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Abstract

Objective—To identify HIV-induced host factors in the severe combined immunodeficient 

(SCID)-hu Thy/Liv mouse that may contribute to HIV pathogenesis in the thymus.

Design—To identify genes specifically altered by HIV-1 infection using the cDNA microarray 

assay, SCID-hu Thy/Liv organs derived from the same donors were used. Therefore, no genetic 

variations existed between HIV and mock-infected samples. In addition, the 12–14 day post-

infection timepoint was chosen because no significant thymocyte depletion was detected in HIV-

infected Thy/Liv organs, so mRNA from the same cell types could be compared.

Methods—Using SCID-hu Thy/Liv mice constructed from the same donor tissues, we analysed 

the expression of 9183 host genes in response to HIV infection with cDNA microarrays. 

Expression of selected genes with more than threefold induction was confirmed by measuring 

RNA (reverse transcriptase–polymerase chain reaction; RT–PCR) and proteins.

Results—HIV-1 (JD or NL4-3) infection of the SCID-hu Thy/Liv mouse led to more than 

threefold induction of 19 genes, 12 of which were IFN-inducible and six were unknown EST 

clones. We confirmed induction by RT–PCR and protein blots. Both signal transducer and 

activator of transcription (STAT)1 and STAT2 proteins were induced, and STAT1 was also 

activated by phosphorylation at the Tyr701 and Ser727 sites in human thymus infected with HIV-

JD or NL4-3. Treatment of human fetal thymus organ culture or human thymocytes with 

recombinant HIV-1 gp120 proteins also led to induction or activation of STAT1.

Conclusion—HIV-1 infection of the thymus led to activation of the STAT1 signaling pathway 

in thymocytes, which may contribute to HIV-1 pathogenesis in the thymus.

Keywords

HIV/AIDS; human fetal thymus organ culture; microarray; severe combined immunodeficient-hu 
Thy/Liv; signal transducer and activator of transcription 1; thymus

© 2003 Lippincott Williams & Wilkins

Correspondence to Lishan Su, Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, The 
University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA. Fax: +1 919 966 8212; lsu@med.unc.edu. 

HHS Public Access
Author manuscript
AIDS. Author manuscript; available in PMC 2015 April 30.

Published in final edited form as:
AIDS. 2003 June 13; 17(9): 1269–1277. doi:10.1097/01.aids.0000060415.18106.1a.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carolina Digital Repository

https://core.ac.uk/display/345199531?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Introduction

The thymus is an early site of HIV-1 replication [1], and thymic organs from HIV-1-infected 

patients show profound parenchymal damage and involution [2]. Moreover, HIV-1-induced 

thymus dysfunction has been correlated with faster AIDS progression in pediatric patients 

[3]. As the thymus organ is difficult to study in humans, a small animal model for the 

analysis of human thymopoiesis [severe combined immunodeficient (SCID)-hu Thy/Liv 

mouse] has been constructed by engrafting fragments of human fetal liver and thymus into 

the immunodeficient C.B-17 scid/scid (SCID) mouse [4]. After inoculation of the SCID-hu 

Thy/Liv mouse with HIV-1, replication of pathogenic HIV-1 isolates reaches high levels at 

2 weeks post-infection, followed by depletion of CD4 thymocytes between 3 and 6 weeks 

post-infection [5–8]. A higher rate of replication and thymocyte depletion is observed with 

rapidly replicating, syncytium-inducing virus isolated from AIDS patients than with slowly 

replicating, non-syncytium-inducing virus isolated from the same patients before the 

development of AIDS, or from long-term non-progressor patients [9]. Unlike in tissue 

cultures, mutations in HIV accessory genes significantly attenuated the replication and 

pathogenesis of HIV-1 in SCID-hu Thy/Liv mice [10,11]. The SCID-hu Thy/Liv mouse thus 

provides a relevant in vivo model to evaluate HIV-1 replication and pathogenicity in the 

human thymus.

Both indirect and direct mechanisms of thymocyte depletion have been implicated in HIV-1-

infected thymus organs [5,8,12]. High levels of MHC class I are induced on all immature 

thymocytes, but only a small fraction of them are directly infected by HIV-1 [13]. Apoptosis 

has been associated with HIV-1-induced T cell death both in vitro and in vivo [14,15]. In the 

Thy/Liv organ, thymocytes with condensed nuclei were detected in HIV-1-infected Thy/Liv 

organs by thin section light microscopy and by electron microscopy [5]. Biochemically, 

partial chromosomal loss [5] and DNA strand breaks [8] are associated with HIV-1-induced 

thymocyte depletion. Consistently, it has recently been reported that indirect mechanisms of 

thymocyte depletion are primarily involved in the thymus of SIV-infected monkeys [16]. In 

support of the direct lytic infection mechanism, thymocyte depletion may be achieved by a 

number of HIV-1-encoded factors with cytotoxic or cytostatic activities, as demonstrated in 

T cells in vitro. High viral loads during the early stages of HIV-1-induced thymocyte 

depletion in the SCID-hu Thy/Liv mouse have been proposed to lead to direct cytolytic 

infection and thymocyte depletion [12]. In addition, the intrathymic T progenitor cells can 

be directly infected and depleted to lead to thymocyte depletion by blocking T cell 

development [8].

The thymus microenvironment is essential for T cell development. Destruction of thymic 

epithelial cells and the induction of various cytokines have been reported in the human 

thymus and in the SCID-hu Thy/Liv mouse after HIV-1 infection [2,7,13,17]. This may 

impair T cell development and result in thymocyte depletion. Indeed, two recent reports 

[18,19] showed that hematopoietic progenitor cells in HIV-1-infected Thy/Liv organs are 

preferentially depleted or suppressed by indirect mechanisms, before thymocyte depletion. 

Destruction of the thymus organ by HIV-1 infection is probably caused by the induced 

expression of viral and host pathogenic factors. Identification of the host genes will help our 

understanding of HIV pathogenesis in the thymus. The complementary DNA microarray 
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assay [20,21] has recently been developed to analyse differential gene expression profiles at 

the genome level. Using the cDNA microarray assay and confirmed by reverse 

transcriptase–polymerase chain reaction (RT–PCR) or Western blot assays, we showed that 

HIV-1 infection of the thymus organ led to enhanced expression of a number of genes 

involved in the Stat1 signaling pathway. We demonstrated that HIV-1 infection led to 

activation of the signal transducer and activator of transcription (STAT)1 proteins. We 

further showed that incubation of human fetal thymus organ culture (HF-TOC) or 

thymocytes with recombinant HIV-1 gp120 led to the induction or activation of the STAT1 

protein.

Materials and methods

Reagents

Monoclonal antibodies reactive with human CD4 and CD8 cells were purchased from 

Becton Dickinson (San Jose, CA, USA). Anti-MHCI monoclonal antibody (mAb) W6/32 

was from Biodesign (Kennebunk, ME, USA). Polyclonal anti-STAT1, anti-P-STAT1-Ser 

(or Tyr) and anti-STAT2 antibodies were purchased from New England Biolabs (Beverly, 

MA, USA). The monoclonal anti-p91 (STAT1) antibody was from Santa Cruz Biotech 

(Santa Cruz, CA, USA). The HIV-1 isolates (JD and NL4-3) used in this study have been 

described previously [8,22]. JD used both CXCR4 and CCR5 and NL4-3 used exclusively 

CXCR4 as co-receptors for entry in vitro. SDF1α and IFNγ (R&D Systems, Minneapolis, 

MN, USA) were used as recommended. Recombinant gp120 proteins (from X4-tropic IIIB 

or R5-tropic BaL isolates) were kindly provided by W. Chen (GlaxoSmithKline, Research 

Triangle Park, NC, USA).

Infection of severe combined immunodeficient-hu Thy/Liv mice

Animal transplantation and HIV infection procedures of SCID-hu Thy/Liv mice have been 

described previously [8,22]. Briefly, SCID-hu Thy/Liv mice were infected with supernatant 

collected from phytohemaglutinin-activated peripheral blood mononuclear cells (PBMC) 

containing no HIV-1 (mock) or 4 × 104 to 105 IU/ml of HIV-1 (JD or NL4-3). The Thy/Liv 

organs were harvested at the times indicated and thymocyte sub-populations were analysed 

by FACS (CD4-PE, CD8-TC, MHCI-FITC), and cell-associated p24 production (pg/106 

thymocytes) was measured using a p24 enzymelinked immunosorbent assay kit [13].

HIV infection or treatment of human fetal thymus organ culture or thymocytes with 
recombinant HIV-1 gp120

The HF-TOC procedures were performed as described previously [8,22] with HIV-1 (JD) or 

100 ng/ml of recombinant HIV-1 gp120 (IIIB). The medium was changed daily with fresh 

gp120 proteins. After 5 days, IFNγ (500 IU/ml) was added to the HF-TOC for 2 days as 

positive controls. Thymocytes were harvested at 7 days post-infection for analyses. Human 

fetal thymocytes were incubated with recombinant HIV-1 gp120 (IIIB or BaL), at 5 or 50 

ng/ml for various times and harvested for Western blot analyses. IFNγ (200 IU/ml) or 

SDF1α (1 ng/ml) were used as controls.
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Western blot analysis

Western blot analysis was performed with total thymocyte cell extracts as described [13]. 

The anti-p91 (STAT1) mAb, anti-P-STAT1-Tyr, anti-P-STAT1-Ser and anti-STAT2 

polyclonal antibodies were used. Anti-tubulin mAb was used to monitor protein levels. Hela 

or 293T cells treated with IFNα or IFNγ (200 IU/ml) were used as positive controls for the 

antiphospho-Stat1 antibodies.

Reverse transcriptase polymerase chain reaction analysis

RT–PCR analysis was performed using the Ambion RT–PCR kit (Ambion, Inc., Austin, TX, 

USA). The following oligonucleotides were used: human Mx1, 

cagcttcagaaggccatgctgcagctcctg (up primer) and ggggag agctgcaaggtggagcgattctg (down 

primer); human Mx2, ggcgcgacacgcactctgtcaattctccagc (up) and ctgggatctgaaa 

gggaccggctcccagtcac (down); IP-10, ggaccacacagaggctg cctctcccatcac (up) and 

gggccccttgggaggatggcagtggaagtcc (down); and actin, atcatgtttgagaccttcaa (up) and catctc 

ttgctcgaagtcca (down). PCR reactions were run for 30 cycles of 94°C for 20 s, 60°C for 1 

min, and 72°C for 2 min. Similar results were observed with JD or NL4-3 infected samples.

Microarray assay

Total RNA from mock and HIV-infected (JD or NL4-3) Thy/Liv organs (12–14 dpi) was 

prepared using the TriReagent (Sigma, St Louis, MO, USA). Fluorescence-activated cell 

sorter analysis showed no significant thymocyte depletion in HIV-infected Thy/Liv organs 

in comparison with mock-infected samples, and HIV-infected Thy/Liv organs accumulated 

high levels of HIV-1 (p24). PolyA+ messenger RNA was isolated using the Fast-Track 2 kit 

(InvitroGene, Carlsbad, CA, USA). The cDNA microarray assay was carried as reported 

[20,21,23]. Isolated mRNA was reverse-transcribed with 5′ Cy3 (HIV) or Cy5 (mock) 

labeled random 9-mers (Operon Technologies, Inc., Alameda, CA, USA). Reactions were 

incubated for 2 h at 37°C with 200 ng polyA RNA, 200 units M-MLV reverse transcriptase 

(Life Technologies, Gaithersburg, MD, USA), 4 mM dithiothreitol, 1 unit RNase inhibitor 

(Ambion, Austin, TX, USA), 0.5 mM dinucleotide triphosphates, and 2 μg labeled 9-mers in 

25 μl volume with enzyme buffer supplied by the manufacturer. The reaction was terminated 

by incubation at 85°C for 5 min. The probe was hybridized to the array, which was scanned 

in both Cy3 and Cy5 channels using Axon GenePix scanners (Foster City, CA, USA) with a 

10 μm resolution. The signal was converted into 16 bits-per-pixel resolution, yielding a 65 

536 count dynamic range. Incyte GEMtools software (Incyte Pharmaceuticals, Inc., Palo 

Alto, CA, USA) was used for image analysis. The element signals were determined using a 

gridding and region detection algorithm. The area surrounding each element image was used 

to calculate a local background and was subtracted from the total element signal. 

Background subtracted element signals were used to calculate Cy3 : Cy5 (if Cy3 > Cy5, thus 

positive) or Cy5 : Cy3 (if Cy5 > Cy3, thus negative) ratios. The average of the resulting total 

Cy3 and Cy5 signal gives a ratio that is used to balance or normalize the signals. In three 

independent experiments (two with JD and one with NL4-3), HIV-infected Thy/Liv organs 

were compared with mock-infected Thy/Liv organs.

Miller et al. Page 4

AIDS. Author manuscript; available in PMC 2015 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Results

Although high levels of HIV-1 were present at 2 weeks post-infection with HIV-1 (JD or 

NL4-3), no significant thymocyte depletion was detected (eight and data not shown). In 

addition to the induction of MHC I [13], HIV-1 infection of the Thy/Liv organ at 2 weeks 

post-infection leads to the profound suppression of the hematopoietic stem-progenitor cell 

activity in the thymus organ via indirect mechanisms [18,19]. We reasoned that HIV 

infection in the thymus led to the induction of host factors or signaling pathways that 

contribute to HIV replication and pathogenesis. To identify such ‘pathogenic’ host factors or 

pathways, we employed the cDNA microarray assay [20,21] to analyse the expression of 

9183 host genes that were induced or suppressed by HIV infection in the thymus.

We designed our experiments as follows: to identify genes specifically induced or 

suppressed by HIV-1 infection with the cDNA microarray assay. First, the SCID-hu Thy/Liv 

model provided multiple Thy/Liv organs derived from the same donors in inbred mouse 

strains. No genetic variations thus existed between HIV and mock-infected samples in each 

experiment. Second, the 12 days post-infection timepoint was chosen because no significant 

thymocyte depletion was detected in HIV-infected Thy/Liv organs (eight and data not 

shown), so mRNA from the same cell types could be compared.

As a sensitivity control, known amounts of mRNA (2–2000 pg) from yeast-specific genes 

were mixed in the reactions with 200 ng sample RNA, and were hybridized with yeast 

cDNA on the array slide; 2 pg RNA were reproducibly detected. A linear increase in signals 

was detected from 2 to 2000 pg RNA. In addition, no signal spill-over was detected in wells 

adjacent to wells with high Cy3 or Cy5 signals (data not shown).

To demonstrate that different ratios of known RNA can be accurately quantitated, mRNA 

from different yeast-specific genes were added at indicated ratios to sample mRNA, labeled 

with Cy3 or Cy5, and hybridized on the cDNA arrays (Fig. 1a). A threefold difference 

(−threefold or +threefold) was consistently detected, and a linear correlation was observed 

from −25-fold (singlefold mRNA labeled with Cy3 and 25-fold mRNA with Cy5) to 25-fold 

(25-fold mRNA labeled with Cy3 and singlefold mRNA with Cy5) differences.

To monitor the quality of the HIV and mock mRNA samples, three human housekeeping 

genes (ribosomal S9, 23KDHBP, and α-tubulin) and three sets of human genes that are 

expressed in multiple tissues (complex targets) were arrayed in quadruplets (Fig. 1b). When 

the Cy3 (HIV)/Cy5 (mock) signals were analysed, the ribosomal S9 gene showed a −1.02 (± 

0.09) ratio, demonstrating 1.02-fold (almost identical levels) of S9 mRNA in mock-infected 

samples. The second control gene, 23KDHBP, showed a −1.1 (± 0.00) ratio. The α-tubulin 

gene showed a slight reduction in HIV-infected samples with a ratio of −1.75 (± 0.19). 

Three different sets of human genes (complex targets) showed − 1.3 to −1.5 (± 0.2) ratios. In 

addition, the common thymocyte marker genes such as Thy-1, CD8 and TCRβ showed 

similar ratios (−1.1, −1.2 and −1.1, respectively) between the two samples. The results 

indicated that mock and HIV-infected samples had generated high-quality RNA, and the 

major housekeeping genes were not altered by HIV infection. The microarray assay thus 

showed reproducible detection of 2 pg RNA and threefold or higher differential (induction 
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or suppression) expression. In three independent microarray assays with different donor 

tissues (two infected with JD and one with NL4-3), a similar number of genes were shown 

to be induced over 10-fold (0.04%), fivefold (0.08%) or 2.5-fold (0.37%, Fig. 1c) in HIV-

infected samples compared with either mock-infected samples.

When the data were analysed, 919 genes showed significant (> 1.5-fold) induction and 386 

genes showed greater than 1.5-fold suppression by HIV-1 infection (data not shown). When 

the genes with greater than threefold induction were analysed, 19 cDNA showed (threefold 

to 15.7-fold) induction by HIV infection (Table 1). Interestingly, 12 of the 19 induced genes 

encoded products involved in the IFN-Stat1 signaling pathway, similar to the IFN-regulated 

gene cluster recently reported [21]. For example, Mx1 and Mx2 genes, both IFN inducible, 

were induced 15.7-fold and fivefold, respectively. STAT1, IP-10, and MHCI (HLA) genes, 

which are implicated in or regulated by the IFN signaling pathway [24], were all induced by 

HIV infection. We confirmed the expression profiles of some of the induced genes by RT– 

PCR (Fig. 2a, Table 1 and data not shown).

Consistent with the microarray assay, the MHC class I mRNA and proteins have previously 

been shown to be induced by HIV-1 infection [1,13]. As the activation of STAT1 could lead 

to the induction of the IFN-regulated gene cluster [24], we performed Western blot assays to 

analyse STAT1 expression. Both the STAT1 and STAT2 proteins were induced by HIV 

infection (Fig. 2b). Stat1 requires phosphorylation to be active [24]. To analyde the 

activation state of Stat1, antibodies specific for the active form of STAT1 (P-Ser727 or P-

Tyr701) were used to detect phosphorylated STAT1 proteins in HIV-1-infected samples 

(Fig. 3). Both P-Ser727 and P-Tyr701 forms of Stat1 proteins were detected, suggesting that 

the STAT1 protein was also activated by HIV infection of the thymus.

Signaling through the HIV-1 co-receptor CXCR4 has recently been reported to activate 

STAT1 [25]. In addition, HIV-1 gp120 has been reported to induce CXCL10/IP-10 

expression by astrocytes in vivo and in vitro, independent of IFN [26]. It is thus possible that 

the HIV-1 env protein gp120, which interacts with CD4 cells and co-receptors CXCR4 or 

CCR5 [27], may contribute to the induction of STAT1 and the IFN-regulated gene cluster. 

To test this possibility, we treated HF-TOC with recombinant HIV-1 gp120 (IIIB) proteins 

(Fig. 4a). As in the SCID-hu Thy/Liv mouse, HIV-1 infection led to the induction and 

activation of STAT1. Treatment of HF-TOC with HIV-1 gp120 proteins also led to the 

induction and activation of STAT1. We also incubated human fetal thymocytes with the 

recombinant gp120 proteins (IIIB and BaL). Expression of total STAT1 proteins was 

induced in cultured thymocytes with or without recombinant gp120 (Fig. 4b). Nonetheless, 

the activation of STAT1 proteins by phosphorylation at Tyr701 was only detected in 

thymocytes cultured with gp120 (IIIB or BaL), IFNγ or SDF1. Therefore, HIV-1 gp120, via 

its interaction with its receptor (CD4) and co-receptors (CXCR4 or CCR5), may directly or 

indirectly contribute to the activation of the STAT1 signaling pathway.

Discussion

Destruction of the thymus organ by HIV-1 infection was probably caused by the induced 

expression of the host, as well as viral, pathogenic factors. Identification of the host factors 
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or pathways involved will help our understanding of HIV pathogenesis in the thymus. Using 

the cDNA microarray assay (20, 21 and Fig. 1) and confirmed by RT–PCR or Western blot 

assays (Fig. 2), we showed that HIV-1 infection of the thymus organ led to the induction of 

a number of genes involved in the Stat1 signaling pathway (Table 1). We demonstrated that 

HIV-1 infection led to the induction and activation of the STAT1 protein (Fig. 3). We 

further showed that the incubation of HF-TOC or thymocytes with recombinant HIV-1 

gp120 led to the induction and activation of the STAT1 protein (Fig. 4).

A recent microarray study with PBMC infected with HIV-1 [28] revealed the dysregulation 

of a number of human genes in response to HIV infection. However, no genes from the IFN-

regulated cluster were induced. This suggests that alteration of gene expression by HIV-1 in 

the thymus in vivo is different from that in activated PBMC in vitro. It has recently been 

reported that PBMC from HIV-infected patients or PBMC infected with HIV in vitro show 

increased activation of STAT1 and STAT5, although the level of total STAT proteins in 

PBMC is the same between HIV-positive and HIV-negative samples [29]. However, a 

different report [30] suggested that HIV-1 infection of PBMC in vitro or in vivo may reduce 

the expression of STAT5 and STAT1. Differences in sample treatment and experimental 

procedures may result in contradictory findings. Similar to PBMC isolated from HIV-

positive patients, the majority of thymocytes in the Thy/Liv organ at 2 weeks post-infection 

are not directly infected by HIV-1 [8,13], suggesting that indirect viral or host mediators are 

involved. The mechanism of HIV-1-induced STAT activation in the thymus and in PBMC 

in vivo may be similar, although thymocytes in vivo express very low levels of STAT1 (Fig. 

2, Fig. 3, Fig. 4).

The mechanism and significance of HIV-1-induced activation of STAT1 and the IFN-

regulated gene cluster in the thymus are not clear. When levels of cell-associated major 

IFNα, β or γ proteins in the Thy/Liv organ were analysed by ELISA, no significant 

induction was detected in HIV-infected SCID-hu Thy/Liv thymocytes (data not shown). 

And no supernatants were available in the Thy/Liv organ model. Using a human fetal 

thymus organ culture model, it was recently reported that IFNα production was induced, 

predominantly from type 2 predendritic cells in HIV-infected thymus organs [31]. It is 

possible, therefore, that HIV infection or gp120 activated type 2 predendritic cells to 

produce IFNα, which may activate the Stat1 pathway in thymocytes. The mRNA of IL-10, 

which has been reported to be induced in HIV-infected thymocytes and may contribute to 

MHC class I induction [13], was not significantly induced by the microarray assay (data not 

shown). As the expression of many cytokines is regulated at post-transcriptional levels, 

production of IL-10 protein may be regulated in HIV-infected thymus organs.

IFN-independent induction of ‘IFN-responsive’ RNA after human cytomegalovirus 

infection has previously been reported [32]. It is of interest that signaling through the HIV-1 

co-receptor CXCR4 by SDF1 leads to the activation of STAT1 [25]. In addition, the 

expression of gp120 in astrocytes in vivo and in vitro leads to IFN-independent induction of 

IP-10 [26]. It is not clear whether signaling via CCR5 can also activate Stat1. As a co-

receptor for HIV-1 entry, the interaction of CXCR4 or CCR5 with HIV-1 gp120 [27,33] 

may contribute to activation of the STAT1 pathway in human thymocytes (Fig. 4). In 

addition, peptides derived from HIV gp41 proteins have been shown to be structurally and 
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functionally similar to type I IFN [34]. It is thus possible that HIV-encoded proteins such as 

gp120 and gp41 may be involved in the induction of STAT1 and the IFN-regulated gene 

cluster.

The effect of Stat1 induction and activation in thymocytes on HIV replication is not clear. 

Interestingly, a recent report [35] indicated that Stat1 activation was involved in the 

suppression of HIV-1 gene expression mediated by CD8 T cell antiviral factors. The 

induction and activation of Stat1 may thus be a host cell response to resist infection. 

Activated STAT1 can also transduce signals affecting cell survival [36]. Thymocytes with 

elevated and activated STAT1 may become hypersensitive to IFN-like stimulation and to 

HIV-1 pathogenesis. In combination with other viral or host factors, Stat1 activation may 

contribute to thymocyte depletion. Further studies of HIV-1-induced activation of the 

STAT1 pathway in the thymus will help elucidate the mechanism of HIV-induced thymus 

destruction and define a novel target for modulating HIV pathogenesis.
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Fig. 1. Microarray assay of gene expression in HIV-1-infected Thy/Liv organs
(a) Quantitative measurement of differential gene expression. RNA from six different yeast-

specific genes was mixed with the HIV or mock-infected RNA samples in the microarray 

assay. RNA from each yeast gene was added at a known ratio (3, 10 or 25) in the Cy3 (HIV) 

or Cy5 (mock) sample (Cy3/Cy5 added). The six yeast genes were arrayed on the slides in 

quadruplets. Positive values indicate threefold, 10-fold or 25-fold more RNA were used in 

the Cy3 (HIV) sample. Negative values (−3, −10 or −25) indicate that threefold, 10-fold or 

25-fold more RNA were included in the Cy5 (mock) sample. An equal amount of RNA in 
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Cy3 and Cy5 samples is indicated as 1 (+1 or −1). The X axis shows the added ratios and the 

Y axis indicates Cy3/Cy5 readout data from the assay. Error bars indicate standard 

deviations. (b) RNA sample and reaction control. RNA samples from HIVJD (Cy3 labeled) 

or mock (Cy5 labeled) infected severe combined immunodeficient (SCID)-hu Thy/Liv mice 

were analysed using the microarray assay. Relative expression levels of 23 000 Mr highly 

basic protein (HBP), ribosomal subunit S9 (S9 rRNA) and α-tubulin were quantified in 

quadruplets. Three sets of human genes known to express in multiple tissues (complex target 

1–3) were also included as controls. Positive values (Cy3 signal/Cy5 signal) indicate more 

RNA in the Cy3 (HIV) sample, thus induction of expression by HIV. Negative values (Cy5 

signal/Cy3 signal) indicate more RNA in the Cy5 (mock) sample, thus suppressed 

expression by HIV. Error bars indicate standard deviations from the quadruplet arrays. The 

relative expression of three T cell markers (TCRβ, CD8 and Thy-1) from the microarray 

assay was also shown. Comparison of HIV (JD or NL4-3) and mock infected samples from 

different donor tissues showed similar results. (c) Alteration of gene expression in SCID-hu 

Thy/Liv mice after HIV-1 infection. A small number (< 0.2%) of genes were induced (> 

threefold) in HIV-1-infected Thy/Liv organs over mock infected samples. The majority of 

genes were in the +2.5 to −2.5 range (99.5%). Error bars indicate standard deviations from 

three experiments (two with JD and one with NL4-3) with different donor tissues.
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Fig. 2. Induction of the IFN-induced gene cluster and of the signal transducer and activator of 
transcription 1 protein in HIV-1-infected Thy/Liv organs
(a) Confirmation of gene induction by reverse trancriptase-polymerase chain reaction (RT-

PCR). Severe combined immunodeficient (SCID)-hu Thy/Liv mice infected with mock (−) 

or with HIV-JD (+) were harvested at 2 weeks post-infection. Total thymocyte RNA from 

mock or HIV-infected Thy/Liv organs were analysed by RT–PCR with primers specific for 

the selected genes. 1 × and 5 × indicate 25 ng and 125 ng of total RNA used in the RT–PCR 

reaction. Expression of actin was used to monitor cellular RNA. No significant thymocyte 

depletion was detected in mock or HIV-infected samples. Two independent experiments 

with different donor tissues were performed with similar results. (b) Induction of signal 

transducer and activator of transcription (STAT)1 and STAT2. SCID-hu Thy/Liv mice 

infected with mock (−) or with HIV-JD (+) were harvested at 2 weeks post-infection. Total 

thymocyte proteins (50 μg) from two representative mock or two HIV-infected Thy/Liv 

organs were analysed by Western blot with the anti-p91 (STAT1) monoclonal antibody or 

anti-STAT2 polyclonal antibody. Anti-β-tubulin antibody was used to monitor cellular 

proteins. No significant thymocyte depletion was detected in mock or HIV-infected samples. 

Four independent experiments (infected with JD or NL4-3) with different donor tissues were 

performed with similar results.
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Fig. 3. Activation of the signal transducer and activator of transcription 1 protein in HIV-1-
infected Thy/Liv organs
Total thymocyte proteins were blotted with polyclonal anti-signal transducer and activator of 

transcription (STAT)1 (p84/p91) antibody or with antibodies specifically reactive with 

STAT1 phosphorylated at Ser727 (pSTAT1-Ser) or Tyr701 (pSTAT1-Tyr). Anti-pSTAT1 

(Y701) detects both forms of phospho-STAT1 (p91 and p84) and anti-pSTAT1 (Ser727) is 

specific to phospho-STAT1-p91. Two representative mock or HIV-(JD)-infected Thy/Liv 

samples were presented. Proteins from IFNα–treated Hela or IFNγ–treated 293T cells were 

used as positive control for the anti-P-STAT1 (Y701) antibody. Three independent 

experiments (infected with JD or NL4-3) with different donor tissues were performed with 

similar results.
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Fig. 4. Activation of signal transducer and activator of transcription 1 in human fetal thymus 
organ culture or thymocytes by HIV infection or recombinant HIV-1 gp120
(a) Induction and activation of signal transducer and activator of transcription (STAT)1 in 

human fetal thymus organ culture (HF-TOC) by HIV-1 infection and recombinant gp120. 

HF-TOC infected with mock (M) or HIV-JD, or treated with recombinant gp120 (IIIB, 100 

ng/ml) or IFNγ were analysed for STAT1 protein expression (STAT1 p84/p91) and 

activation (pSTAT1Y701) as described above. NL4-3 infection also led to STAT1 activation 

(not shown). (b) Activation of STAT1 in human thymocytes by recombinant gp120. Human 

fetal thymocytes were cultured with medium (mock), with 5 ng/ml (lanes 1) or 50 ng/ml 

(lanes 2) of recombinant HIV-1 gp120 (IIIB or BaL) preparation. Thymocytes were 

harvested at 12 h (o/n) post culture and analysed for total STAT1 proteins (p84/p91) and 

Tyr701 phosphorylated STAT1 (Y701). Human thymocytes treated with IFNγ or SDF1α 

were used as controls.
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