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Summary

Genome-Wide Association studies (GWAS) offer an unbiased means to understand the genetic
basis of traits by identifying single nucleotide polymorphisms (SNPs) linked to causal variants of
complex phenotypes. GWAS have identified a host of susceptibility SNPs associated with many
important human diseases, including diseases associated with aging. In an effort to understand the
genetics of broad resistance to age-associated diseases (i.e. ‘wellness’), we performed a meta-
analysis of human GWAS. Toward that end, we compiled 372 GWAS that identified 1,775
susceptibility SNPs to 105 unique diseases and used these SNPs to create a genomic landscape of
disease susceptibility. This map was constructed by partitioning the genome into 200 kb ‘bins’ and
mapping the 1,775 susceptibility SNPs to bins based on their genomic location. Investigation of
these data revealed significant heterogeneity of disease association within the genome, with 92%
of bins devoid of disease-associated SNPs. In contrast, 10 bins (0.06%) were significantly
(p<0.05) enriched for susceptibility to multiple diseases, 5 of which formed two highly significant
peaks of disease association (p<0.0001). These peaks mapped to the Major Histocompatibility
(MHC) locus on 6p21 and the INK4/ARF (CDKNZ2a/b) tumor suppressor locus on 9p21.3.
Provocatively, all 10 significantly enriched bins contained genes linked to either inflammation or
cellular senescence pathways, and SNPs near regulators of senescence were particularly associated
with disease of aging (e.g. cancer, atherosclerosis, type 2 diabetes, glaucoma). This analysis
suggests that germline genetic heterogeneity in the regulation of immunity and cellular senescence
influences the human health span.
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A central tenet of gerontology is that common pathogenic mechanisms cause age-related
phenotypes in disparate organs and tissues. For example, telomere dysfunction in the liver,
bone marrow, and lung has been linked to age-associated, tissue-specific diseases such as
cirrhosis, aplastic anemia and pulmonary fibrosis, respectively (Armanios 2011). Several
broad pathways have been suggested as candidate global modifiers of human aging
including sirtuins, insulin/IGF-1, ROS metabolism, inflammation, and cellular senescence.
A prediction of the notion that common pathogenic pathways contribute to aging of distinct
tissues is that there should be genes whose expression modulates these pathways, and
heterogeneous expression of such genes within a population should be associated with
multiple, seemingly distinct tissue-specific diseases.

High density single nucleotide polymorphism (SNP) arrays have provided population
geneticists a high throughput method for identifying polymorphisms associated with the
onset of complex phenotypes (e.g. physiological traits and/or markers, congenital
abnormalities, and disease susceptibility/resistances). Large scale, population based studies
that utilize SNP arrays to gain insights into gene(s) that may promote/cause a complex
phenotype consist of Candidate Gene Association Studies (CGAS) and Genome Wide
Association Studies (GWAS). The key difference between these two epidemiological study
methods are that CGAS take a hypothesis driven approach whereas GWAS are performed in
a non-biased manner (see review by (Jorgensen et al. 2009) for more detailed discussion of
advantages/disadvantages of these methodologies). Moreover, modern pedigree studies
(linkage analyses) can be performed using SNP arrays to perform genome-wide searches to
identify variants associated with complex diseases, such as Alzheimer’s disease (Zuchner et
al. 2008), but variants identified from such efforts may be limited to small numbers of actual
cases (i.e. individual families).

GWAS have been successfully employed to identify common polymorphic variations that
contribute to several complex phenotypes. The value of GWAS are underscored by the
ready identification of risk alleles that have been replicated in independent populations,
which have identified both novel and known modulators of disease pathogenesis, as well as
revealed new therapeutic targets (Altshuler ef a/. 2008). Moreover, the National Human
Genome Research Institute (NHGRI) maintains a catalog of published GWAS that currently
houses ~1000 studies which have identified >4,500 SNPs to >500 phenotypes (Hindorff et
al. 2011). In an effort to understand what GWAS tell us about disease of human aging, we
performed a meta-analysis of the NHGRI GWAS catalog. In particular, we used this
resource to ask in an unbiased, genome-wide manner if there are ‘hotspot’ loci associated
with multiple disease susceptibility/resistance phenotypes. Toward that end, we filtered this
NHGRI dataset to only include studies that focused on clinically relevant human diseases.
To better visualize chromosomal loci and candidate genes associated with multiple, distinct
human diseases; especially age-associated diseases, we summed the frequency of disease
associated SNPs in 200 kb bins spanning the whole genome. While clearly ‘age-related
disease’ is not the same thing as “aging’, we elected to focus this analysis on disease
susceptibility given the tractability of many well-delineated diseases to GWAS, as opposed
to the mixed results obtained for less discrete endpoints (e.g. longevity, frailty, etc). We
believe this approach is still of interest to gerontologists given that freedom from disease
(wellness) is an essential determinant of health span.
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In order to compile and filter GWAS that identified SNPs specific to human disease
resistance/susceptibility, the complete 6/29/11 release of the NHGRI GWAS database was
downloaded from the NHGRI GWAS website (Hindorff ef a/. 2011). This release contained
932 published GWAS that identified 4,558 SNPs in 511 phenotypes, with each SNP
achieving a combined p-value of < 1.0 * 107°. Studies included in the catalog are also
required to include at least 100,000 SNPs to permit a truly genome-wide analysis. Our
analysis did not distinguish between ‘susceptibility” SNPs and “protective’ SNPs, as each
‘susceptibility” allele implies an alternative ‘protective’ allele at the same location. This
dataset was filtered to exclude small GWAS (< 300 cases) as well as those that investigated
non-disease traits, congenital deformities, and medical conditions of limited morbidity (e.g.
restless leg syndrome). In rare instances (n=14) where disease vs. non-disease classification
of a GWAS was not obvious, classification was performed with blinding to GWAS results
(see supplemental Table 1 and Table 2 for included and excluded “diseases”). The inclusion/
exclusion of these borderline conditions did not affect the analysis’ conclusions. The filtered
GWAS dataset consisted of 372 studies that identified 1,775 SNPs associated with
susceptibility/resistance to 105 unique human diseases. The total number of patients from
these 372 studies totaled more than 2.3 million individuals from diverse ethnic backgrounds.

This dataset was then used to construct the genome-wide disease susceptibility map (Figure
1). The hg19 release of the human genome was divided into 15,157 bins with each bin
containing 200 kb of genomic sequence (see supplemental Table 3 for genomic coordinates
and hits associated with each bin). The analysis was also not sensitive to choice of bin size.
SNPs from the filtered GWAS dataset were mapped to the binned genome with redundant
hits of the same disease to the same bin counted as a single hit. As an example of this, when
GWAS SNPs mapped to the same bin of a disease that encompassed more specific disease
states within it (e.g. inflammatory bowel disease (IBD), Crohn’s disease, and ulcerative
colitis), it was counted as a single disease hit for that bin. Alternatively, if only specific
forms of IBD mapped to the same bin, they were counted as individual disease hits for that
bin. This approach allowed studies that identified distinct effects on disease subtypes to be
included, without over representing studies focused on identifying SNPs associated with
disease categories. Distinguishing disease subtypes (i.e. IBD) had minimal impact on our
findings, and only shifted one locus, 17g12, above the significance threshold. The number of
unique disease associations per bin was then graphed versus chromosomal location in a
‘Manhattan plot” (Figure 1) and a 10,000 iteration permutation analysis was performed on
the mapped SNPs to estimate statistical significance.

We elected to use a permutation test to estimate statistical significance, as this approach
accounts for variation in the number of SNPs tested, our method of counting diseases in
shared categories, and multiple comparisons of assessing each bin for significance.
Permutation testing is the gold standard for determining significance, provided that it is
computationally tractable (Johnson et a/. 2010). In each iteration of this test, all SNPs were
randomly and independently assigned to the 15,157 bins that represent the whole genome,
and the bin with the maximum number of randomly assigned SNPs was identified. Bins
containing more than four unique disease-associated SNPs occurred in less than 5% (i.e.
p<0.05) of the 10,000 iterations performed, setting this as our threshold for significance
(indicated by a dashed line on figure 1). Although it is possible that not all of the 15,000+
bins are assayed equally well by GWAS, the inclusion criterion of the NHGRI requiring at
least 100,000 mapping SNPs indicates that the large majority of the genome is covered in
these analyses, and the major conclusions of the study remain significant even if the
permutation analysis is restricted to a small fraction of the genome.

This analysis revealed substantial heterogeneity in the human genome with regard to disease
susceptibility. The majority of bins (13,900 of 15,157; 92%) did not contain any disease-
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associated SNPs. In contrast, only ten bins (2 Mb or 0.06% of the genome) showed
statistically significant enrichment (p<0.05) for disease association, with two strong ‘peaks’
(p<0.0001) of multi-disease association. The largest peak spanned four neighboring bins
(800 kb) that contain the gene-rich MHC locus on chromosome 6p21 (Figure 1). SNPs in
this bin were linked to 24 unique diseases, most of which were autoimmune in nature (e.g.
asthma, inflammatory bowel disease, lupus, Hodgkins Disease, Table 1), and not classical
disease of aging. This finding confirms the well-established pathogenic role of MHC
polymorphisms in the development of diverse autoimmune diseases (Fernando et a/. 2008;
Rioux et al. 2009). Therefore, while the association of the MHC locus with autoimmune
diseases is not surprising, this finding serves as a positive control for the analysis.

The second highest disease susceptibility association peak mapped to a gene-poor bin on
chromosome 9p21.3. This bin contains only four transcripts emanating from the /INK4/ARF
(or CDKNZa/b) locus, which harbors three related protein-encoding transcripts (p15/NK4b,
p16!NK4a n14ARF) a5 well as a long non-coding RNA (ANR/L) that is anti-sense to
p15!NK4b The /NK4/ARFlocus is a key mediator of cellular senescence which inhibits cell
cycle progression from Gq to S phase in response to various forms of cellular stress
(Sharpless & DePinho 2007). The 9p21.3 bin was linked to 10 unique diseases, almost all of
which are age-associated: cancers (e.g. breast, glioblastoma), type 2 diabetes mellitus
(T2DM), glaucoma and several atherosclerotic diseases (e.g. stroke, aortic aneurysm,
myocardial infarction) (Table 1). It is worth noting the considerable size of these two peaks:
the 6p21 and 9p21.3 disease susceptibility hotspots represent 0.03% of the genome, but
combined were associated with nearly a third (34 of 105) of the unique diseases analyzed by
GWAS.

The remaining five bins (1p31.3, 2p16.1, 5p15.33, 7932.1, 17q12) that were significantly
enriched for disease-associations (p<0.05) were also directly linked to either immunity/
inflammation or cellular senescence pathways. The 1p31 and 2p16 bins contain IL23R and
REL respectively, which modulate immunity and lymphocyte biology, and these bins were
predominantly associated with autoimmune disease (Table 1). The 5p15.33 bin includes
TERT, a critical subunit of telomerase, which is associated with cellular senescence by
modulating telomere length (Martinez & Blasco 2011). Disease susceptibilities mapping to
the 5p15.33 bhin were mainly comprised of cancers, consistent with the association between
telomere length and cancer susceptibility (Table 1) (Hills & Lansdorp 2009; Willeit et al.
2010). The 5p15.33 bin was also associated with idiopathic pulmonary fibrosis (IPF),
consistent with the finding of increased IPF in patients with congenital telomerase
deficiency (Armanios et al. 2007; Tsakiri et al. 2007). Candidate genes in the 7q32 and
17912 bins are less obvious, but these loci were also solely associated with autoimmune or
inflammatory diseases (Table 1), suggesting these bins harbor modulators of the immune
response. In general, the 5 loci associated with immunity and inflammation were mostly
associated with autoimmune diseases (e.g. TIDM, asthma, IBD, Hodgkins disease) and
were not as strongly linked to age-associated diseases as the two bins associated with
senescence (i.e. cancers, atherosclerosis, T2DM, glaucoma, pulmonary fibrosis).

Although the finding that all loci associated with broad disease resistance appeared related
to effects on immunity or senescence, there are limitations to this analysis. First, cis-
regulatory elements can act over a large genomic scale (e.g. several Mb’s); for example,
9p21.3 variants have been suggested to influence expression both of the nearby tumor
suppressor proteins of the /INK4a/ARF locus, as well as /FNa-21, a more distant (~1 Mb)
regulator of inflammation (Liu ef a/. 2009; Harismendy et a/. 2011). Likewise, another gene
in the 5p15.33 bin, CLPTM1L, has also been postulated to contribute to cancer progression
(McKay et al. 2008). Therefore, the true causal variant located near GWAS-identified SNPs
may influence expression of one or more local transcripts, some or all of which may not be
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located in the same bin. Moreover, an ascertainment bias exists in that certain well-
demarcated disease states (e.g. autoimmune diseases) appear more tractable to GWAS than
less clinically distinct entities (e.g. community acquired pneumonia). Therefore, not all
morbid conditions of aging are tractable to GWAS.

Importantly, the prevalence and morbidity of each disease was not weighted in this study.
For example, scleroderma (rare) and myocardial infarction (common) were each counted as
a single, unique disease per genomic bin, despite differing greatly in their total contribution
to human morbidity. Additionally, this analysis does not account for SNP prevalence or
scale of their effect. Future work could incorporate these factors to estimate the multi-
disease population attributable risk associated with certain SNP genotypes. As a result of
these limitations, this analysis may overestimate the importance of the MHC locus, which is
strongly associated with several rare diseases. By contrast it may underestimate the
relevance of the 9p21.3 bin, which is associated with common, highly morbid diseases
(Table 1).

Although the association of senescence regulators such as 7ERT and p16/VK4a with cancer
and the MHC locus with autoimmunity is not surprising, the finding that all identified
hotspots of recurrent disease association map to bins linked to either inflammation/immunity
or cellular senescence is striking. The diversity of age-related diseases associated with the
9p21.3 bin is particularly remarkable (Figure 2). Of the four principal causes of age-related
morbidity (neoplasia, metabolic disease, atherosclerosis and neurodegeneration), three are
recurrently associated with polymorphisms mapping near the /INK4/ARF locus by GWAS
(Figure 2). Recently, even the outlier, neurodegenerative disease, has been linked to this
locus based on a genome-wide pedigree study of late onset Alzheimer’s disease (Zuchner et
al. 2008). While it remains unclear how modulating senescence may contribute to some
diseases in the 9p21.3 bin, this finding is consistent with several recent murine studies
showing an effect of modulating p16'NK4a expression /7 vivo on many non-malignant, age-
associated phenotypes including T2DM, atherosclerosis, T-cell function, cataracts, and
sarcopenia (Krishnamurthy et al. 2006; Baker et al. 2011; Chen et al. 2011; Kuo et al. 2011;
Liu et al. 2011).

It is also worth noting what was not associated with broad disease susceptibility: conserved
pathways that modulate longevity in model organisms (e.g. Insulin/IGF-1 signaling, mTOR
signaling, reactive oxygen species signaling, Sirtuins, etc). It is possible that regulation of
these pathways is not variable among human populations or that these pathways do not
modulate general disease resistance in humans, but we think more likely this observation
reflects a lack of power of the GWAS meta-analysis approach. Accordingly, SNPs near
IGF1R, FOXO3A, and AKT1 have been associated with longevity in candidate studies and
pedigree analyses (Suh et al. 2008; Pawlikowska et al. 2009; Sebastiani et al. 2012),
suggesting an association of these loci with age-associated conditions may emerge in
genome-wide analyses with further study. Nonetheless, this unbiased meta-analysis of
results from ~2.3 million patients only identifies polymorphic regulation of cellular
senescence and immunity as general determinants of genetic susceptibility to a host of
human diseases, with in particular a striking association of senescence with age-associated
disease. These genetic data support the therapeutic targeting of these specific pathways to
promote broad disease resistance and augment the human health span.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Aging Cell. Author manuscript; available in PMC 2013 October 01.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Jeck et al.

Page 6

Acknowledgments

This work was supported by grants from the Burroughs Wellcome Foundation and the NIA.

References

Altshuler D, Daly MJ, Lander ES. Genetic mapping in human disease. Science. 2008; 322:881-888.
[PubMed: 18988837]

Armanios M. Telomerase and idiopathic pulmonary fibrosis. Mutation research. 2011

Armanios MY, Chen JJ, Cogan JD, Alder JK, Ingersoll RG, Markin C, Lawson WE, Xie M, Vulto I,
Phillips JA 3rd, Lansdorp PM, Greider CW, Loyd JE. Telomerase mutations in families with
idiopathic pulmonary fibrosis. The New England journal of medicine. 2007; 356:1317-1326.
[PubMed: 17392301]

Baker DJ, Wijshake T, Tchkonia T, Lebrasseur NK, Childs BG, van de Sluis B, Kirkland JL, van
Deursen JM. Clearance of p16(Ink4a)-positive senescent cells delays ageing-associated disorders.
Nature. 2011

Chen H, Gu X, Liu Y, Wang J, Wirt SE, Bottino R, Schorle H, Sage J, Kim SK. PDGF signalling
controls age-dependent proliferation in pancreatic beta-cells. Nature. 2011; 478:349-355. [PubMed:
21993628]

Fernando MM, Stevens CR, Walsh EC, De Jager PL, Goyette P, Plenge RM, Vyse TJ, Rioux JD.
Defining the role of the MHC in autoimmunity: a review and pooled analysis. PLoS Genet. 2008;
4:€1000024. [PubMed: 18437207]

Harismendy O, Notani D, Song X, Rahim NG, Tanasa B, Heintzman N, Ren B, Fu XD, Topol EJ,
Rosenfeld MG, Frazer KA. 9p21 DNA variants associated with coronary artery disease impair
interferon-gamma signalling response. Nature. 2011; 470:264-268. [PubMed: 21307941]

Hills M, Lansdorp PM. Short telomeres resulting from heritable mutations in the telomerase reverse
transcriptase gene predispose for a variety of malignancies. Annals of the New York Academy of
Sciences. 2009; 1176:178-190. [PubMed: 19796246]

Hindorff, LA.; Junkins, HA.; Hall, PN.; Mehta, JP.; Manolio, TA. A Catalog of Published Genome-
Wide Association Studies. 2011.

Johnson RC, Nelson GW, Troyer JL, Lautenberger JA, Kessing BD, Winkler CA, O’Brien SJ.
Accounting for multiple comparisons in a genome-wide association study (GWAS). BMC
genomics. 2010; 11:724. [PubMed: 21176216]

Jorgensen TJ, Ruczinski I, Kessing B, Smith MW, Shugart Y'Y, Alberg AJ. Hypothesis-driven
candidate gene association studies: practical design and analytical considerations. American
journal of epidemiology. 2009; 170:986-993. [PubMed: 19762372]

Krishnamurthy J, Ramsey MR, Ligon KL, Torrice C, Koh A, Bonner-Weir S, Sharpless NE.
p1l6INK4a induces an age-dependent decline in islet regenerative potential. Nature. 2006;
443:453-457. [PubMed: 16957737]

Kuo CL, Murphy AJ, Sayers S, Li R, Yvan-Charvet L, Davis JZ, Krishnamurthy J, Liu Y, Puig O,
Sharpless NE, Tall AR, Welch CL. Cdkn2a Is an Atherosclerosis Modifier Locus That Regulates
Monocyte/Macrophage Proliferation. Arteriosclerosis, thrombosis, and vascular biology. 2011

Liu Y, Johnson SM, Fedoriw Y, Rogers AB, Yuan H, Krishnamurthy J, Sharpless NE. Expression of
p16(INK4a) prevents cancer and promotes aging in lymphocytes. Blood. 2011; 117:3257-3267.
[PubMed: 21245485]

Liu Y, Sanoff HK, Cho H, Burd CE, Torrice C, Mohlke KL, lbrahim JG, Thomas NE, Sharpless NE.
INK4/ARF transcript expression is associated with chromosome 9p21 variants linked to
atherosclerosis. PLoS One. 2009; 4:e5027. [PubMed: 19343170]

Martinez P, Blasco MA. Telomeric and extra-telomeric roles for telomerase and the telomere-binding
proteins. Nature reviews. Cancer. 2011; 11:161-176.

McKay JD, Hung RJ, Gaborieau V, Boffetta P, Chabrier A, Byrnes G, Zaridze D, Mukeria A,
Szeszenia-Dabrowska N, Lissowska J, Rudnai P, Fabianova E, Mates D, Bencko V, Foretova L,
Janout V, McLaughlin J, Shepherd F, Montpetit A, Narod S, Krokan HE, Skorpen F, Elvestad
MB, Vatten L, Njolstad I, Axelsson T, Chen C, Goodman G, Barnett M, Loomis MM, Lubinski J,

Aging Cell. Author manuscript; available in PMC 2013 October 01.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Jeck et al.

Page 7

Matyjasik J, Lener M, Oszutowska D, Field J, Liloglou T, Xinarianos G, Cassidy A, Vineis P,
Clavel-Chapelon F, Palli D, Tumino R, Krogh V, Panico S, Gonzalez CA, Ramon Quiros J,
Martinez C, Navarro C, Ardanaz E, Larranaga N, Kham KT, Key T, Bueno-de-Mesquita HB,
Peeters PH, Trichopoulou A, Linseisen J, Boeing H, Hallmans G, Overvad K, Tjonneland A,
Kumle M, Riboli E, Zelenika D, Boland A, Delepine M, Foglio M, Lechner D, Matsuda F,
Blanche H, Gut I, Heath S, Lathrop M, Brennan P. Lung cancer susceptibility locus at 5p15.33.
Nat Genet. 2008; 40:1404-1406. [PubMed: 18978790]

Pawlikowska L, Hu D, Huntsman S, Sung A, Chu C, Chen J, Joyner AH, Schork NJ, Hsueh WC,
Reiner AP, Psaty BM, Atzmon G, Barzilai N, Cummings SR, Browner WS, Kwok PY, Ziv E.
Association of common genetic variation in the insulin/IGF1 signaling pathway with human
longevity. Aging Cell. 2009; 8:460-472. [PubMed: 19489743]

Rioux JD, Goyette P, Vyse TJ, Hammarstrom L, Fernando MM, Green T, De Jager PL, Foisy S, Wang
J, de Bakker PI, Leslie S, McVean G, Padyukov L, Alfredsson L, Annese V, Hafler DA, Pan-
Hammarstrom Q, Matell R, Sawcer SJ, Compston AD, Cree BA, Mirel DB, Daly MJ, Behrens
TW, Klareskog L, Gregersen PK, Oksenberg JR, Hauser SL. Mapping of multiple susceptibility
variants within the MHC region for 7 immune-mediated diseases. Proc Natl Acad Sci U S A.
2009; 106:18680-18685. [PubMed: 19846760]

Sebastiani P, Solovieff N, Sun JX. Naive Bayesian Classifier and Genetic Risk Score for Genetic Risk
Prediction of a Categorical Trait: Not so Different after all! Frontiers in genetics. 2012; 3:26.
[PubMed: 22393331]

Sharpless NE, DePinho RA. How stem cells age and why this makes us grow old. Nature reviews.
Molecular cell biology. 2007; 8:703-713.

Suh 'Y, Atzmon G, Cho MO, Hwang D, Liu B, Leahy DJ, Barzilai N, Cohen P. Functionally
significant insulin-like growth factor | receptor mutations in centenarians. Proc Natl Acad Sci U S
A. 2008; 105:3438-3442. [PubMed: 18316725]

Tsakiri KD, Cronkhite JT, Kuan PJ, Xing C, Raghu G, Weissler JC, Rosenblatt RL, Shay JW, Garcia
CK. Adult-onset pulmonary fibrosis caused by mutations in telomerase. Proc Natl Acad Sci U S A.
2007; 104:7552-7557. [PubMed: 17460043]

Willeit P, Willeit J, Mayr A, Weger S, Oberhollenzer F, Brandstatter A, Kronenberg F, Kiechl S.
Telomere length and risk of incident cancer and cancer mortality. JAMA: the journal of the
American Medical Association. 2010; 304:69-75. [PubMed: 20606151]

Zuchner S, Gilbert JR, Martin ER, Leon-Guerrero CR, Xu PT, Browning C, Bronson PG, Whitehead
P, Schmechel DE, Haines JL, Pericak-Vance MA. Linkage and association study of late-onset
Alzheimer disease families linked to 9p21.3. Annals of human genetics. 2008; 72:725-731.
[PubMed: 18761660]

Aging Cell. Author manuscript; available in PMC 2013 October 01.



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuei\ Joyiny Vd-HIN

Jeck et al.

Number of Diseases Associated

Page 8
184
161 6p21 — MHC Locus
144
12+ 9p21 — INK4/ARF Locus
104 O
g
6
4
2] @t e ais cmm o e @ 4 s e s me sm seie B e meEme ma s mmem et s ee e
N JR— - p— S —
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19202122 X

Chromosome

Figure 1. The genetic landscape of human disease

Manhattan plot depicting the number of unique human diseases per bin linked to disease
susceptibility SNPs identified by GWAS. Each point represents a 200kb bin ordered by
chromosomal location. The dotted line represents the cutoff for statistical significance as
determined by a 10,000 iteration permutation test (p<0.05). The two highest peaks of disease
association (p<0.0001) are circled.
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Figure 2. The INK4/ARF Locusisa Genomic Hotspot for Age-Associated Disease Susceptibility
The primary transcripts within the human /NK4/ARF locus including the long non-coding
RNA, ANRIL, are depicted relative to chromosome 9. Disease susceptibility SNPs
identified by GWAS that mapped to the /INK4/ARF locus are represented by color coded
circles above the genomic ruler. Susceptibility SNPs displayed below the ruler were
identified by non-GWAS association studies such as genome-wide pedigree studies. Each
color represents a specific human disease which is described in the SNP color key. Clusters
of susceptibility SNPs associated to a specific disease are marked by large color coded
ovals. Abbreviations: ASVD = Atherosclerotic vascular diseases and T2DM = Type 2
Diabetes Mellitus.
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Table 1

Chromosomalloci of significantly enriched (“hotspot’) bins.

Page 10

Chromosome Region | # Unique Diseases/Bin | Candidate Gene(s) Associated Disease Susceptibilities

1p31.3 5 IL23R Immune: 1IBDA (XZ)B, Behcet’s disease, Psoriasis,
Anklyosing spondylitis

2p16.1 5 REL Immune: IBD, RA C Psoriasis, Celiac Disease,
Hodgkin’s Lymphoma

5p15.33 5 TERT Senescence: Cancers (x5), Idiopathic pulmonary fibrosis

6p21 26 across four bins MHC, NOTCH4 Immune: Arthritis (x4), IBD (x2), Cancer (x5), Lupus,
MSD, Scleroderma, Celiac disease, T1DME, Asthma,
Primary biliary cirrhosis, Psoriasis

7932.1 5 IRFS, TNPO3 Immune: SLEF, IBD, RA, Primary biliary cirrhosis,
Scleroderma

9p21.3 10 PL5INKAD, 1 §INKAa, p] 4ARF, Senescence: MIG, stroke, T2DM/?, Glaucoma, Aortic

ANRIL aneurysm, Intracranial aneurysm, Cancers (x3),

Endometriosis

17912 5 IKZF3, GSDMA, GSDMB Immune: IBD (x2), Asthma, RA, TIDM

A
Inflammatory Bowel Syndrome.

Numbers in parenthesis represent unique number of specific diseases within that disease family.

CRheumatoid Arthritis.
DMuItipIe sclerosis,

EType 1 Diabetes mellitus.

F, .
Systemic Lupus Erythematosus.

GMyocardiaI Infarction,

H. . .
Type 2 Diabetes mellitus.
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