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Abstract
This work is the eighth in a series that develops the fundamental aspects of the thermodynamically
constrained averaging theory (TCAT) that allows for a systematic increase in the scale at which
multiphase transport phenomena is modeled in porous medium systems. In these systems, the
explicit locations of interfaces between phases and common curves, where three or more interfaces
meet, are not considered at scales above the microscale. Rather, the densities of these quantities
arise as areas per volume or length per volume. Modeling of the dynamics of these measures is an
important challenge for robust models of flow and transport phenomena in porous medium
systems, as the extent of these regions can have important implications for mass, momentum, and
energy transport between and among phases, and formulation of a capillary pressure relation with
minimal hysteresis. These densities do not exist at the microscale, where the interfaces and
common curves correspond to particular locations. Therefore, it is necessary for a well-developed
macroscale theory to provide evolution equations that describe the dynamics of interface and
common curve densities. Here we point out the challenges and pitfalls in producing such evolution
equations, develop a set of such equations based on averaging theorems, and identify the terms
that require particular attention in experimental and computational efforts to parameterize the
equations. We use the evolution equations developed to specify a closed two-fluid-phase flow
model.
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1 Introduction
The thermodynamically constrained averaging theory (TCAT) has been introduced in a
series of manuscripts as a set of mathematical tools for rigorously increasing the scale at
which a problem of interest is considered. Emphasis has been on porous medium systems.
The method begins with a set of equations formulated at the microscale (i.e., a continuum
scale at which all phase boundaries are explicitly defined); and then makes use of averaging
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and integration theorems to increase the scale to one suitable for analysis of the problem at a
larger scale of interest. Most of the attention has been focused on the macroscale in which
the porous medium system may be considered as composed of overlapping continua, but
integration to the megascale, or system scale, has also been considered [28]. The equations
that are averaged are mass, momentum, and energy conservation laws, entropy balances, and
thermodynamic descriptions appropriate for the volumes of the phases, the interfaces
between phases, the common curves where three phases meet, and common points where
four or more phases may come together. These different region types are collectively
referred to as entities. The equations for the interface and common curve entities are not just
the jump conditions that are often applied at these locations, but are full dynamic
conservation equations. Because integration is performed to increase the scale at which the
problem is considered, well-defined relations between microscale and larger-scale variables
are obtained, which make the resultant equations amenable to analysis and parameterization
based on small-scale physical and computational experiments.

Previous papers in the series have provided the background and overview of the method
[25], available and additional averaging theorems employed in TCAT [53], application to
flow [26] and transport [27,54] in single-fluid-phase systems, development of flow
equations for two-fluid-phase flow [39], and derivation of system-scale, or megascale,
equations for single-fluid-phase systems [28]. It is widely recognized that the distribution of
the phases in these porous medium systems is of significance in describing the system
properties and behavior. In many cases, the solid phase can be considered to be relatively
immobile, which simplifies the problem in that the solid deformation and movement is
accounted for by storage coefficients and the effective stress. When two or more fluid
phases are present, the movement of the interfaces between the fluids and the spreading of
fluids over the solid surface are dynamic features of the system that impact behavior and
complicate the modeling process.

In the century and a half in which efforts have been made to model porous medium flow
problems, the issue of redistribution of fluid phases has been largely confined to
determination of the fluid saturations, the fraction of pore space occupied by each fluid. In
part this situation is due to the fact that fluid saturations can be measured relatively easily,
while more esoteric quantities such as interfacial areas between phases per volume, common
curve length per volume, and fraction of the solid surface in contact with a particular fluid
phase are more difficult to observe than fluid saturations. The experimental deficits have led
to both expanding efforts to obtain information about the details of fluid and solid
distributions within porous medium systems and the inclination to formulate theories that do
not rely on this information. The former approach has provided possibilities for improved
physical understanding and improved models; the latter approach has encouraged stagnation
of thought and acceptance of the inadequacies of current understanding.

Recently, photon attenuation and nuclear magnetic resonance imaging methods have
emerged as primary tools to observe microscale systems [12,13,18,32,40,44,76,83]. In
particular, leading porous medium experimental groups are routinely using high-flux photon
sources from a synchrotron beam line to rapidly image porous medium systems with high
resolution. These methods have been used to image not only pore structure but also two-
phase flow features such as fluid distributions, entrapped fluids, curvatures of interfaces, and
contact angles [1,2,86–89].

Microscale pore-network models have been developed to model many different processes,
including single-phase flow and transport [9,79]; aspects of two-fluid-phase flow such as
capillary pressure-saturation-interfacial area relations [20,61,68], fluid entrapment
[35,36,46,47], dissolution [16,90], and dispersion [7,75]; and some aspects of three-fluid
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phase flow [8,34,65,72]. Similarly, the lattice-Boltzmann method (LBM) has emerged as an
attractive microscale simulation method for many types of fluid flows and has become an
indispensable tool for the study of porous medium physics [45,62,63,77]. For multiphase
systems, the LBM avoids difficulties associated with the continuum description of interfaces
by introducing a quasi-molecular description of the interfacial physics [33,71]. The LBM is
established as a reliable way to obtain permeability values in synthesized or imaged porous
medium systems; and simulations of complex multiphase displacement have been shown to
agree with detailed, highly resolved experiments [10,70,78,84]. The efficacy of the LBM has
led to broad efforts to improve computational algorithms [5,14,50,51,73,81,82], accuracy of
boundary conditions [15,19,64], and thermodynamic consistency [42,67], in addition to
producing a variety of schemes to model processes ranging from single-phase flow to
reactive mixtures and multiphase systems [17,66,69,80].

A significant problem with describing multiphase flow and transport in porous medium
systems is that specification of fluid saturations does not provide a sufficient amount of
information about the morphological and topological state of the system to yield high
fidelity, first principles models. At the microscale, one can observe boundaries between
fluids, fractions of the solid surface wetted by each fluid, curvature of fluid-fluid interfaces
that is proportional to the capillary pressure, and the existence and curvature of common
curves. When systems are studied at a larger scale, as is necessary if one is to model field-
scale behavior, this detail is lost. The best one can hope to do is describe these higher order
measures of the morphology and topology of the phase distributions in some average sense.
Thus, instead of describing the precise locations of phases at the microscale, one makes use
of the volume fraction at the macroscale. This quantity only describes the fraction of a
volume occupied by a phase. It does not differentiate between elements of a fluid that are
disconnected from each other as opposed to a phase that is fully connected. If we do not
consider characteristic measures of interfacial areas and common curves in a macroscale
formulation, we are restricted in our ability to describe system properties. For example,
capillary pressure at the microscale for a two-fluid-phase porous medium system is equal to
the surface tension of the fluid-fluid interface multiplied by the interfacial curvature of that
interface. Thus to define capillary pressure at the macroscale, we need some surrogate that
accounts for average curvature. Such a quantity is typically not available, so the approach
has been to settle for expressions of capillary pressure as a function of saturation, the
available parameter. As is well known, success of this approach is mixed with one major
problem being that capillary pressure is not a single-valued function of saturation but is
rather an infinite valued hysteretic relation dependent upon the saturation history of the
system. In effect with this common approach, the saturation history is being used as a
surrogate for other measures of the morphology and topology of the fluid distributions.

The search for additional information that can eliminate, or at least reduce, hysteresis should
begin with macroscale quantities that arise naturally when microscale equations are
transformed to macroscale forms. First among these is the interfacial area per volume. A
simple thought experiment confirms this notion. Consider two porous medium systems with
identical solid phases and with two identical fluid phases present. Let the saturations in the
two systems be the same. However, let one fluid in the first system be more dispersed such
that the system has more interfacial area between fluids than the other. Since the saturations
in the two systems are the same, curvature of the interfaces in the more dispersed system
will be higher. Thus, although the saturations are the same, the capillary pressure in the two
systems will be different. Thus inclusion of interfacial area per volume as an additional
macroscale independent variable on which capillary pressure depends should be helpful in
building a surrogate macroscale variable to account for interfacial curvature. Note that this
extension makes use of interfacial area per volume as a separate independent variable, not as
a variable that itself depends on saturation. Further specification of multiphase system
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behavior can be achieved if one has information on the representation of the spreading of a
wetting fluid over a solid surface. Macroscale variables that describe this are the fraction of
the solid surface in contact with each fluid phase and the common curve length per volume.

As overhead to the process of including interfacial area density, wetted fraction of the solid
phase, and common curve density in the modeling process, there is a need for evolution
equations for these quantities. These equations must be based on changes in the morphology
and topology of the phases. They are not conservation equations in that, for example, area
per volume is not a conserved quantity although the mass, momentum, and energy associate
with that area are conserved quantities with corresponding surface-based conservation
equations. Thus expressions must be developed that account for the differential geometry of
the additional variables. These are, of necessity, approximate expressions that do not carry
the cachet of an immutable conservation principle. As a result of being approximations, such
evolution equations are subject to improvement as fundamental insight evolves. Modern
experimental imaging methods and high-resolution microscale simulation approaches are
tools that can hasten such advances.

The overall goal of this work is to advance the modeling of interfaces and common curves in
two-fluid-phase porous medium systems. The specific objectives of this work are: (1) to
review existing approaches for modeling areas, (2) to develop an improved set of evolution
equations for specific interfacial areas and common curve lengths based upon averaging
theorems and a clearly specified set of approximations, (3) to evaluate a recently proposed
model for evolving interfacial areas in light of the model developed in this work, (4) to use
the developed area model to close a two-fluid-phase flow model, and (5) to discuss
remaining open issues and potential paths for resolving these issue.

2 Background
For analysis of fluid flow in porous medium systems, equations for the evolution of
interfacial area and common curve densities are needed at the macroscale. For consistency
with the TCAT approach, these equations should be obtained by averaging from the
microscale to the macroscale through the use of averaging theorems. Thus, it is useful to
examine approaches for obtaining such evolution equations that have appeared in the
literature and which serve to place the present work in context. Before proceeding, we note
the warning that in spite of numerous attempts, no general strategy has emerged for solving
the equations of fluid mechanics to obtain the shapes of fluid interfaces [52]. That statement
was made in regard to the microscale situation. Our task is to develop equations that apply at
the macroscale. Despite the difference in scales, the challenge of obtaining a general form is
great. In the course of the subsequent development, we will indicate pitfalls and challenges.
In this section we will consider some related investigations of interface and common curve
movement. For subsequent convenience in comparing these results with those to be derived
here, the notation used in original papers will be converted to that used in the TCAT
formalism as possible.

Alts and Hutter [3] provided a continuum description of the dynamics and thermodynamics
of the interface between ice and water. In that work, the conservation equations were
developed at the microscale. These authors also recognized the need for an evolution
equation to describe the change of the surface between the phases as a function of time and
derived the equation

(1)
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where D/Dt is a time derivative following the surface, da is a differential element of the
surface, ∇′· is the surface divergence, w is the velocity of the surface, w′ is the portion of the
surface velocity tangent to the surface, nw is the unit vector normal to the water phase, and
Jw is the interfacial curvature equal to ∇′·nw. This equation also was obtained in Moeckel
[56]. Note that because this is a microscale form, the interaction of the edges of the surface
with the common curve impact the solution of this equation through boundary conditions.
Within a porous medium system, microscale eqn (1) would be averaged over the interfacial
segments within an averaging volume to obtain the expression appropriate for the
macroscale. For a multiphase system, equations such as eqn (1) must be averaged over each
interface to obtain the set of equations for the interfaces. Because the ice-water system
contains only two phases, a development of equations for common curves was not
considered. Alts and Hutter [3] additionally provided microscale conservation equations for
the interface properties that contribute to the complete microscale description of the ice
water system.

Kalaydjian [41] provided an analysis of multiphase porous medium flow problems and
included in his analysis the evolution of the fluid-fluid interface in space and time. His
approach was based on the weight function averaging method developed by Marle [48,49]
but supplemented with an equation to account for variations in the interfacial area between
phases. Kalaydjian’s perspective was at the macroscale with attention focused on a system
consisting of a solid, water, and oil. Among the restrictions he imposed were the situation
where the solid is completely wetted by a water phase of sufficient thickness to prevent
interaction between the oil and the solid. This stipulation means that no common curve,
which would form where three phases meet, exists. The interfaces were considered to be
massless and the fluid-fluid interfaces were constrained to be spherical. The restriction to a
massless interface was used to eliminate the need for a mass balance equation for the
interface and to remove the inertial terms from the interfacial momentum equation. A
relation between the interfacial area per volume between the phases, εwn, and the volume
fraction of the oil phase, εn was assumed to be of the form

(2)

where  is the curvature of the oil-water interface, and f is a function postulated to depend
on space, time, the deformation tensor of the interface, and εn. Based on this formulation,
Kalaydjian [41] also obtained a dynamic equation for evolution of the capillary pressure as

(3)

where γwn is the interfacial tension, and L1 is a model parameter. For a simple case where
the fluid-fluid interface retains a spherical shape during displacement such that its
deformation tensor is zero, Kalaydjian [41] indicates that f = 2. In considering eqn (3), it is
useful to note that, in fact, the capillary pressure is , the product of the
interfacial tension and curvature. The deviation of f from 2 and of the right side of eqn (3)
from zero would indicate that the equilibrium condition pc = pn − pw has not been achieved.

Kalaydjian [41] also developed macroscale equations for the average of the interface
velocity of the wetting-non-wetting interface, vwn. One of the equations presented is
troublesome and is the expression
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(4)

where L2 is a model parameter. The problem with this equation is that it requires that when
the divergence of the average interface velocity is zero, either the interfacial tension or the
interfacial area per volume must be zero. Thus use of this equation implies that either the
interface will not exist or the interfacial tension will be zero at equilibrium. Clearly, this will
not be the case in general, and thus this equation must be reevaluated. Since the equation
was developed in the context of a full system analysis, an improved formulation could also
impact other relations obtained.

In quite a different context, Ishii and Kim [37] have examined an area interface transport
equation for the interfacial area between bubbles and a flowing fluid in the absence of a
porous solid. The objective was to model co-current and countercurrent flows in pipes.
Macroscale equations were developed based on the Boltzmann equation. The interfacial area
transport equation proposed is

(5)

where the n phase is the bubbles, rn̿ is a rate of volume of n phase generation by a nucleation
source per unit volume of mixture,  is the source/sink rate for interfacial area due to
coalescence and break-up of bubbles. The challenge identified for using this equation is the
development of appropriate relations for the source and sink terms [37,38,43]. Inherently,
the problem being considered is different from the porous medium case because one of the
fluid phases is modeled as a collection of spherical bubbles and bubbles that transition into a
cap-like geometry due to turbulent shear processes. Nevertheless, the equation formulated
provides an interesting approach to capturing changes in the area between phases due to
both expansion of the phase shape and generation processes due to coalescence and break-
up. These latter two mechanisms can be considered as involving significant deformations
from a given state, which are also expected to be important in multiphase porous medium
systems.

There are several observations that can be made concerning eqn (5) that are important in
distinguishing it from a porous medium area transport equation. First, the presence of a solid
phase in a porous medium imposes some geometric constraints on the geometry of the phase
distributions. The presence of a phase as a collection of spheres would be unlikely unless the
spheres were very small. Second for a porous medium flow problem, parts of a phase can
become entrapped in the solid medium, thus leading to drastically different behavior from
the case of bubbles in a fluid. An instance in which this different behavior is important is in
specification of the interface velocity, vwn. For the case where the n phase is comprised of
bubbles, Kim [43] makes the reasonable approximation that the velocity of the phase
interface is approximately equal to the velocity of the disperse phase such that vwn ≈ vn. For
a porous medium system, this simplifying assumption might apply in the limit of small
saturation of the n phase such that it is essentially immobile. However, over the range of
expected saturations, a more general approximation would be required for the interface
velocity. Finally, no common curves exist for the two-phase fluid-bubble system, thus
obviating the need for an equation describing common curve dynamics.

We can simplify eqn (5) for the uid-bubbles case employed by Kim [43] in which the
condition was imposed that
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(6)

to obtain

(7)

where with a slight abuse of notation, the rate of strain tensor in terms of an intrinsically
averaged interfacial velocity is given as

(8)

When the wn surface is the boundary of a sphere enclosing the n phase, the identity holds
that

(9)

Incorporation of this relation into eqn (7) provides the simplification of the Ishii-Kim result
to

(10)

This equation will be discussed subsequently in comparison to the result derived here.

An approach based upon the use of change of scale averaging theorems to approximate an
interfacial area transport equation for flow of two fluids in a porous medium system was
advanced by Gray [21] and further developed by Gray et al. [30] using a less restrictive set
of assumptions. Some approximations to the integrals in the mathematical averaging
theorems that facilitate a change in scale were employed to obtain an evolution equation for
interfacial area transport of the form [30]
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(11)

where the geometric orientation tensor for an interface ι separating an α and β phase may be
defined formally as [30]

(12)

the rate of strain tensor is

(13)

 is the contact angle between the ws and wn interfaces;  are the fractions of
the solid surface in contact with the w and n phases, respectively; V is the averaging volume;
nα is the outward unit normal vector from phase α at the boundary; ℑP is the index set of
phases; ℑI is the index set of interfaces; Ωι is the portion of the averaging domain occupied
by the ι entity; and Ω̄ is the closure of a domain that includes the boundary. It is important to
recognize that the single overbar in the superscripts on the velocities indicates that these
quantities are mass-weighted average velocities. This type of velocity was employed
because the area transport equation was derived from entropy inequality considerations.
However, the velocities in eqn (11) should be simple averages, not mass-weighted averages,
of their microscale counterparts, as will be addressed in a subsequent derivation. For
purposes of this discussion, we will not consider this discrepancy in the employed definition
of the velocity.

Let us simplify eqn (11) slightly by assuming that the curvature of the solid interface is not
correlated to the fluid phase it contacts so that the difference between  is
negligible. Also apply the product rule to the coefficients that multiply the differences
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between the fluid-solid interface velocities and the solid velocity. With these changes, eqn
(11) becomes

(14)

For the purpose of comparison with other models, consider some simplifications to eqn (14).
If the solid phase and solid surface dynamics are much slower than the dynamics of the

fluid-fluid interface, terms involving  can be neglected. In this
case, the right side of eqn (14) is approximately zero. The expression in [21] is recovered if
the additional approximation is made that terms involving the velocity and rate of strain of
the fluid-fluid interface are also considered negligible.

Eqn (14) has some features in common with the forms discussed previously. For example, if
the solid-phase movement is negligible and all terms except the first two on the left side are
neglected, eqn (14) reduces to the overly simple expression of eqn (2) with f = 2.

When no solid phase is present, all the terms on the right hand side and the third term on the
left hand side of the expression proposed in eqn (14) are zero and the remaining terms can
be rearranged for comparison with eqn (10) as

(15)

where use has been made of the fact that εw + εn = 1 in the absence of a solid phase. When
the n phase has no preferred orientation, as with spherical bubbles or randomly oriented
elements of this phase, G = I/3 and eqn (15), which is rooted in considerations from the
entropy inequality and averaging theorems, becomes

(16)
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Comparison of eqn (16) with eqn (10) shows a degree of consistency between the two forms
when the difference between density-weighted and unweighted averaging is unimportant.
When the n phase is composed of bubbles, the curvature of the wn interface satisfies the
equality . The term on the right side of eqn (16) to some degree, at least,
can be seen in conjunction with the first term on the left to form a material derivative of
interfacial surface area. A corresponding term does not appear in the form of the Ishii-Kim
equation obtained here as eqn (10). On the other hand, no term was included in eqn (14) to
account for coalescence or breakup. Despite these differences, in consideration of the very
different systems for which they were intended to apply, the similarity between the
equations under restricted conditions is encouraging. Additionally, we note that the first two
terms of eqn (16) are the same as the terms in the form employed in eqn (2).

We emphasize the fact that evolution equations for specific interfacial area and common
curve length are not conservation equations, since areas and lengths are not strictly
conserved quantities. Therefore, such evolution equations are not consequences of mass
conservation. An area evolution equation and a mass conservation equation do not contradict
each other; they are independent expressions. In recent work, some specific interfacial area
equations have been proposed that suggest interface equations are, indeed, consequences of
mass conservation [57–60]. Although this approach can be questioned on conceptual
grounds, it nevertheless provides an equation that appears to be somewhat similar to the
expression developed based upon the averaging theorem approach. For this reason, a careful
analysis of this mass conservation approach will be considered.

First we note that for an entity in a multiphase porous medium system, the macroscale mass
conservation equations for phases, interphases, and common curves [23,39] can be
expressed as

(17)

where ρι is mass density of the ι entity,  is the rate of mass exchange from the κ entity to
the ι entity, ℑ is the index set containing indexes for all phases, interfaces, and the common
curve in a two-fluid-phase porous medium system, ι is a particular index of interest, and ℑcι
is the index set of entities connected to entity ι that can exchange mass with the particular
entity ι. Summation of this expression over all the entities cancels out the mass exchange
terms resulting in

(18)

The terms in this equation related to the wn interface can be isolated from the summation to
obtain

(19)

In the work of Niessner and Hassanizadeh [57–60], the stipulation is made that ρwn must be
non-zero and constant. Both of these requirements are restrictive and, indeed, should not be
fundamental in describing interface dynamics. We do note, however, that if the mass density
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of an interface were zero, all terms involving that interface would be eliminated from the
mass balance eqn (18). In that circumstance an attempt to produce an equation for massless
interface dynamics from an equation for the mass conservation of that interface would not
be possible. Nevertheless, with the restriction of a non-zero, constant density interface
imposed to facilitate investigation of a possible interfacial area equation based on mass
conservation, division by the constant interface density ρwn yields

(20)

where the mass average velocity of the material in the wn interface, , is equal to the
spatially averaged velocity, vwn, since ρwn has been deemed to be constant. In [57–60], an
assumption is employed that the wn area transport equation based on mass conservation with
constant, non-zero ρwn is

(21)

where êwn is considered to be a function only of saturation, sw, and capillary pressure, pc.
This assumption is tantamount to specifying that the right side of eqn (20) can be
approximated as the right side of eqn (21). The presumption that êwn depends on capillary
pressure is unnecessary given that none of the quantities on the right side of the system mass
conservation expression eqn (20), either independently or in combination with other
variables, requires the existence of capillary pressure. In summary, eqn (21) relies on the
limiting requirements that ρwn be constant and non-zero, that êwn depends on capillary
pressure, and that the proposed right side of the equation properly accounts for system
dynamics. We will investigate whether eqn (21) is a reasonable hypothesis capable of
describing evolution of the fluid-fluid interfacial area following the derivation of the
evolution equation based on averaging theorems.

Niessner and Hassanizadeh recognize that there is a need for an equation that describes the
velocity of the wn interface. The form selected is [57–60]

(22)

where K̂wn is termed an interfacial permeability tensor. It can be seen from eqn (22) that,
unless K̂wn goes to zero when the interfacial velocity is zero, the interfacial area density
must be constant at equilibrium. In the same way that saturation need not be constant at
equilibrium, it is likewise implausible that the density of the area between the fluid phases
should be constant. Thus, eqn (22) is restrictive such that predictions made based on this
equation could be non-physical. Although a reasonable hypothesis was made for the
interface velocity when it is the boundary of a bubble, eqn (6), for the more complex case of
two fluid phases within a porous medium, eqns (4) and (22) are restrictive such that they
must be replaced on physical grounds.

The main point of this section is to illustrate the complexities involved in modeling the
dynamics of the interface between fluid phases in multiphase porous medium systems. We
emphasize the importance of treating the equation for interface dynamics as being related to
differential geometry and as being completely distinct from conservation equations, in
particular from the equation of mass conservation for the interface. Additionally, the need to
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ensure that proposals for the interface velocity be carefully considered to ensure they do not
predict unphysical behavior.

3 Averaging Theorems and Geometric Parameters
In the subsequent derivations in this paper, useful forms of interface and common curve
evolution equations will be obtained from averaging theorems. In this section, the averaging
theorems will be supplied and rearranged to forms particularly useful for the task at hand.
The theorems for phases are found in many references ([e.g., 4,6,24,74,85]) while the
averaging theorems for interfaces [22] and common curves [29] are also of importance for
the present development. All the theorems of interest are collected in [29], so that document
is used as the source for the individual theorems employed here. Additionally some
quantities will be defined in terms of averaging operators. These quantities arise in the
averaging theorems. In this section, no approximations will be employed, beyond the scale
considerations that gird the averaging theorems.

The objective here is to provide the mathematical framework that can be exploited
subsequently using appropriate approximations to obtain the interface and common curve
evolution equations.

For derivation of the interface dynamics, the averaging theorems are applied to constant
scalars and vectors. These averaging theorems are expressed using an averaging operator
defined as

(23)

where i is a microscale quantity to be averaged, Ωj and Ωk are domains of integration, and
W is a weighting function. If W is not specified, it is assumed to be 1.

The gradient theorem for relating the average of the gradient of a microscale phase property
to the gradient of an average property plus a boundary term is [29]

Theorem 1 (G[3,(3,0),0])

(24)

where the microscale scalar function fι is defined, continuous, and differentiable in Ωι; Ωι is
the portion of the total domain, Ω, occupied by the ι phase; nι is a unit outward normal
vector from the boundary of Ωι; ℑcι is the index set of connected entities, which consists of a
set of interfaces formed at the intersection of the ι phase and other phases in the system; and
ℑP is the index set of phases.

The transport theorem for relating the average partial time derivative of a microscale phase
property to the partial derivative of the macroscale average plus a boundary term is [29]

Theorem 2 (T[3,(3,0),0])
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(25)

where fι is continuous and differentiable in Ωι and time; t is time; Ωι is the portion of the
total domain, Ω, occupied by the ι phase; nιis a unit outward normal vector from the
boundary of Ωι; wκ is the velocity vector for the κ interface; ℑcι is the index set of connected
entities, which consists of a set of interfaces formed at the intersection of the ι phase and
other phases in the system; and ℑP is the index set of phases.

When fι is a constant, eqn (24) provides an expression for the gradient of the volume fraction
of the phase as

(26)

With fι a constant, eqn (25) provides an expression for the time derivative of the volume
fraction of the phase as

(27)

In these last two equations, Ωκ is the surface region bounding the phase. Therefore, these
theorems will prove useful in relating area changes to phase dynamics.

The gradient theorem for averaging a microscale interface quantity to the macroscale relates
the average of the surface gradient of a microscale property to the spatial gradient of the
average plus terms that account for the surface shape boundary processes. This equation is
[29]

Theorem 3 (G[2,(3,0),0])

(28)

where the microscale gradient operator restricted to an interface is ∇′ = ∇ − nκnκ · ∇; the
microscale scalar function fι is defined, continuous and differentiable in Ωι; Ωι = Ω̄κ∩Ω ̄βis
the interface entity in domain Ω formed at the intersection of two closed phase domains
denoted Ω̄κ and Ω ̄β with κ, β ∈ ℑP; nι is a unit vector tangent to Ωι and orthogonal to its
bounding common curve; nκ is a unit vector normal to the ι interface and outward normal to
the κ phase; ℑcι is the index set of connected entities that consists of a set of bounding
phases and common curves; ℑP is the index set of phases; ℑI is the index set of interfaces;
and ℑC is the index set of common curves.

The surface transport theorem for averaging a microscale quantity to the macroscale relates
the average of the partial time derivative fixed to the surface to the time derivative of the
macroscale average plus effects due to deformation of the surface and changes in its size due
to boundary motion. This theorem is [29]
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Theorem 4 (T[2,(3,0),0])

(29)

where the microscale time derivative restricted to an interface is

(30)

the microscale gradient operator restricted to an interface is ∇′ = ∇ − nκnκ · ∇; the
microscale scalar function fιis defined, continuous and differentiable in Ωι and time; Ωι =
Ω ̄κ ∩ Ω ̄β is the interface entity in domain Ω formed at the intersection of two closed phase
domains denoted Ω̄κ and Ω ̄β with κ, β ∈ ℑP; wι is the velocity of the ι interface; nι is a unit
vector tangent to Ωι and orthogonal to the bounding common curve; nκ is a unit vector
normal to the ι interface and outward normal to the κ phase; ℑcι is the index set of
connected entities that consists of a set of bounding phases and common curves; ℑP is the
index set of phases; ℑI is the index set of interfaces; and ℑC is the index set of common
curves.

For a constant microscale property, fι, at an interface, eqn (28) provides an expression for
the gradient of the interfacial area density. Similarly, for constant fι, a relation for the time
derivative of the interfacial area density is obtained from eqn (29). The equation for the
gradient of area density for the two-fluid-phase system of interest, with only a wns common
curve, is

(31)

The temporal derivative of area density is related to the movement of the surface and the
common curve according to

(32)

It is revealing that in these equations, the only velocities that impact the change in the area
density are the normal components of the velocity of the surface and the velocity of the
common curve bounding the surface in the direction tangent to the surface. The first of these
accounts for stretching due to deformation of the surface while the latter accounts for an
increase in size due to movement of the edges. Tangential velocity of the surface does not
change its area density, although non-uniform velocity of the common curve bounding the
surface in a direction tangent to the surface and normal to the edge does involve a change in
surface area.

Terms appear in eqns (31) and (32) that suggest a useful definition of macroscale quantities.
First is the geometric orientation tensor for an interface encountered previously in eqn (12).
In the interest of a self-contained development, we repeat the definition here as

(33)
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This quantity is a measure of the isotropy of the orientation of an interface type and has the
properties that it is symmetric and the sum of its diagonals equals 1. When the interface ι
between phases is randomly oriented within an REV, Gι = I/3 [30]. The second quantity of
interest is the macroscale average of the sum of the principal curvatures,  defined as

(34)

where  is the macroscale curvature of the ι interface with respect to the normal direction to
the interface determined by the vector nκ that is outward directed from the κ phase at the
interface. Both Gι and  will be employed for the ws, ns, and wn interfaces.

The solid surface in this system will be considered to be smooth such that at a common
curve anywhere on the surface

(35)

where nws and nns are unit vectors tangent to the respective surfaces that point outward from
the respective surface and are normal to the bounding wns common curve.

At the common curve, the unit vector nwn may be decomposed into a part that is tangent to
the solid surface and a part that is normal to the solid according to

(36)

where φws,wn is the contact angle that spans the w phase between the ws and wn surfaces.
The macroscale estimate of the cos of the contact angle is defined as [39]

(37)

or, equivalently

(38)

The gradient theorem for averaging a microscale common curve quantity to the macroscale
relates the average of the gradient along the curve of a microscale property to the spatial
gradient of a macroscale property plus terms that account for changes due to deformation of
the curve and processes at the end of the curve. This theorem is [29]

Theorem 5 (G[1,(3,0),0])

(39)
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where the microscale gradient operator restricted to a common curve is ∇″ = nιnι · ∇; the
microscale scalar function fι is defined, continuous and differentiable in Ωι; Ωι = Ω̄β ∩ Ω ̄γ ∩
Ω ̄δ is the common curve entity in the domain Ω formed at the intersection of three closed
interfaces Ω̄β, Ω ̄γ, and Ω ̄δ with β, γ, δ ∈ ℑI; nι is a unit vector tangent to the common curve
Ωι; V is the volume of the averaging region; eι is a unit vector normal to the endpoint of the
common curve and positive outward; ℑI is the index set of interfaces; ℑC is the index set of
common curves; and ℑPtι is the index set of common points for common curve ι.

The transport theorem for averaging a microscale common curve quantity to the macroscale
is [29]

Theorem 6 (T[1,(3,0),0])

(40)

where the microscale time derivative restricted to the common curve is

(41)

the microscale gradient operator restricted to a common curve is ∇″ = nιnι · ∇; the
microscale scalar function fι is defined, continuous and differentiable in Ωι and time; Ωι =
Ω ̄β ∩ Ω ̄γ ∩ Ω ̄δ is the common curve entity in the domain Ω formed at the intersection of three
closed interfaces Ω̄β, Ω ̄γ, and Ω ̄δ with β, γ δ ∈ ℑI; wι is the velocity of the common curve; nι
is a unit vector tangent to the common curve Ωι; V is the volume of the averaging region; eι
is a unit vector normal to the endpoint of the common curve and positive outward; ℑI is the
index set of interfaces; ℑC is the index set of common curves; and ℑPtι is the index set of
common points for common curve ι.

Now we will find the forms of these theorems when the microscale property, fι, is constant
and no common points exist, as with a two-fluid phase porous medium system. Eqn (39)
provides an expression for the gradient of the common curve length per volume, with no
common points, as

(42)

Eqn (40) gives an expression for the time derivative of the common curve density in the
form

(43)

In eqns (42) and (43), the only velocity that appears is that which is orthogonal to the
common curve. This is consistent with the expectation that the movement of the curve in a
direction tangent to itself does not alter the amount of the curve in the averaging volume.
However, movement orthogonal to the curve causes deformations and stretching that
changes the common curve length per volume. Because no common points exist that would

Gray and Miller Page 16

Adv Water Resour. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



mark the ends of the common curve, there is no lengthening of the curve due to the
movement of its ends.

Our objective is to make use of eqns (42) and (43) to develop a single evolution equation for
the common curve. In these two equations, a couple of terms appear that are precursors to
useful macroscale quantities. Define the common curve orientation tensor, Gwns, as

(44)

When the orientation of the common curve has no preferred direction, Gwns = 2I/3 [30].
This orientation tensor is similar to the orientation tensor employed in modeling flow-
induced fiber orentation [11,31]. The vector nwns · ∇″nwns is normal to nwns and may be
written in terms of the geodesic curvature, κGwns, and the normal curvature, κNwns, as

(45)

where

(46)

and

(47)

Then the macroscale geodesic and normal curvature may be defined, respectively, as
averages of their microscale counterparts such that

(48)

and

(49)

The orientation tensor for the curve and its normal and geodesic curvatures play important
roles in the derivation of the evolution equation for the specific common curve length.

4 Interface Evolution
In this section, the averaging theorems will be employed to develop evolution equations for
the interfaces between the solid and fluid phases and for the evolution of the fluid-fluid
interface. The study is restricted to consideration of a system composed of a single solid,
denoted as the s phase, and two fluid phases, with the wetting phase denoted as the w phase
and the non-wetting phase denoted as the n phase. The equations that will be obtained will
rely on some judicious approximations applied to the theorems and definitions of the last
section. We point out that the equations for evolution of the interfaces between phases will
be developed based solely on the mathematics of the averaging theorems for phases,
interfaces, and common curves and do not rely on conservation equations of mass,
momentum, or energy. In the derivation here, we will be combining divergence and
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transport averaging theorems to obtain a single evolution equation. Since these equations are
independent, the combining will be done making use of an initially unspecified macroscale
velocity denoted as Wα̿, where the superscript indicates this is a macroscale velocity
associated with some entity α. The double overbar indicates that the averaging process used
to derive Wα̿ from the microscale will have to be specified. After the theorems have been
combined, a convenient constitutive selection will be made for the velocity. This approach
shares some similarities with Kim [43] who developed a general equation that involved the
velocity of a bubble surface. Then, he made use of a constitutive assumption that this
velocity was equal to the velocity of the fluid in the bubble.

The dot product of eqn (26) with the arbitrary macroscale velocity, Wα̿, and addition to eqn
(27) provides the material derivative of the volume fraction of phase ι as

(50)

where the macroscale material derivative is defined as

(51)

Eqn (50) states that, when following a volume fraction of a phase at a velocity Wα̿, the rate
of change of that volume fraction is equal to the outward microscale velocity of the
boundary of the phase, relative to Wα̿, integrated over that boundary.

For a general three-phase system composed of two fluids and a solid, each phase has a
boundary with the other two phases. Therefore, the boundary in eqn (50) is composed of two
interfaces. For example, the s phase is bounded by ns and ws interfaces. For subsequent
derivation, it will be convenient to approximate the change in the volume of a phase in terms
of the movement of only one of its boundary portions. When the solid is immobile, this can
be achieved for the fluid phases without any approximation. For the general case of a
slightly moving and deforming solid, we will assume that the normal velocity of each
portion of the solid-phase boundary can be decoupled such that eqns (26) and (27) can be
approximated, respectively, as

(52)

and

(53)

where  is the fraction of the s phase surface in contact with the fluid phase phase κ. With
these approximations, the material derivative form of eqn (50) becomes

(54)
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This approximation is exact when the deformation and movement of the solid is not
dependent on which fluid it contacts. Summation of eqn (54) over all elements of the solid
surface provides recovery of eqn (50) applied to the total solid-phase surface.

With incorporation of eqn (54), eqn (50) for a fluid phase may be approximated as

(55)

This may also be expressed

(56)

where ε is porosity and sκ is the saturation of fluid phase κ. Note that when the fluid
saturation is equal to the fraction of the area of solid in contact with that fluid phase, the
second term on the left hand side of eqn (56) will be zero. Additionally, if the solid phase
movement alters the porosity with a much larger time constant than the rate at which
saturation changes, the term involving the derivative of the porosity may be considered
negligibly small.

The roles of eqns (54) and (55) or eqn (56) are to provide relations involving the averages
over the surfaces that can be used in the equations for evolution of interfacial area. We can
take the dot product of eqn (31) with Wα̿ and add the result to eqn (32) to obtain

(57)

where the rate of strain tensor for the Wα̿ velocity is

(58)

Next we define the average macroscale surface velocity normal to the interface, wτ̿ as

(59)

Note that this definition provides an average of the normal component of the surface
velocity. Then if we make use of the fact that the macroscale velocity Wα̿ can be removed
from the averaging operator, we can introduce the definitions of the orientation tensors and
the curvature given in eqns (33) and (34) and rearrange the terms to obtain
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(60)

Although eqn (60) applies to the three different interface types, the behavior of the solid-
fluid interface is different from that of the fluid-fluid interface, so we will consider these two
classes of interfaces separately in applying approximations geared to allow the remaining
three terms involving averaging operators to be evaluated.

For the solid-fluid interface, we will make use of approximate eqn (54) so that eqn (60)
becomes

(61)

We will assume that the velocities of material points on the solid surface do not depend on
which fluid phase they contact. We also assume that the orientation tensors for the solid
surface are independent of the fluid phase. These conditions provide the useful relations

(62)

(63)

For both the ws and ns interfaces, we select  so that the material derivative is moving
with the average velocity of the material points on the solid surface boundary. As an
additional assumption, we assume that the integral involving the product of the curvature
deviation and the normal velocity deviation is negligibly small for the solid surface such that
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(64)

With these conditions, eqn (61) can be written as

(65)

where

(66)

and

(67)

In consideration of the definition given by eqn (59) and the assumption that the orientation
tensors for the solid-fluid interfaces are equal, a reasonable approximation is

(68)

where we are neglecting mass exchange between the solid and fluid that causes a difference
between the material normal velocity and the surface normal velocity to be significant. This
approximation involves the subtle idea that the average of the normal velocity of the surface
may be approximated as the orientation tensor on the surface dotted with the average of the
velocity of material points on the surface. Material points may have velocities tangent to the
surface. The orientation tensor has the effect of diminishing, if not eliminating, that
contribution to an approximate macroscale surface velocity. Approximate eqn (68) has the
effect of eliminating the second term in eqn (65) so that the equation for a fluid-solid
interface reduces to

(69)

The last term on the left side of this equation accounts for an increase in the area density of a
fluid-solid interface due to wetting of the solid. If we introduce the fact that  into
this equation, we obtain

(70)

Summation of eqn (69) over the ws and ns interfaces causes the material derivative of the
wetted solid fraction term to cancel out, and we obtain
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(71)

A representation of the wetting term that allows both eqns (70) and (71) to hold is

(72)

This term accounts for the change in interfacial area due to the wetting process alone, while
an increase in area due to mechanical deformations is accounted for by other terms.
Substitution of eqn (72) into eqn (69) gives the approximate forms for the fluid-solid
interfacial areas

(73)

and

(74)

We will consider wetting to be a dynamic process that can be modeled according to

(75)

where the equilibrium wetted fraction as a function of saturation and average curvature of
the fluid-fluid interface is

(76)

and k̂ws is wetting rate parameter.

Now we return to eqn (60) for the fluid-fluid interface, denoted as the wn interface. We can
make use of the identity given as eqn (36) to express nwn in terms of ns and nws in the
integral over the common curve and obtain
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(77)

We will employ the approximation that the contact angle terms can be decoupled from the
velocity of the common curve. This assumption is probably better for the component of
wwns in the direction normal to the surface (due to solid surface movement) than for the
component of wwns in the direction tangent to the surface. Thus in making the assumption
that cos φws,wn can be decoupled, we are neglecting the contributions of the dynamic nature
of the contact angle to the change in the wn interfacial area density. With this
approximation, averages of the cos and sin function can be removed from the integrand in

eqn (77). Here, as with the fluid-solid interface, we select  so that the material
derivative is with respect to a macroscale measure of the solid-phase velocity. Eqn (77)
becomes

(78)

where the macroscale cosine and sine functions are defined in eqns (37) and (38),
respectively.

The last two averaged expressions in eqn (78) that multiply trigonometric functions can be
expressed in terms of macroscale quantities. Eqn (72) may be applied to the integral
multiplying the cos function to obtain

(79)

For the multiplier of the sin function, we make use of an approximation that the integral of
the normal velocity component of the common curve over the common curve can be
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approximated using the ratio of the common curve density to the solid surface area density
as [30]

(80)

Then eqn (50) may be employed to evaluate the average on the right to obtain the
approximation to be used

(81)

Eqn (55) may be employed to evaluate the average expression that is premultiplied by 
such that

(82)

Substitution of eqns (79), (80), and (82) into eqn (78) gives

(83)

An expression in the equation for the solid-fluid interface evolution similar to the remaining
averaging expression was set to zero in eqn (64) when treating the evolution of the solid
phase surface. However, the fluid-fluid interface exhibits different behavior because the
changes in this interfacial area are due to reconfigurations of the fluid phases that can
significantly alter the amount of area at short time scales. For the solid-fluid interface, the
main alterations in the amount of area at a short time scale involve wetting of the solid
surface rather than reshaping. Subscale reconfiguration of the fluid-fluid interface, for
example due to coalescence or trapping of a phase can be important. We therefore define

(84)

In previous studies that made some use of the averaging theorems for area evolution [30,39],
a term like  was neglected under the assumption that “near equilibrium” it will be small.
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However, we will retain it here for further discussion. Substitution of eqn (84) into eqn (83)
then gives

(85)

In this equation, the remaining challenge is to provide an estimate of . An appropriate
form is to be selected based on data or heuristically in light of insights concerning system
behavior. One helpful thought experiment is to consider a case where two isolated regions of
one fluid phase come together and then redistribute. We can easily imagine a scenario in
which this happens when there is no change in total phase volume for any phase, where the
macroscale interface velocity is zero, and where no additional wetting occurs. Such a
scenario describes a subscale change in the amount of area per volume due to microscale
movement of the interface. Under the conditions described, the only terms that are non-zero
in eqn (85) are the first and . In consideration of this scenario, it seems that  accounts
for generation of interfacial area under conditions in which phase volumes can remain
constant and macroscale advection need not occur. Thus  represents the combined
processes of coalescence and division of phase resulting in the destruction or creation of
interfacial area. This could be important in cases where separate regions of a phase are either
combining due to mobilization or when portions of a phase are being trapped and
disconnected from other portions of the phase. These mechanisms are well known to occur
in multiphase porous medium systems, as entrapment and mobilization of the non-wetting
phase occurs routinely in such systems [e.g. 35,45].

Although the form of  should be a subject of experimentation, we can hypothesize that
one possible form to investigate is a linear relation

(86)

where  is an equilibrium function and k̂wn is a rate coefficient that is
characteristic of the speed at which the interfacial area reaches an equilibrium configuration
after a coalescence or break-up event. Making use of this constitutive form, we obtain a
general fluid-fluid interface evolution equation from eqn (85) as
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(87)

A particular less general case of possible interest is when the solid phase is immobile or, at
least, the solid phase dynamics are much slower than the dynamics of the fluid-fluid
interface. For this case, if we also make use of eqn (75), eqn (87) simplifies to

(88)

We emphasize the fact that , which is defined by eqn (59), is the average of the normal
velocity of the surface, not the average velocity in normal and tangential directions of any
mass that might be associated with the surface.

In this section, we have derived the general macroscale equations for the kinematics of
solid-fluid interfaces, eqns (73) and (74), subject to eqn (75), and for the fluid-fluid
interface, eqn (87), subject to eqn (75). The resultant equations are statements of evolution
of the interfacial area densities in response to interface velocities. These equations are
distinct from and independent of mass conservation equations and considerations for the
interfaces. As such, they do not depend on mass density, surface tension, temperature or any
other thermodynamic properties of the interface. The relations are geometric approximations
that describe how a surface will change when the regions it separates move, deform,
coalesce, and break-up. It is important to understand that approximations are employed in
evaluating the integrals that arise in obtaining equations for deformation of interfacial area
densities. Thus opportunities to evaluate the accuracy of these approximations may arise in
subsequent experiments and computations that could lead to improved relations.

5 Common Curve Evolution
The principles and considerations involved in derivation of the averaging theorems for
common curves are not unlike those employed in the last section when dealing with the
interface between phases. Here, we will develop an approximation for macroscale common
curve kinematics for a three-phase system composed of two fluids, denoted as the w and n
phases, and a solid phase, denoted as s. These three phases can meet at a common curve.
Because there is no fourth phase, we will consider the case where no common points are
present.

To obtain the evolution equation for the wns curve, we take the dot product of the common
curve gradient averaging theorem, eqn (42), with the arbitrary macroscale velocity Wα̿ and
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add this to the macroscale average transport theorem for a common curve, eqn (43), to
obtain

(89)

Here the average velocity of the common curve in the direction normal to the common curve
is defined as

(90)

Then if we introduce the common curve orientation tensor, Gwns, defined in eqn (44), and
the geodesic and normal curvatures as developed in eqns (45)–(49), we can rewrite eqn (89),
without approximation, as

(91)

Now select , which is the same choice that was made with the interfaces. Then
employ the approximations noted previously as eqns (72) and (81) so that the first two of the
averaged expressions in eqn (91) can be eliminated to obtain

(92)
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The last two terms account for a redistribution of the common curve due to processes not
associated with wetting or transport of common curve into a location. The second of these
terms, involving the deviation of the normal curvature from its average and the deviation of
the normal velocity of the solid surface from its average, should be negligible as it accounts
for stretching of an existing common curve on a non-uniformly expanding solid. The
deviation term involving the geodesic curvature could contribute to common curve
formation when some rearrangement, such as straightening of a curve, disappearance of the
curve due to coalescence of phase regions, or formation of a curve due to trapping occur. All
of these processes are approximately accounted for as a rate process, denoted , such that

(93)

and eqn (92) may be written

(94)

A linearized approximation to the generation term that accounts for the reshaping of a
common curve may be proposed as

(95)

where  is the equilibrium common curve length density as a function of
saturation and curvature of the wn interface, and k̂wns is a common curve generation rate
coefficient. Substitution of the assumed form of eqn (95) into eqn (94) then provides the
expression

(96)

A simplification of eqn (96) may be obtained under conditions where the solid phase
dynamics are much slower than the interface movement. Under these circumstances, terms
involving movement of material in the solid surface may be eliminated from eqn (94). We
will also employ the rate expression given as eqn (75) to obtain

(97)

Eqn (97) has the elements of a conservation equation for the specific common curve length.
The first term is a local rate of change, the second is a net outward flux, the third accounts
for the change in common curve length due to wetting, and the fourth is a rate of change of
common curve length due to coalescence and break-up. However, it is crucial to
understanding this equation that the macroscale velocity denoted  defined in eqn (90)
involves only the velocity components of the common curve that are normal to the common
curve.
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In this section, we have developed expressions for the evolution of common curve densities
based on kinematic considerations and mathematical averaging theorems. This development
confirms that the evolution of the internal geometry of the porous medium system does not
depend on conservation equations for mass, momentum, or energy. The general
approximation for the evolution of the common curve density is obtained as eqn (96) and
was simplified for the case of negligible solid phase dynamics to eqn (97). The possibility of
further subsequent improvement of the approximations employed here in light of
experimental and computational evidence remains. Certainly, experimental support is
needed to obtain the functional forms of the various rate coefficients and equilibrium
distributions employed in the evolution equations.

One additional important challenge is obtaining a reasonable expression for the common
curve velocity. Thus, we now turn to the task of obtaining useful estimates of the average of
the normal surface velocities, defined in eqn (59). Note that approximations for the velocity
of the solid surface were provided in eqn (68), but a corresponding form for the fluid-fluid
interface has not been addressed. The macroscale common curve velocity defined in eqn
(90) will also be examined to obtain a possible approximate macroscale form.

6 Interface and Common Curve Velocities
Equations that describe the macroscale evolution of interfacial areas and common curve
length densities in response to averaged velocity distributions of these entities have been
developed in the previous sections. It is very important to realize that the microscale
velocities that contribute to changes in area or length densities are normal to the surfaces and
the curve and are not related to the velocity of any material that may be transported within
the surfaces or curve. For example, in a general case, the velocity distribution of any surface
elements can be specified arbitrarily, and the deformations of the surface and its change in
area can be studied based on that specified velocity field. The location of any surface that we
might wish to study need not be at an interface between phases. It can be located arbitrarily
at the microscale, and we can examine its extent, shape, and motion in response to an
imposed velocity field. When we decide to study a surface or curve that happens to coincide
with a boundary between phases or a location where three phases meet, we are imposing a
constraint on the velocity field that will cause the surface to deform. To model such a
deformation, we must relate what was an arbitrary velocity field for the surface or curve that
instigates its evolution to some movement of fluids. This does not mean that the area and
common curve evolution equations are no longer independent equations, it simply means
that we wish to examine them in context with conservation equations. Just as independently
derived mass and momentum equations may be used in concert to describe flow in a
homogeneous system, detailed modeling of porous medium systems requires that we employ
the independently derived equations of mass and momentum in concert with the evolution
equations for the surfaces and common curves that are defined to reside along interior
boundaries. If such a surface or curve contains mass, a mass conservation equation for that
entity would be employed in addition to phase mass balance equations. The momentum of
mass within a surface or curve would also be described by a momentum conservation
equation for that entity. Again, this would be an equation in addition to an area evolution
equation and does not supplant it. The issue to be addressed in this section is how the
macroscale interface and common curve velocities should be specified in light of system
physics so that the evolution of geometric densities is appropriately described.

The fact that the velocity of a region under study and the velocity of the material within the
region are different applies to volumes, interfaces, and common curves. For this reason, one
selects a control volume when studying a flow in space and defines the movement and
deformation of that volume in such a way that the study of the flow is made convenient.
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Similarly one could select a control surface to study the behavior of material within a
surface of interest. For fluid flow in a porous medium system, questions arises as to where
the surfaces exist and how they deform. These questions must be answered if a system is to
be fully modeled. For macroscale modeling, these questions are answered in an average
sense, and the velocities that appear in the macroscale equations for interfacial area and
common curve evolution are averages of the velocities that must be chosen to define the
microscale regions. We recognize that, in general, these velocities of the regions are not
known.

The surfaces and curves that we wish to follow are positions that describe the regions where
two phases or three interfaces come together, respectively. The movement of these positions
might then be describable in relation to the movement of the phases that are being separated.

The idea that the velocity of the surface needs to be described constitutively in terms of
aspects of the system being modeled has been recognized previously, for example in [43]. In
that work, the system of interest involved the movement of bubbles in a liquid phase; no
solid phase was present. An area transport equation was derived for the bubble surface, and
the resultant macroscale equation contained both the average velocity of the mass contained
within the bubbles and the average velocity of the points on the bubble surface. For a one-
dimensional problem of interest, the constitutive approximation was invoked that the
average of the material interface velocity was equal to the average of the velocity of the
material within the bubble.

For two-fluid phase flow in a porous medium system, the situation is more complex. The
velocity of the interface between phases will depend strongly on the microscale
configuration and distribution of the phases within the porous medium. The solid phase is
usually relatively immobile, and the difference between the macroscale velocity of the solid
phase and the macroscale average velocity of material solid particles at the solid-fluid
interface is likely small. Therefore, the constitutive approximation will be made that

(98)

This equation is in addition to eqn (62) in which the velocity of the material on the solid
surface was approximated as being independent of the contact fluid. Thus, to be consistent
with eqn (68), the average normal velocity of the solid surfaces is related to the material
velocity as

(99)

The specification of  requires information about the velocity of the fluids and the
orientation of the wn interface. We know that when the flow is steady, the amount of
interface per volume is constant. The velocity of the fluid at the fluid-fluid interface is not
necessarily zero, although, for some configuration, the normal velocity of the interface could
be zero. In general, however, a condition of steady state is that the net outward flux of
interface or common curve will be zero. Therefore, at steady state for the fluid-fluid
interface and for the common curve we have, regardless of the fluid-phase velocities,

(100)
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and

(101)

Note that in eqn (85), or its simplified form eqn (88), the divergence of  appears.
Changes in wn area due to phase expansion or contraction, to coalescence and breakup, and
to the movement of the common curve are accounted for by other terms. Consider the case
of a water-saturated system in which a non-wetting fluid phase displaces the wetting phase.
Close to the water-saturated limit as a non-wetting phase begins to invade the system, it
seems reasonable that a net flux of surface area would accompany the invasion of the non-

wetting phase such that  would be important. As drainage progresses to
intermediate wetting phase saturations, the changes in saturation would result from wetting
phase displacement through progressively smaller pore bodies and changes in the curvature
of wetting phase non-wetting phase interfaces in wedges of the pore space previously
drained. Under these conditions the divergence term would also be of importance, but less
dominantly so than at the highest saturation levels. Finally in the limit of small wetting-
phase saturations as drainage in nearly complete, few pore bodies remain to be drained and
the primary change in interfacial area would result from curvature changes in the wetting
phase. Under these conditions, the divergence term would be relatively unimportant
compared to the higher wetting-phase saturation levels.

These considerations suggest that  will depend on the macroscale velocities of the fluid
phases as well as the distribution of the phases in the medium. In fact, when there is no
transfer of material across the wn interface, the microscale velocity of the surface,
wwn·nwnw, will equal the normal component of the fluid phase velocity at the interface. If
we consider that mass transfer has a negligible effect on the normal movement of a fluid
interface, the difference between the interface velocity and the normal component of the
fluid velocity at the interface may still be negligible. On this basis, we can hypothesize that
the exact expression when no phase change occurs may also be applied as an approximation
when phase change is occurring such that

(102)

The average phase velocity over the wn interface is not generally equal to the velocity over
the phase. However, the fact that only the normal component of the material velocity at the
interface is of importance suggests that the interface velocity may be expressed
constitutively as

(103)

where interfacial velocity coefficients Âw and Ân are, perhaps, functions of the ratio of
dynamic viscosities of the fluids μ̂w/μ̂n, sw, and εwn. Experiments are needed to help identify
further the functional form of these constitutive coefficients.

A constitutive relation for the velocity of the common curve to be used in eqn (96), or its
simplified version eqn (97), is challenging to obtain. At the solid surface, the phase
velocities are equal to the velocity of the solid. Movement of the common curve is actually
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not flow, in the usual sense, but is a result of complex fluid motion in the vicinity of the
common curve. However, we consider wetting of a surface to be a phenomenon that is
associated with common curve movement. When imbibition of a wetting fluid into a porous
medium domain filled with a non-wetting phase occurs, common curves form at the front
and move along the surface. This wetting phenomenon is accounted for by the term in eqn
(96) or eqn (97) involving the geodesic curvature. When the wetting-phase saturation is
high, the solid can be completely wet by the w phase so that no common curves remain at
the end of the process. Common curve dynamics will likely be most important at low
wetting-phase saturations when non-wetting fluid is trapped. Development of expressions
for the common curve advection velocity,  seems to be a higher order demand that will
take significant experimental and computational work. Note that this quantity will be zero at
steady state and represents a process other than wetting of the surface. Thus, it may be
satisfactory, at least as a first effort, to assume that the term involving  contributes
negligibly to common curve length evolution. Another approximation may be to try to
express the macroscale common curve velocity in terms of the two fluid phase velocities in a
direction tangent to the solid surface.

If we consider the velocity of the common curve normal to the solid to be small since the
common curve lies on the solid surface, the definition of eqn (90) may be approximated
when the solid is immobile as

(104)

Then in terms of the velocity of the fluid phases, the common curve velocity may be
postulated constitutively as

(105)

where common curve velocity coefficients B̂w and B̂n might be assumed to depend on μ̂w/μ̂n,
sw, and εwn. In any event, the approach required for analysis of the macroscale net flux of
common curves is not as clear, and likely not as important, as the approach to accounting for
the fluid-fluid interface flux.

7 Comparison with Previous Models
The derivation here has resulted in evolution equations for the ws and ns interfaces (eqns
(73) and (74) subject to eqn (75)), a general evolution equation for the wn fluid-fluid
interface (eqn (87) subject to eqn (75)), a simplified evolution equation for the wn interface
(eqn (88)), a general evolution equation for the common curve formed at the juxtaposition of
two fluid phases and a solid phase (eqn (96) subject to eqn (75)), and a simplified common
curve evolution equation (eqn (97)). Of these, the equation for a fluid-fluid interface has
received the most attention previously [37, 38, 41, 43, 57–60], so that a comparison with the
forms that have been proposed seems warranted.

The fluid fluid interface equation proposed by Kalaydjian [41] is given as eqn (2). This
equation is, in fact, a simplified form of eqn (88) that would apply when there is no net
advection of interfacial area into a region, the porosity is constant, the wn interface
generation due to coalescence and break-up is negligible, and wetting of the solid is not
accompanied by stretching of the interface. These restrictions are strong, but are consistent
with the objective of providing a simple illustrative example. As has been mentioned, one of

Gray and Miller Page 32

Adv Water Resour. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the equations involving the interface velocity used in [41], eqn (4), is not consistent with
even a simplified multiphase system.

The model of Kim [43] and Ishii and Kim [37] was developed in a context with no solid
phase present. Their simplified equation is provided here as eqn (10). Despite the very
different systems considered, eqn (88) can be reduced to that equation when  is
small compared to the other terms in the equation; the orientation of the interface is isotropic
(as would be expected for a surface bounding a bubble or set of bubbles) such that

 ;  as is the case when the n phase is composed of bubbles; and
the coalescence and break-up terms are prescribed to have the same form as the equations
developed in this work. The selection of the velocity of the bubble surface in this model is
consistent with eqn (103) with Âw = 0, Ân = 1, and Gwn = I/3.

If one compares the model of Gray et al. [30] as expressed in eqn (14) with eqn (87) derived
here, the similarities are numerous, especially if the contributions of the solid and solid
surface dynamics are negligible. However, there are several very important differences.
Here, the velocities are surface averages rather than mass averages. This is the correct
approach since the effort is at modeling a geometric shape regardless of the mass density
distribution in the surface. Also, no effort is made in [30] to ensure that only the normal
component of the surface velocity is employed. Finally, eqn (14) was developed while
considering that the system dynamics were slow enough that “near equilibrium” conditions
prevailed such that the coalescence and break-up mechanisms could be neglected. Despite
these shortcomings, the equations for the fluid-fluid interface, the fluid-solid interfaces, and
the common curve provided a useful initial effort to employ averaging theorems to describe
the dynamics of geometric regions.

We can further explore the utility and validity of eqn (21) proposed by Niessner and
Hassanizadeh [57–60] in light of eqn (88), which was developed relying solely on
mathematical theorems without recourse to conservation equations. We will examine
whether reasonable conditions exist under which eqn (21) might be a useful evolution
equation by comparing it with eqn (88). Both equations begin with a time derivative of the
wn interfacial area density. The next terms are divergence terms, but they are inherently
different. The divergence term of eqn (21) involves the velocity of the mass in the interface.
This macroscale velocity is an average based on the stipulation that the interface must have
uniform, non-zero, mass density and it contains elements of both the tangential velocity of
the flow and the normal velocity of the interface. Thus the change in interface density is
proposed as being dependent on the speed at which material moves tangentially within the
interface as well as on the distortion of the interface due to its normal motion. As formulated
in [57– 60], vwn also has the property that it will be zero only if the gradient in εwn is zero,
unless all dynamics are accounted for in a coefficient. The divergence term derived here in
eqn (88) is correctly based on the macroscale value of the normal component of the interface
velocity.

The expression in [57–60] has no terms comparable to the last two in eqn (88) that account
for change in interfacial area due to coalescence, break-up, and wetting of the solid phase
surface. Thus eqn (21) is unable to simulate growth of interfacial area that could take place
with a zero average interface velocity and at constant saturation. The multiplier of the time
derivative of sw in eqn (88) is the curvature of the wn interface, which is negative when
capillary forces exist at the interface between the wetting w and non-wetting n phases. This
coefficient is dependent on the state of the system having a more negative value at low
saturations and approaching 0 as the saturation approaches 1. It is stated in [57] that the
parameter êwn, which multiplies the time derivative of sw in their eqn (21) is positive for
drainage and negative for imbibition. The fact remains that formulation of the area transport
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equation based on mass conservation principles, but ultimately relying on a hypothesis, has
been shown to differ fundamentally from the other perspectives outlined here
[3,21,30,37,38,41,56] that assert that interfacial area deformations and transport are
independent of physical conservation principles. Evolution equations for interfacial areas
and for common curves are related to mathematical differential geometry issues rather than
fundamental physical conservation laws.

8 Closed Two-Fluid-Phase Flow Model
The previously derived equations for specific interfacial area evolution and the
approximations of the normal velocity of these entities can be used to produce a closed two-
fluid-phase flow model using the TCAT approach. Because these new equations enter the
TCAT formulation as closure relations, the previously detailed two-fluid-phase flow model
given by Jackson et al. [39] can be supplemented with the new equations derived in this
work to produce a closed model. Jackson et al. [39] assumed that the two fluid phases were
continuous, such as would be the case when a water saturated porous medium was drained
by a non-wetting phase. The general case of two fluid phase flow was not addressed because
of the complications associated with the coalescence and break-up of individual fluid
regions, which affect specific interfacial areas and common curve lengths. Because the
formulation detailed above includes these mechanisms, the two-fluid-phase flow model of
Jackson et al. [39] can be extended to the more general case of any combination of fluid
morphologies and topologies without resorting to a need to rederive the entropy inequality
portion of the formulation.

Our objective here is not to provide a model of great complexity that models an extremely
broad range of porous medium situations. Rather, we wish to provide an indication of how
the geometric evolution equations can enter a formulation. More specifically, we will
examine a system in which the solid phase does not deform and the common curve density
is considered to be described by an equation of state. This approach allows us to highlight
how the fluid-fluid interfacial area density evolution equation fits within a formulation. The
simple model presented here does not exploit the full potential of TCAT and the evolution
equations in modeling a complex system. The equations presented are a subset of those
considered in [39].

Interest here is in an isothermal porous medium system composed of two immiscible fluids
and a rigid solid where no chemical reactions are occurring and mass exchange between
phases is negligible. Additionally, we will consider the interfaces between phases, as well as
the common curve, to be massless.

The macroscale mass conservation equations for the fluid phases are

(106)

In [39] it was shown that the driving force for flow is the sum of chemical and gravitational
potentials. In many instances, it may be possible to approximate this force being related to
the pressure gradient and gravity. If that situation is employed here, the momentum
equations for the fluids employed are of a Darcy type with cross-coupling such that

(107)
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where the resistance tensors  are functions of saturation and the interfacial areas.
Equations of state will also be employed that related the fluid densities to pressure for the
isothermal case of the forms

(108)

Eqns (106)–(108) comprise a set of 10 scalar equations in the 13 variables sw, ρw, ρn, vw̄, vn̄,
pw, pn, εwn, and εws. Thus, we have a deficit of three equations. We note that in standard
approaches to modeling this set of equations, the dependence of resistance on the interfacial
areas is not included so that only 11 variables are involved, and the equation deficit is one.
For such a case, the closure is achieved by proposing a capillary pressure function that
relates the two pressures and saturations. A more general approach is employed here that
includes the interfacial areas such that we are in need of three additional equations.

The capillary pressure relation will be considered that accounts for disequilibrium between
the pressures on each side of the interface between phases and the curvature needed for
equilibrium between the pressures to hold. In [39], it was shown that the correct formulation
of the capillary pressure involves averages of phase pressures over the interface. Some
additional work is needed to arrive at an improved formulation for the capillary pressure that
accounts for the dynamics of the interface and the fact that the phase average pressure is
typically employed. That work will be postponed for the time being and, instead, we employ
the common expression

(109)

In this form, the product  is typically identified as an equilibrium capillary pressure
[55]. Here, the explicit presence of the interfacial curvature is interesting because it denotes
a geometric situation. We will consider that the macroscale curvature may be expressed as a
function of saturation and the interfacial area densities. Note that for a phase present in a
sphere or collection of spheres, the curvature of the boundary of the interface will be
uniquely defined if the phase volume and bounding area are known. For the porous medium
case, we adopt a somewhat more general functional form and assume

(110)

Eqns (109) and (110) add two equations to the set, but only one variable, , such that the
equation deficit is reduced to two. A constitutive relation will be needed for the additional
parameter ĉwn.

The needed additional equations are obtained as evolution equations for the ws and wn
interface. In this simple model, the common curve dynamics are considered unimportant so
that, in the rate expression for wetting of the solid given by eqn (75), we consider k̂ws to be
very large so that

(111)

Multiplication of this constitutive function by εss provides the expression for εws as
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(112)

The final equation needed to close this system is obtained from eqn (87) which may be
simplified for the case of an immobile, non-deforming solid to

(113)

This equation requires support from a constitutive expression for  as given by eqn (103)
and repeated here for completeness

(114)

Constitutive functional forms for the coefficients Âw(εwn, sw), Ân(εwn, sw) k̂wn(εwn; sw),

, and  must also be supplied so that the equation system is fully closed.
The geometric orientation tensor, Gwn is also required. As a first estimate, one might
consider isotropic interface orientation such that Gwn = I/3. In any event, the equation set
reveals the potentially important parameters, each of which can be related to operative
physical processes in the system, when the interfacial area density is to be included in a two-
fluid phase porous medium flow model.

9 Discussion
The purpose of this paper has been to establish relationships for the evolution of interfaces
and the common curve in two-fluid-phase porous medium systems. Equations have been
developed for interfaces between the solid and each of the fluid phases as well as for the
interface between the two fluid phases. Additionally, an expression was obtained for the
evolution of the common curve at the solid surface where the three phases meet. These
equations were developed on the basis of mathematical statements that provide information
about changes in the area of a surface or the length of a curve as a result of the motion of
points on these entities. These equations are independent relations that do not depend on
conservation of mass, momentum, or energy. This observation is consistent with that of
approaches taken previously in continuum mechanics, bubbly flow modeling, and some
porous medium analyses. The velocities that appear in the evolution equations are average
entity velocities, not mass-weighted velocities. Also, constitutive equations for the
macroscale interface and common curve velocities have been advanced.

Based on the equations developed, a relatively simple closed model for two phase flow has
been proposed. This model provides a generalization of usual two-phase flow models in that
the fluid-fluid interfacial area density is incorporated into the model. The formulation gives
rise to a number of constitutive functions that must be developed. Although the overhead
may seem daunting, the framework provided here is physically and mathematically
consistent such that it lends itself to subsequent experimental and computational studies that
should provide useful correlations and parameterizations. Of course, if one presumes that
interfacial areas are not important, the generalized model here reduces to commonly used
forms.
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Although the closed model provided here is for the case where the solid is immobile, and the
common curve kinematics are not included, the full framework has been provided for
including these effects.

Notation
Roman letters

Â constitutive coefficient for interface velocity

B̂ constitutive coefficient for common curve velocity

d rate of strain tensor

da differential element of surface

êwn interfacial area generation

e generation term due to coalescence and break up

e unit outward normal endpoint vector for a common curve

f general function

fι general microscale property

G Geometric tensor

I identity tensor

ℑ index set of entities

ℑc index set of connected entities

ℑC index set of common curves

ℑf index set of fluid-phase entities

ℑI index set of interfaces

ℑP index set of phase entities

Jι surface curvature defined as the surface divergence of the outward normal from
entity ι

macroscale curvature of the ι interface obtained as average of ∇′ · nκ over the
interface over the ι interface

K̂wn interfacial permeability tensor

k̂ generation rate coefficient

L1 model parameter

L2 model parameter

rate of transfer of mass per volume from the κ to the ιentity

nι outward normal vector from entity ι on its boundary when ι ∈ ℑP, tangent vector to
surface and outward normal from the bounding common curve ι when ι ∈ ℑI, and
tangent to the common curve when ι ∈ ℑC

𝒫 microscale quantity

p fluid pressure

pc macroscale capillary pressure

R ̂ resistance tensor
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r rate of generation

s saturation

t time

V size of averaging volume

v velocity

w velocity of the interface or common curve

W weighting function

W arbitrary reference macroscale velocity

w′ velocity of the surface tangent to the surface

Greek letters

γ interfacial tension

δ rate of strain tensor

ε porosity

ει specific entity measure of the ι entity

κG geodesic curvature

κN normal curvature

μ̂ dynamic viscosity

ρ mass density

φ contact angle

fraction of the solid surface in contact with the κ entity, where κ is a fluid phase

Ω spatial domain

Ω̄ closure of spatial domain

Subscripts (for microscale) and superscripts (for macroscale)

eq equilibrium value

i general index

j general index

n non-wetting-phase qualifier

ns qualifier for interface formed by the intersection of the non-wetting and solid phases

s solid-phase qualifier

ss solid surface qualifier

w wetting-phase qualifier

wn qualifier for interface formed by the intersection of wetting and non-wetting phases

wns qualifier for common curve formed by the intersection of the wetting, non-wetting,
and solid phases
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ws qualifier for interface formed by the intersection of wetting and solid phases

α entity qualifier

β entity qualifier

γ entity qualifier

δ entity qualifier

ι entity qualifier

κ entity qualifier

Symbols

– above a superscript refers to a density weighted macroscale average

= above a superscript refers to a uniquely defined macroscale average

′ vector tangent to a surface

″ vector tangent to a common curve

^ identifies a constitutive coefficient

Acknowledgments
This work was supported by National Science Foundation grant ATM-0941235, Department of Energy grant DE-
SC0002163, and National Institute of Environmental Health Sciences grant P42 ES05948.

References
1. Al-Raoush RI, Willson C. A pore-scale investigation of a multiphase porous media system. Journal

of Contaminant Hydrology 2005;77:67–89. [PubMed: 15722173]
2. Al-Raoush RI, Willson CS. Extraction of physically realistic pore network properties from three-

dimensional synchrotron X-ray microtomography images of unconsolidated porous media systems.
Journal of Hydrology 2005;300(1–4):44–64.

3. Alts T, Hutter K. Continuum description of the dynamics and thermodynamics of phase boundaries
between ice and water. Part I: Surface balance laws and their interpretation in terms of three-
dimensional balance laws averaged over the phase change boundary layer. Journal of Non-
Equilibrium Thermodynamics 1988;13:221–257.

4. Anderson TB, Jackson R. A fluid mechanical description of fluidized beds. Industrial and
Engineering Chemistry Fundamentals 1967;6:527–539.

5. Argentini R, Bakker A, Lowe C. Efficiently using memory in lattice Boltzmann simulations. Future
Generation Computer Systems 2004;20(6):973–980.

6. Bachmat Y. Spatial macroscopization of processes in heterogeneous systems. Israel Journal of
Technology 1972;10:391–403.

7. Bijeljic B, Blunt MJ. Pore-scale modeling of transverse dispersion in porous media. Water
Resources Research 2007;43(12)

8. Bondino I, McDougall SR, Hamon G. Pore network modeling of heavy-oil depressurization: A
parametric study of factors affecting critical gas saturation and three-phase relative permeabilities.
Spe Journal 2005;10(2):196–205.

9. Bryant SL, King PR, Mellor DW. Network model evaluation of permeability and spatial correlation
in a real random sphere packing. Transport in Porous Media 1993;11(1):53–70.

10. Chen C, Packman AI, Gaillard JF. Pore-scale analysis of permeability reduction resulting from
colloid deposition. Geophysical Research Letters 2008;35(7) doi 10.1029/2007GL033077.

Gray and Miller Page 39

Adv Water Resour. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



11. Cintra JS Jr, Tucker CL III. Orthotropic closure approximations for flow-induced fiber orientation.
The Society of Rheology 1995 November/December;39(6):1095–1122.

12. Coles ME, Hazlett RD, Muegge EL, Jones KW, Andrews B, Dowd B, Siddons P, Peskin A,
Spanne P, Soll W. Developments in synchrotron X-ray microtomography with applications to flow
in porous media. SPE Reservoir Evaluation and Engineering 1998;1(4):288–296.

13. Coles ME, Hazlett RD, Spanne P, Soll WE, Muegge EL, Jones KW. Pore level imaging of fluid
transport using synchrotron X-ray microtomography. Journal of Petroleum Science and
Engineering 1998;19(1–2):55–63.

14. Crouse B, Rank E, Krafczyk M, Tölke J. A LB-based approach for adaptive flow simulations.
International Journal of Modern Physics B 2003;17(1–2):109–112.

15. d’Humiéres D, Ginzburg I, Krafczyk M, Lallemand P, Luo LS. Multiple-relaxation-time lattice
Boltzmann models in three dimensions. Philosophical Transactions of the Royal Society of
London Series A-Mathematical Physical and Engineering Sciences 2002;360:437–451.

16. Dillard LA, Essaid HI, Blunt MJ. A functional relation for field-scale nonaqueous phase liquid
dissolution developed using a pore network model. Journal of Contaminant Hydrology
2001;48:89–119. [PubMed: 11291483]

17. Ding H, Spelt PDM, Shu C. Diffuse interface model for incompressible two–phase flows with
large density ratios. Journal of Computational Physics 2007;226(2):2078–2095.

18. Gibbs SJ, Hall LD. What roles are there for magnetic resonance imaging in process tomography?
Measurement Science & Technology 1996;7(5):827–837.

19. Ginzburg I. Equilibrium-type and link-type lattice Boltzmann models for generic advection and
anisotropic-dispersion equation. Advances in Water Resources 2005;28(11):1171–1195.

20. Gladkikh M, Bryant S. Prediction of interfacial areas during imbibition in simple porous media.
Advances in Water Resources 2003;26(6):609–622.

21. Gray WG. Thermodynamics and constitutive theory for multiphase porous-media flow considering
internal geometric constraints. Advances in Water Resources 1999;22(5):521–547.

22. Gray WG, Hassanizadeh SM. Averaging theorems and averaged equations for transport of
interface properties in multiphase systems. International Journal of Multiphase Flow 1989;15(1):
81–95.

23. Gray WG, Hassanizadeh SM. Macroscale continuum mechanics for multiphase porous-media flow
including phases, interfaces, common lines and common points. Advances in Water Resources
1998;21(4):261–281.

24. Gray WG, Lee PCY. On the theorems for local volume averaging of multiphase systems.
International Journal of Multiphase Flow 1977;3:333–340.

25. Gray WG, Miller CT. Thermodynamically constrained averaging theory approach for modeling
flow and transport phenomena in porous medium systems: 1. Motivation and overview. Advances
in Water Resources 2005;28(2):161–180.

26. Gray WG, Miller CT. Thermodynamically constrained averaging theory approach for modeling
flow and transport phenomena in porous medium systems: 3. Single-fluid-phase flow. Advances in
Water Resources 2006;29(11):1745–1765.

27. Gray WG, Miller CT. Thermodynamically constrained averaging theory approach for modeling
flow and transport phenomena in porous medium systems: 5. Single-fluid-phase transport.
Advances in Water Resources 2009;32(5):681–711.

28. Gray WG, Miller CT. Thermodynamically constrained averaging theory approach for modeling
flow and transport phenomena in porous medium systems: 7. Single-phase megascale flow
models. Advances in Water Resources 2009;32(8):1121–1142. [PubMed: 20436941]

29. Gray, WG.; Leijnse, A.; Kolar, RL.; Blain, CA. Mathematical Tools for Changing Spatial Scales in
the Analysis of Physical Systems. Boca Raton: CRC Press; 1993.

30. Gray WG, Tompson AFB, Soll WE. Closure conditions for two-fluid flow in porous media.
Transport in Porous Media 2002;47(1):29–65.

31. Gupta M, Wang KK. Fiber orientation and mechanical properties of short-fiber-reinforced
injection-molded composites: Simulated and experimental results. Polymer Composites 1993
October;14(5):367–382.

Gray and Miller Page 40

Adv Water Resour. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



32. Hammer EA, Johansen GA. Process tomography in the oil industry – state of the art and future
possibilities. Measurement & Control 1997;30(7):212–216.

33. He XY, Chen SY, Zhang RY. A lattice Boltzmann scheme for incompressible multiphase flow and
its application in simulation of Rayleigh-Taylor instability. Journal of Computational Physics
1999;152(2):642–663.

34. Helland JO, Skjaeveland SM. Three-phase mixed-wet capillary pressure curves from a bundle of
triangular tubes model. Journal of Petroleum Science and Engineering 2006;52(1–4):100–130.

35. Hilpert M, McBride JF, Miller CT. Investigation of the residual-funicular nonwetting-phase-
saturation relation. Advances in Water Resources 2000;24(2):157–177.

36. Hou J. Network modeling of residual oil displacement after polymer flooding. Journal of
Petroleum Science and Engineering 2007;59:321–332.

37. Ishii M, Kim S. Development of one-group and two-group interfacial area transport equation.
Nuclear Science and Engineering 2004;146:1–17.

38. Ishii M, Kim S, Kelly J. Development of interfacial area transport equation. Nuclear Engineering
and Technology 2005;37(6):525–536.

39. Jackson ABS, Miller CT, Gray WG. Thermodynamically constrained averaging theory approach
for modeling flow and transport phenomena in porous medium systems: 6. Two-fluid-phase flow.
Advances in Water Resources 2009;32(6):779–795.

40. Johns ML, Gladden LF. Magnetic resonance imaging study of the dissolution kinetics of octanol in
porous media. Journal of Colloid and Interface Science 1999;210(2):261–270. [PubMed: 9929413]

41. Kalaydjian F. A macroscopic description of multiphase flow in porous media involving spacetime
evolution of fluid/fluid interface. Transport in Porous Media 1987;2:537–552.

42. Kikkinides ES, Yiotis AG, Kainourgiakis ME, Stubos AK. Thermodynamic consistency of liquid-
gas lattice Boltzmann methods: Interfacial property issues. Physical Review E 2008;78(3, Part 2)

43. Kim, S. PhD thesis. West Lafayette, Indiana: Purdue University; 1999. Interfacial Area Transport
Equation and Measurement of Local Interfacial Characteristics.

44. Kulkarni R, Watson AT, Nordtvedt JE. Estimation of porous media flow functions using NMR
imaging data. Magnetic Resonance Imaging 1998;16(5–6):707–709. [PubMed: 9803946]

45. Li H, Pan C, Miller CT. Pore-scale investigation of viscous coupling effects for two-phase flow in
porous media. Physical Review E 2005;72(2):1–14. 026705.

46. Lowry MI, Miller CT. Pore-scale modeling of nonwetting-phase residual in porous media. Water
Resources Research 1995;31(3):455–473.

47. Mahmud WM, Nguyen VH. Effects of snap-off in imbibition in porous media with different spatial
correlations. Transport in Porous Media 2006;64(3):279–300.

48. Marle C. Ècoulements monophasiques en milieu poreux. Revue de L’Institut Français du Péetrole
1967 October;22(10):1471–1509.

49. Marle CM. On macroscopic equations governing multiphase flow with diffusion and chemical
reactions in porous media. International Journal of Engineering Science 1982;20(5):643–662.

50. Mattila K, Hyvaeluoma J, Timonen J, Rossi T. Comparison of implementations of the lattice–
Boltzmann method. Computers & Mathematics with Applications 2008;55(7):1514–1524.

51. Mavriplis DJ. Multigrid solution of the steady-state lattice Boltzmann equation. Computers &
Fluids 2006;35(8–9):793–804.

52. Miller, CA.; Neogi, P. Interfacial Phenomena. New York: Marcel Dekker; 1985.
53. Miller CT, Gray WG. Thermodynamically constrained averaging theory approach for modeling

flow and transport phenomena in porous medium systems: 2. Foundation. Advances in Water
Resources 2005;28(2):181–202.

54. Miller CT, Gray WG. Thermodynamically constrained averaging theory approach for modeling
flow and transport phenomena in porous medium systems: 4. Species transport fundamentals.
Advances in Water Resources 2008;31(3):577–597. [PubMed: 19255613]

55. Mirzaei M, Das DB. Dynamic effects in capillary pressure-saturations relationships for two-phase
flow in 3D porous media: Implications of micro-heterogeneities. Chemical Engineering Science
2007;62(7):1927–1947.

Gray and Miller Page 41

Adv Water Resour. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



56. Moeckel GP. Thermodynamics of an interface. Archive for Rational Mechanics and Analysis
1975;57:255–280.

57. Niessner J, Hassanizadeh SM. A model for two-phase flow in porous media including fluid-fluid
interfacial area. Water Resources Research 2008;44 (W08439):doi:10.1029/2007WR006721.

58. Niessner J, Hassanizadeh SM. Non-equilibrium interphase heat and mass transfer during two-phase
flow in porous media – Theoretical considerations and modeling. Advances in Water Resources
2009;32:1756–1766.

59. Niessner J, Hassanizadeh SM. Modeling kinetic interphase mass transfer for two-phase flow in
porous media including fluid–fluid interfacial area. Transport in Porous Media 2009;80:329–344.

60. Niessner, J.; Hassanizadeh, SM. Two-phase flow and transport in porous media including fluid-
fluid interfacial area. In: Martin, S.; Williams, JR., editors. Multiphase Flow Research. Nova
Science Publishers; 2009. p. 709-729.

61. Nordhaug HF, Celia M, Dahle HK. A pore network model for calculation of interfacial velocities.
Advances in Water Resources 2003;26(10):1061–1074.

62. Pan C, Hilpert M, Miller CT. Pore-scale modeling of saturated permeabilities in random sphere
packings. Physical Review E 2001;64(6):9.

63. Pan C, Hilpert M, Miller CT. Lattice-Boltzmann simulation of two-phase flow in porous media.
Water Resources Research 2004;40(1)

64. Pan C, Luo L-S, Miller CT. An evaluation of lattice Boltzmann schemes for porous medium flow
simulation. Computers & Fluids 2006;35(8–9):898–909.

65. Piri M, Blunt MJ. Three-dimensional mixed-wet random pore-scale network modeling of two- and
three-phase flow in porous media. I. Model description. Physical Review E (Statistical, Nonlinear,
and Soft Matter Physics) 2005;71(2) 26301-1-30.

66. Premnath KN, Abraham J. Three-dimensional multi-relaxation time (MRT) lattice-Boltzmann
models for multiphase flow. Journal of Computational Physics 2007;224(2):539–559.

67. Qin R. Mesoscopic interparticle potentials in the lattice Boltzmann equation for multiphase fluids.
Physical Review E 2006;73(6, Part 2)

68. Reeves PC, Celia MA. A functional relationship between capillary pressure, saturation, and
interfacial area as revealed by a pore-scale network model. Water Resources Research 1996;32(8):
2345–2358.

69. Sbragaglia M, Benzi R, Biferale L, Succi S, Sugiyama K, Toschi F. Generalized lattice Boltzmann
method with multirange pseudopotential. Physical Review E 2007;75(2)

70. Schaap MG, Porter ML, Christensen BSB, Wildenschild D. Comparison of pressure-saturation
characteristics derived from computed tomography and lattice Boltzmann simulations. Water
Resources Research 2007;43

71. Shan X, Chen H. Lattice Boltzmann model for simulating flows with multiple phases and
components. Physical Review E 1993;47:1815–1819.

72. Sheppard AP, Arns JY, Knackstedt MA, Pinczewski WV. Volume conservation of the intermediate
phase in three-phase pore-network models. Transport in Porous Media 2005;59(2):155–173.

73. Singh R, Chao JH, Popescu M, Tai CF, Mei RW, Shyy W. Multiphase/multidomain computations
using continuum and lattice-Boltzmann methods. Journal of Aerospace Engineering 2006;19(4):
288–295.

74. Slattery JC. Single-phase flow through porous media. American Institute of Chemical Engineers
Journal 1969;15(6):866–872.

75. Sochi T, Blunt MJ. Pore-scale network modeling of Ellis and Herschel-Bulkley fluids. Journal of
Petroleum Science and Engineering 2008;60(2):105–124.

76. Spanne P, Thovert JF, Jacquin CJ, Lindquist WB, Jones KW, Adler PM. Synchrotron computed
microtomography of porous-media - Topology and transports. Physical Review Letters
1994;73(14):2001–2004. [PubMed: 10056943]

77. Sukop MC, Or D. Invasion percolation of single component, multi-phase fluids with lattice
Boltzmann models. Physical B–Condensed Matter 2003;338(1–4):298–303.

Gray and Miller Page 42

Adv Water Resour. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



78. Sukop MC, Huang H, Lin CL, Deo MD, Oh K, Miller JD. Distribution of multiphase fluids in
porous media: Comparison between lattice Boltzmann modeling and micro-x-ray tomography.
Physical Review E 2008;77(2)

79. Thauvin F, Mohanty KK. Network modeling of non-Darcy flow through porous media. Transport
in Porous Media 1998;31(1):19–37.

80. Thoemmes G, Becker J, Junk M, Vaikuntam AK, Kehrwald D, Klar A, Steiner K, Wiegmann A. A
lattice Boltzmann method for immiscible multiphase flow simulations using the level set method.
Journal of Computational Physics 2009;228(4):1139–1156.

81. Tölke J, Krafczyk X, Schulz M, Rank E. Lattice Boltzmann simulations of binary fluid flow
through porous media. Philosophical Transactions of the Royal Society of London Series A-
Mathematical Physical and Engineering Sciences 2002;360(1792):535–545.

82. Tölke J, Freudiger S, Krafczyk M. An adaptive scheme using hierarchical grids for lattice
Boltzmann multi-phase flow simulations. Computers & Fluids 2006;35(8–9):820–830.

83. Toye D, Marchot P, Crine M, Lhomme G. Modelling of multiphase flow in packed beds by
computer-assisted X-ray tomography. Measurement Science & Technology 1996;7(3):436–443.

84. Wang JY, Zhang XX, Bengough AG, Crawford JW. Domain-decomposition method for parallel
lattice Boltzmann simulation of incompressible flow in porous media. Physical Review E
2005;72(1)

85. Whitaker S. Advances in theory of fluid motion in porous media. Industrial and Engineering
Chemistry 1969;61(12):14–28.

86. Wildenschild D, Culligan KA, Christensen BSB. Application of X-ray microtomography to
environmental fluid flow problems. Developments in X-Ray Tomography IV 2004;5535:432–441.

87. Wildenschild D, Hopmans JW, Rivers ML, Kent AJR. Quantitative analysis of flow processes in a
sand using synchrotron-based X-ray microtomography. Vadose Zone Journal 2005;4(1):112–126.

88. Williams RA, Xie CG. Tomographic techniques for characterizing particulate processes. Particle &
Particle Systems Characterization 1993;10(5):252–261.

89. Willson CS, Stacey RW, Ham K, Thompson KE. Investigating the correlation between residual
nonwetting phase liquids and pore-scale geometry and topology using synchrotron X-ray
tomography. Developments in X-Ray Tomography IV 2004;5535:101–111.

90. Zhao WS, Ioannidis MA. Effect of NAPL film stability on the dissolution of residual wetting
NAPL in porous media: A pore-scale modeling study. Advances in Water Resources
2007;30:171–181.

Gray and Miller Page 43

Adv Water Resour. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


