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Abstract
Objective—We investigated the impact of neutralizing antibodies (NAbs) on CD4 T-cell count
and viral load in a cohort of HAART recipients who underwent extended structured treatment
interruption.

Design—Substudy of NAb in the AIDS Clinical Trials Group 5170 trial.

Methods—Early plasma samples from 50 volunteers who discontinued HAART were evaluated
in a peripheral blood mononuclear cell-based neutralization assay against a panel of four subtype
B primary isolates.

Results—We found that high-titer (90% inhibitory dose > 500) NAb against two or more isolates
was associated with reduced viral load (P=0.003 at 12-week posttreatment interruption). This
effect faded with time, losing significance (P=0.161) by study conclusion. Participants possessing
the highest NAb levels against individual isolates appeared more likely to have lower viral loads
with the association gaining significance against the R5-tropic primary isolate US1 (P=0.005).
There was no association between broader neutralization and CD4 T-cell slope over time.

Conclusion—The data suggest that high-titer NAb responses at the time of treatment
interruption are associated with reduced viral load over time, but not CD4+ T-cell decline.
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Introduction
HIV-infected patients on HAART are an informative population in the study of immune
responses to HIV-1. Improvements in immunologic status, including increases in overall
CD4+ T-cell counts and lymphoproliferative responses are observed in patients with
suppressed viral replication [1–4]. Several studies have shown that cytotoxic T lymphocyte
and neutralizing antibody (NAb) responses to HIV-1 improve, at least transiently, in most
patients treated with HAART [5,6]. Although the mechanism remains unclear, HAART may
slow virus evolution, allowing the immune response to catch-up [7].

Long-term administration of HAART may be associated with toxicity and drug resistance
[8,9]. Treatment interruption has been proposed as a way to reduce HAART associated
toxicity and boost anti-HIV immune responses [10]. To date, studies of treatment
interruption have been equivocal with respect to virologic and clinical outcomes [11–14].
However, it may be important to distinguish HIV-positive individuals who initiate
antiretroviral therapy (ART) shortly after infection while still possessing relatively intact
immune systems from those initiating therapy after longer period of time wherein serious
long-term damage has already occurred. In one recent study of HIV-1-positive individuals
intiating ART within 6 months of infection [15], 40% (N=73) were able to maintain low
HIV RNA concentrations (<5000 copies/ml) following treatment interruption (24 weeks)
suggesting that early treatment may preserve the immune system and facilitate the
development of more effective immune responses.

Cell-mediated immune responses appear to improve in breadth and magnitude during
treatment interruption [12,16], whereas elevated NAb titers and broadly NAbs have been
observed in some patients with poor HAART adherence and in those with chronic,
untreatment infection [17–20]. In one study, overall binding and NAb development appeared
to be impaired in patients who were treated with HAART shortly after seroconversion.
However, some of these same patients showed strong autologous NAb upon treatment
interruption suggesting that some degree of B-cell priming likely occurred prior to HAART
leading to a strong secondary NAb response to the `fixed' virus population posttreatment
[21].

In the present study we examined the neutralizing capacity of individual patient plasma
taken at the time of treatment interruption against a panel of subtype B primary isolates.
Although neutralization at the time of treatment interruption was not associated with CD4
cell count decline, there was a strong association with reduced viral load after treatment
interruption. This effect waned over time, suggesting viral escape.

Methods
Clinical samples

Volunteers from 31 AIDS Clinical Trials Group (ACTG) sites were chosen to participate in
an observational, prospective study (A5170) of the clinical outcome of antiretroviral
treatment interruption [14]. The overall cohort consisted of 167 HIV-infected persons over
the age of 18 who voluntarily agreed to discontinue ART for the duration of the study (96
weeks). Minimum requirements for study enrollment were a CD4+ T-cell count more than
350 cells/μl, plasma viral load less than 55 000 copies/ml and adherence to a combination of
two or more predetermined antiretroviral agents for a minimum of 6 months. Immunologic
and virologic markers of disease status, including CD4+ T-cell count and HIV-1 viral RNA
copy number (viral load) were measured every 4 weeks during the period of treatment
interruption. Clinical progression was defined as two, consecutive CD4+ T-cell counts less
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than 250 cells/μl. Frozen plasma samples from 50 volunteers were obtained and heat-
inactivated (568C/30 min) prior to use. Volunteers were selected by CD4+ T-cell decline at
24-week posttreatment interruption and divided evenly into two groups: `progressors' and
`nonprogressors' [22]. Progressors were defined by a CD4+ T-cell reduction of more than
40% at week 24. Nine of the 25 progressors reinitiated ART prior to study end.
Nonprogressors were defined by a CD4+ T-cell decline of less than 20% over the same
period. CD4 T-cell decline in this group was less than 50% of that observed in the
progressor group at week 24. No one in this group re-initiated ART during the study. The
two groups had similar CD4+ T-cell counts and viral loads at trial entry. Additional
exploratory analyses were performed by assigning volunteers to groups by number of
isolates neutralized, designated as `restricted' neutralization if 0–1 isolate was neutralized
with a titer (90% inhibitory dose) greater than 500 and `expanded' neutralization, if
volunteer plasma neutralized two or more isolates with an 90% inhibitory dose greater than
500.

Viruses
We tested volunteer plasmas against four subtype B primary isolates [US1, US4 and 89.6 as
well as a recombinant B' (CM237) isolate from Thailand], all obtained from the NIH AIDS
Reagent and Research Program (Germantown, Maryland, USA). All isolates utilize CCR5
(R5) as coreceptor and represent a range of neutralization sensitivity (Weak-89.6, CM237,
US4, US1-Strong) to pooled HIV-positive sera and sCD4 [6,23–26]. Of note, isolate 89.6 is
also known to use CXCR4 and is considered dual-tropic (R5/X4) [27]. A single stock of
each isolate (sufficient for all experiments) was generated by infection of PHA/IL-2-
stimulated peripheral blood mononuclear cells (PBMCs) from a single donor (SeraCare,
Inc., Milford, Massachusetts, USA) [26]. To confirm stock virus identity, a segment of the
envelope region (C2–V4) was sequenced from proviral DNA.

Virus titration assay
Titration assays were performed as described [26]. Briefly, stock virus was serially diluted
in cRPMI/IL-2 media cRPMI/IL-2 [RPMI 1640 (Quality Biological, Gaithersburg,
Maryland, USA), 15% fetal calf serum (Gemini, Woodland, California, USA), 1% L-
glutamine (Quality Biological), 1% penicillin/streptomycin (Quality Biological), and 20 U/
ml rhIL-2 (Roche, Indianapolis, Indiana, USA)] in a 96-well 0.5 ml plate. PHA/IL-2-
stimulated PBMC (1.5 × 105 cells/well) were added to a final volume of 100 μl and
incubated overnight at 37°C/5%CO2. Cells were washed thrice in cRPMI/IL-2 and
transferred to a 96-well round-bottom plate. Supernatants were harvested for measurement
of p24 core antigen by sandwich ELISA on days 4, 6, and 8 and lysed according to the kit
manufacturer's protocol (Coulter, Hialeah, Florida, USA). Optimal virus dilution and harvest
day (>10 ng/ml of p24) were determined for use in downstream virus neutralization assays.

Virus neutralization assay
Virus neutralization assays were performed as previously described [26]. Briefly, sample
plasmas and pooled HIV-1 subtype-specific plasma controls were initially diluted 1 : 5 in
cRPMI/IL-2, followed by serial 1 : 4 dilutions. The final plasma dilution range including
antibody, cells, and virus was 1/20–1/20 480. For baseline virus growth, plasma was
replaced with cRPMI/IL-2 in a minimum of eight wells. Normal human plasma was used as
a control for nonspecific neutralization (Gemini). An equal volume of appropriately diluted
virus stock was added to each well. Serum and virus were incubated for 30 min at 37°C/5%
CO2 prior to the addition of PHA/IL-2 stimulated PBMC (1.5 × 105 cells/well) in a final
volume of 100 μl. The plates were incubated overnight at 37°C/5% CO2. Cells were washed
thrice in cRPMI/IL-2 and transferred to a 96-well round-bottom plate. The cells were
incubated according to predetermined virus growth kinetics (see above). Supernatants were
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harvested for measurement of p24 core antigen by sandwich ELISA and lysed according to
the kit manufacturer's protocol (Coulter). Lysed supernatants (quadruplicate wells) were
pooled prior to loading on the ELISA plate. Each plasma was assayed at least twice. If the
titers between experiments were more than 0.5log10, a third experiment was performed.
Titers were averaged prior to data analysis. p24 antigen in pooled experimental wells (Vn)
was compared with cRMPI/IL-2 containing positive control wells (Vo). The ratio, Vn/Vo
was plotted versus the reciprocal dilution of serum. Ninety percent inhibitory dose titers
were calculated using linear regression analysis as previously described [28]. Titers less than
20 [no significant neutralization compared to media controls at the lowest plasma dilution
(1 : 20)] were replaced with a value of 19 for statistical analyses.

Statistical analysis
Primary analyses compared NAb titers to changes in CD4 T-cell number after interruption
of antiviral treatment. We calculated individual slopes for CD4 cell counts between 8 and 96
weeks after treatment interruption, to account for the two-phase decline, as previously
described by Skiest et al., on the entire cohort [14]. We then compared slopes by Spearman
correlation coefficient with neutralization titer, as well as by neutralization category
(restricted neutralization versus expanded neutralization), using a nonparametric test
(Mann–Whitney U test). For analysis of longitudinal viral load data in the `restricted'
neutralization versus `expanded' neutralization groups, we used generalized estimating
equations for linear regression to account for the nonindependence of repeated viral load
measurements [29,30]. We also stratified 90% inhibitory dose neutralization titer by quartile
for each virus and performed a one-way analysis of variance against setpoint, log-
transformed viral load, determined by taking the mean of viral load measurements up to 12
weeks after treatment interruption [31,32]. Models were compared with the lowest quartile
of neutralization titer as the reference group. For all longitudinal analyses, observations after
resumption of ART were censored. A two-sided level of significance of 0.05 was used for
all analyses. P values for multiple comparisons were corrected using the Bonferroni method.
Analyses were performed using Stata SE v10.0 (Stata Corp., College Station, Texas, USA).

Results
Clinical and laboratory data

The cohort consisted of 50 predominantly male (96%) volunteers (Table 1). Whites
represented 67%, African Americans 19%, Hispanics 10%, and Asian/Pacific Islanders 4%.
Of the 50 volunteers, 76% (38) remained on study for the full 96 weeks. Ten of the
remaining 12 restarted ART prior to study conclusion, and two were lost to follow-up. The
median CD4+ T-cell number at study initiation was 855 (292–1402 cells/μl). HIV-1 RNA
viral load at study entry ranged from less than 50 to 12 441 copies/ml. From study
conclusion, the median CD4 T-cell count had fallen to 454 cells/μl. By this point, all
volunteers had detectable viral loads with a mean of 4.27 log10 copies/ml (SD 0.80 log). To
examine the impact of neutralizing activity at baseline (prior to HAART discontinuation),
volunteers with similar CD4+ T-cell number at study entry were separated into progressor
and nonprogressor groups. Progressors were defined by a more than 40% reduction in CD4+

T cells through week 24, whereas nonprogressors displayed a less than 20% decline. Mean
log10 viral loads in the progressor and nonprogressor groups were comparable at both the
beginning and end of the study. Proportions of volunteers with respect to ethnicity and sex
were similar between the two groups (data not shown).

Neutralization of subtype B viruses
Table 1 summarizes the mean 90% inhibitory dose against a panel of four well characterized
subtype B, PBMC-derived, low-passage primary virus isolates. When comparing geometric
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mean titer between progressors and nonprogressors, we found no statistical difference.
Subsequent examination of 90% inhibitory dose at the individual isolate level also failed to
show statistical significance (US1, P=0.90; US4, P=0.51; CM237, P=0.83; 89.6, P=0.68).

Multi-isolate neutralization
A central question surrounding the relationship between NAb and clinical outcome is
whether a high-titer heterologous response is associated with slower disease progression. To
assess this in the context of the study, the number of participants with 90% inhibitory dose at
least 500 for 1 virus or less (Restricted Neutralization-RN) and at least 2 virus (Expanded
Neutralization-EN) were compared (Fig. 1a). Twenty of 25 participants (80%) in the
Progressor group exhibited restricted neutralization. Eighteen of 25 (72%) in the
nonprogressor group fell into the restricted neutralization category. Expanded neutralization
was limited to nine individuals in the Progressor group and seven in the nonprogressor
group. Based on the study definition, expanded neutralization was not associated with
slower disease progression.

Similarly, we looked at the impact of expanded neutralization on the RNA viral load over
the course of the study. At study entry both groups had a similar number with suppressed
viral load on treatment, and mean log10 RNA viral loads were similar between the restricted
neutralization and expanded neutralization groups (restricted neutralization: 2.05±0.659
versus expanded neutralization: 1.84±0.557; P 0.35, Student's t test). In contrast, Fig. 1b
showed that the expanded neutralization group possessed a significantly lower mean log10
RNA viral load posttreatment interruption (~4-week posttreatment interruption) (restricted
neutralization: 4.06±1.24 versus expanded neutralization: 3.02±1.45; P=0.018, Student's t
test). At study endpoint, the expanded neutralization group advantage was no longer
significant (restricted neutralization: 4.33±0.909 versus expanded neutralization: 4.06±0.52;
P=0.35, Student's t test), suggesting that neutralization of multiple heterologous isolates at
treatment interruption was associated with lower viral load and that this effect was transient.

We next evaluated posttreatment interruption viral RNA by quartile of neutralization titer
with one-way analysis of variance (Fig. 2). A statistically significant difference in mean
log10 viral loads at 12-week posttreatment interruption by neutralization titer was observed
against US1 (P=0.005) (Fig. 2a). Examination of the distribution of viral load with quartile
of NAb titer appeared to be nonlinear, suggesting that there may be a discrete neutralization
threshold necessary for a significant reduction in viral load. This was significantly different
between the third and fourth quartiles (Bonferroni corrected P value, 0.036). A nonlinear
trend test was also performed using a Wald-type test for a nonlinear hypothesis testing,
which yielded an overall Bonferroni-corrected P value of 0.05 [33]. A similar pattern was
also observed for the other three viral isolates. However, these differences did not reach
statistical significance (Figs. 2b–d).

Duration of neutralization antibody effect
As the principal measure of progression in this study was limited to the rate of CD4+ T-cell
decline 24 weeks after treatment interruption, we expanded the analysis to all CD4+ T-cell
observations between restricted neutralization and expanded neutralization groups over the
entire study (96 weeks or the last CD4 T-cell count prior to resumption of ART if the
volunteer resumed therapy prior to 96 weeks). The expanded neutralization group (n=12)
had a higher, but not statistically significant CD4 T-cell count compared to the restricted
neutralization group (n=38; P=0.19). Similarly, comparison of CD4 slope between 8 and 96
weeks was not different (P=0.22). Examination of Lowess-smoothed regression plots
suggested no difference over the period of study, which was confirmed by generalized
estimating equation analysis comparing the two groups over time (P=0.98) (Fig. 3a). In
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contrast, examination of Lowess-smoothed regression plots for log10 viral RNA showed a
lower rate of viral replication after treatment interruption for the expanded neutralization
group (Fig. 3b). Using a model that limited observations to 12, 24, 48, and 96-week
intervals, we found the strongest association at 12-week posttreatment interruption
(P=0.003), which decreased over time, losing statistical significance by week 48 (P=0.023 at
week 24, P=0.071 at week 48, and P=0.161 at week 96).

Discussion
Although cell-mediated immunity has been associated with control of viremia, the role of
NAb is less clear [34–39]. A number of studies investigating the contribution of NAbs in
vertical transmission, nonhuman primate models, vaccines, long-term nonprogressors and
highly exposed persistently seronegative cohorts have provided varying results with regard
to acquisition and disease progression [40–45]. In this study, we compared NAb titers
against a panel of heterologous subtype B HIV-1 primary isolates at time of HAART
cessation to changes in viral load and CD4+ T-cell number during a clinical trial of
volunteers undergoing long-term structured treatment interruption [14]. There did not appear
to be significant association between baseline NAb titers and either CD4 T-cell count or
viral load at study conclusion. However, stratification of NAb into quartiles revealed that
higher titers were associated with lower viral load, and lower NAb titers may be linked with
higher viral load. In addition, a more careful analysis of high-titer multiple isolate
neutralization at baseline versus viral load changes over time suggested that NAb were
associated with nondurable viral load control.

Interestingly, the NAb titer relationship to viral load appeared to be nonlinear, a pattern that
was consistently observed for the four viruses tested. Although the differences in mean log10
viral load were only significant for US1, these and other data suggest that there may be a
neutralization `threshold' necessary to control viral replication [46–48]. The unexpected
finding that low-to-moderate NAb titers were associated with higher viral load raised
interesting questions. These were not autologous isolates nor was the study performed in the
setting of transmission. Specifically, this may speak to the complex relationship between
pathogen and host, where circulating, but nonneutralizing anti-HIV antibodies may have a
deleterious effect on viral load [49,50].

The clinical impact of this finding is unknown, as most HIV-infected individuals do not
develop broadly NAb over the course of infection [49,50]. Others have observed that
antibodies coated on virions or infected cells were bound directly, or through Fc-bound
complement proteins, to potential target cells (e.g., macrophages and dendritic cells)
resulting in enhanced transmission [51–53]. Similarly, it has been reported that complement-
mediated antibody enhancement is specifically associated with increased viral load [54]. It is
unclear whether this is a function of the virus/antibody interaction, quantity of antibody
present or if antibodies to specific epitopes on the viral envelope are responsible for
enhancement [55–57].

When observing the effect of neutralization over time, there appeared to be a positive but
nonsignificant association between expanded neutralization and less rapid decline in CD4 T
cells. This was, perhaps, expected as several viral and cellular factors influence CD4+ T-cell
death [22,58,59]. Consistent with earlier studies, we found higher titer multi-isolate reactive
NAbs were associated with reduced viral load over time and that this effect was transient
[60]. We did not attempt to determine whether this was a primary effect of the antibody or a
surrogate for the health of the host immune system, the latter perhaps supported by previous
work describing heterologous NAb in viremic controllers [60,61]. Alternatively, persons
who neutralize multiple isolates may have a greater quasispecies diversity, hence greater
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epitope recognition. Previous studies have suggested that the gradual loss of an effective
NAb response may be attributed to the rapidity of HIV mutation/selection that prevents the
development of effective autologous neutralizing responses [62,63].

In conclusion, we found that high-titer, heterologous HIV-1 NAbs were associated with a
reduction in HIV-1 viral load in individuals possessing a more extensive neutralization
phenotype while there appeared to be minimal impact on CD4 T-cell decline. Of note, the
time from infection to ART is unknown for these A5170 participants, and it is possible that
the maturation of NAb responses seen during the natural history of infection may have been
interrupted by early treatment [64]. However, the likelihood that more than a handful of
these participants initiated therapy during acute or early infection is low. Similarly, the
impact of pretreatment interruption ART on immune responses is complex, but in cases
where undetectable viral load is achieved, antigen-driven cellular and humoral responses are
ultimately diminished [65–67].

Additional studies using isolates from non-B subtypes and donors with diverse HLA
haplotypes are needed to support this finding in the context of global pandemic. Further
exploration of the interaction between breadth of neutralization and viral load or CD4 cell
count could best be obtained from prospective cohort studies of HIV disease progression,
ideally in the absence of HAART.
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Fig. 1. Baseline neutralization and serial viral loads stratified by neutralization status
(a) Number of progressors and nonprogressors exhibiting the restricted neutralization or
expanded neutralization neutralization phenotype. (b) Mean log10 plasma viral load in
restricted neutralization versus expanded neutralization groups at study entry, 4-week
posttreatment interruption and study conclusion.
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Fig. 2. Distribution plots of log10 HIV-1 RNA setpoint by quartile of neutralizing antibody titer
Points represent average of viral load measurement up to 12 weeks for each volunteer.
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Fig. 3. Lowess-smoothed regression plots
(a) CD4 and (b) viral load trajectories based on two or more 90% inhibitory dose
neutralization titers greater than 500.

McLinden et al. Page 14

AIDS. Author manuscript; available in PMC 2012 November 25.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

McLinden et al. Page 15

Ta
bl

e 
1

V
ol

un
te

er
 c

lin
ic

al
, v

ir
ol

og
ic

, a
nd

 im
m

un
ol

og
ic

 d
at

a.

P
at

ie
nt

 n
o.

C
D

4 
ce

ll 
co

un
t

(e
nt

ry
)

lo
g 1

0 
R

N
A

(p
os

tt
re

at
m

en
t

in
te

rr
up

ti
on

)

C
D

4 
ce

ll 
co

un
t 

(9
6

w
ee

ks
)

lo
g 1

0 
R

N
A

 (
96

w
ee

ks
)

G
eo

m
et

ri
c 

m
ea

n 
ti

te
ra

R
es

ta
rt

 A
R

T
U

S1
U

S4
89

.6
C

M
23

7

Pr
og

re
ss

or
s 

(n
=

25
)

 
1

88
7

5.
76

44
6

4.
52

17
6

15
8

<
20

39
7

Y
es

 
3

10
09

3.
80

43
2

4.
93

36
<

20
<

20
61

N
o

 
5

11
15

4.
63

38
7

3.
97

<
20

22
19

<
20

N
o

 
7

68
1

4.
00

16
7

3.
81

<
20

<
20

<
20

23
Y

es

 
8

10
06

5.
95

58
8

4.
29

24
7

21
4

20
3

24
4

N
o

 
9

89
9

5.
28

11
2

5.
82

60
14

9
92

74
Y

es

 
10

92
2

3.
74

30
4

3.
52

25
60

61
13

3
N

o

 
11

58
5

2.
43

27
7

4.
46

<
20

<
20

<
20

40
N

o

 
13

11
55

3.
30

64
8

3.
64

<
20

35
43

70
N

o

 
18

13
11

4.
12

69
6

3.
58

<
20

<
20

<
20

<
20

N
o

 
19

11
18

5.
78

44
5

4.
07

18
0

13
9

37
3

21
5

N
o

 
22

67
1

3.
91

20
0

4.
55

62
11

1
54

62
Y

es

 
23

70
6

5.
50

53
9

4.
52

<
20

23
<

20
<

20
N

o

 
24

11
91

2.
05

45
4

3.
80

45
7

14
97

44
67

6
N

o

 
25

84
7

5.
52

50
0

5.
93

55
15

7
14

6
74

Y
es

 
27

98
5

4.
61

14
8

5.
92

<
20

<
20

<
20

<
20

Y
es

 
28

59
8

5.
78

23
7

4.
97

63
<

20
12

6
<

20
Y

es

 
30

11
41

4.
16

62
1

3.
33

<
20

<
20

<
20

<
20

N
o

 
32

70
7

4.
73

35
3

4.
42

10
75

39
17

17
24

13
30

N
o

 
33

64
9

4.
70

43
5

5.
85

<
20

<
20

<
20

<
20

Y
es

 
41

10
68

5.
83

29
3

5.
79

35
21

8
17

4
13

0
Y

es

 
43

12
04

5.
56

72
2

4.
40

10
75

29
55

85
9

11
34

Y
es

 
46

85
5

4.
65

42
1

4.
25

26
8

12
25

59
2

11
34

N
o

 
47

12
00

1.
69

38
4

4.
34

23
<

20
<

20
<

20
N

o

 
48

81
7

1.
69

37
4

4.
52

67
7

19
00

77
5

10
21

N
o

 
Su

m
m

ar
yb

92
2 

(4
62

)
4.

37
 (

1.
32

)
42

1 
(2

97
)

4.
53

 (
0.

80
)

65
 (

63
–6

7)
96

 (
94

–9
9)

64
 (

62
–6

6)
91

 (
89

–9
3)

10
 (

40
%

)

AIDS. Author manuscript; available in PMC 2012 November 25.



$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

McLinden et al. Page 16

P
at

ie
nt

 n
o.

C
D

4 
ce

ll 
co

un
t

(e
nt

ry
)

lo
g 1

0 
R

N
A

(p
os

tt
re

at
m

en
t

in
te

rr
up

ti
on

)

C
D

4 
ce

ll 
co

un
t 

(9
6

w
ee

ks
)

lo
g 1

0 
R

N
A

 (
96

w
ee

ks
)

G
eo

m
et

ri
c 

m
ea

n 
ti

te
ra

R
es

ta
rt

 A
R

T
U

S1
U

S4
89

.6
C

M
23

7

N
on

pr
og

re
ss

or
s 

(n
=

25
)

 
2

53
3

4.
06

37
3

4.
24

17
25

55
54

15
30

72
50

N
o

 
4

65
2

6.
31

45
4

4.
63

<
20

26
<

20
<

20
N

o

 
6

85
6

5.
18

72
6

4.
82

<
20

36
24

34
N

o

 
12

13
06

2.
53

10
58

2.
36

92
18

9
19

2
79

N
o

 
14

11
17

1.
69

11
11

3.
22

<
20

<
20

33
<

20
N

o

 
15

81
0

2.
32

46
3

3.
88

57
13

9
11

7
40

N
o

 
16

98
9

1.
69

81
0

4.
08

44
6

79
8

20
08

52
0

N
o

 
17

58
6

2.
43

43
4

4.
02

19
7

48
31

70
N

o

 
20

12
97

3.
30

89
7

4.
06

46
75

<
20

44
N

o

 
21

85
1

1.
69

71
5

2.
88

19
83

30
02

14
21

27
58

N
o

 
26

69
5

1.
69

54
8

4.
52

89
0

36
17

84
5

79
0

N
o

 
29

10
47

2.
80

88
8

3.
31

<
20

48
24

50
N

o

 
31

83
3

4.
74

49
3

4.
45

<
20

35
33

24
N

o

 
34

75
6

3.
61

53
3

4.
53

27
4

29
62

14
50

20
59

N
o

 
35

73
2

4.
39

75
4.

69
33

24
39

<
20

N
o

 
36

71
0

4.
30

46
2

4.
58

<
20

20
<

20
<

20
N

o

 
37

67
6

3.
58

34
6

4.
49

<
20

<
20

<
20

<
20

N
o

 
38

91
1

2.
07

90
3

2.
93

<
20

<
20

<
20

<
20

N
o

 
39

69
9

3.
81

89
4

3.
15

<
20

35
<

20
<

20
N

o

 
40

92
2

3.
23

80
9

2.
72

<
20

<
20

<
20

<
20

N
o

 
42

29
2

4.
76

31
0

4.
75

52
49

22
34

N
o

 
44

43
2

1.
69

37
5

3.
23

26
07

50
26

12
52

32
90

N
o

 
45

96
3

3.
07

70
2

4.
06

77
5

20
15

78
3

15
19

N
o

 
49

98
6

4.
45

45
4

5.
44

26
2

39
42

10
6

N
o

 
50

69
3

4.
08

42
3

4.
87

<
20

<
20

<
20

<
20

N
o

 
Su

m
m

ar
yb

81
0 

(3
96

)
3.

34
 (

1.
27

)
53

3 
(4

49
)

4.
00

 (
0.

80
)

85
 (

83
–8

8)
12

3 
(1

20
–1

26
)

84
 (

82
–8

7)
96

 (
93

–9
9)

0 
(0

)

A
R

T
, a

nt
ir

et
ro

vi
ra

l t
he

ra
py

.

a G
eo

m
et

ri
c 

m
ea

n 
tit

er
s 

(G
M

T
) 

ba
se

d 
on

 a
n 

in
fe

ct
io

us
 d

os
e 

fo
r 

90
%

 n
eu

tr
al

iz
at

io
n 

(9
0%

 in
hi

bi
to

ry
 d

os
e)

. T
ite

rs
 <

20
 r

ep
re

se
nt

 a
 ti

te
r 

th
at

 is
 b

el
ow

 th
e 

de
te

ct
io

n 
lim

it 
of

 th
e 

as
sa

y 
sy

st
em

.

AIDS. Author manuscript; available in PMC 2012 November 25.



$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

McLinden et al. Page 17
b Su

m
m

ar
y 

st
at

is
tic

s 
ar

e 
m

ea
n 

(s
ta

nd
ar

d 
de

vi
at

io
n)

 f
or

 lo
g 1

0 
vi

ra
l R

N
A

; m
ed

ia
n 

(i
nt

er
qu

ar
til

e 
ra

ng
e)

 f
or

 C
D

4 
T

-c
el

l c
ou

nt
s,

 m
ea

n 
(9

5%
 c

on
fi

de
nc

e 
in

te
rv

al
) 

fo
r 

G
M

T
, a

nd
 s

um
 (

pe
rc

en
ta

ge
) 

of
 th

os
e 

re
-

st
ar

tin
g 

A
R

T
.

AIDS. Author manuscript; available in PMC 2012 November 25.


