responsive genes combined with 

transcription factors predicted to bind in the promoters of SAHA modulated genes.

Protein Hub # Edges Function Response to SAHA

c-Myc 294 Transcription Factor Downregulated

SP1* 156 Transcription Factor N/A**

p300 94 Histone Acetyl Transferase Downregulated

C/EBPbeta 63 Transcription Factor Downregulated

EZH2 60 Histone Methyl Transferase Upregulated

STAT1 53 Transcription Factor Upregulated

CBP 49 Generic Enzyme Downregulated

p21 48 Binding Protein Upregulated

SP3 44 Transcription Factor Downregulated

ETS1* 42 Transcription Factor Downregulated

AML1 (RUNX1) * 41 Transcription Factor Downregulated

CDK2 40 Protein Kinase Downregulated

SMAD3 35 Transcription Factor Upregulated

TAL1* 35 Transcription Factor N/A**

Lck 33 Protein Kinase Downregulated

MYOD* 32 Transcription Factor N/A**

Bcl-2 30 Binding Protein Downregulated

ZAP70 30 Protein Kinase Downregulated

Caspase-1 28 Protease Downregulated

STAT6* 28 Transcription Factor Downregulated

HDAC3 27 Histone Deacetylase Upregulated

ATM 26 Protein Kinase Downregulated

SHP-1 23 Protein Phosphatase Downregulated

Lef-1 22 Transcription Factor Downregulated

E2F3 21 Transcription Factor Downregulated

*
Predicted transcription factors (DiRE, http://dire.dcode.org)

**
Expression not modulated by SAHA

AIDS. Author manuscript; available in PMC 2016 November 01.

http://dire.dcode.org

	Abstract
	Introduction
	Methods
	Isolation of primary CD4+ T cells
	SAHA treatment of primary CD4+ T cells
	Microarray analysis of gene expression
	Gene ontology (GO), pathway, and protein interaction network analysis
	Real-Time Quantitative PCR (RT-qPCR)
	Chromatin Immunoprecipitation (ChIP)
	Predicted transcription factor binding site analysis

	Results
	SAHA dose-response genes
	SAHA dose-responsive genes associated with HIV replication
	GO and pathway analysis of SAHA dose-responsive genes
	SAHA-induced histone modification
	SAHA dose-responsive transcription factor modulation

	Discussion
	References
	Figure 1
	Figure 2
	Table 1
	Table 2
	Table 3

