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Three-dimensional (3-D) micron-sized structures have found widespread application in
microelectronics, photonics, and biotechnology.[1–3] Conventional microfabrication
techniques, particularly photolithography and soft lithography, are well-suited to the
production of two-dimensional (2-D) microstructures with precisely controlled patterns
along an x- and y-axis.[4,5] Rudimentary three-dimensional (3-D) structures can be formed
by projecting these 2-D patterns some fixed distance along a z-axis. Truly complex 3-D
microstructures, however, require specialized extensions of these methods or other
independent techniques.[6] Photolithographic strategies such as gray-scale photolithography,
multiphoton lithography, and interference lithography fabricate high resolution 3-D
structures, but generally require light-activated materials and sophisticated
infrastructure.[7–9] Direct layer-by-layer placement or removal of materials, for example,
stereolithography, 3-D printing, and laser ablation, typically exhibit low feature resolution,
low throughput, or require specialized and expensive instrumentation.[10–12] Here we
present a strategy termed liquid lithography which, using no pattern-alignment steps or
dedicated equipment, can nevertheless rapidly and efficiently construct intricate 3-D
assemblies.

Interfacial tension present at the boundary between two immiscible liquids acts to minimize
their contact area. In an isolated system of two immiscible liquids, the shape assumed by the
liquid of lesser volume is that of a sphere (or droplet). If a solid, flat surface is introduced
and the droplet is made to “wet” that surface partially, the shape produced is a truncated
sphere (Figure 1a), or a truncated spherical “microwell” in the matrix liquid.[13] Surface
energy modification can be performed to manipulate the wetting properties of liquids on the
flat substrate, in a sense stretching the truncated spheres into elongated shapes such as hemi-
cylindrical microchannels.[14] However, the complexity of surfaces generated by these
methods is ultimately very limited. Significantly greater complexity can arise when substrate
geometry, rather than surface chemistry, is used as the primary mechanism to direct
placement of the liquid-liquid interface.

In liquid lithography, a geometrically-patterned substrate serves two purposes. First, it acts
as a boundary for the immiscible liquids interacting with its surface. More fundamentally, it
serves to direct placement of their liquid-liquid interface. Solidification and retrieval of one
of the immiscible liquids reveals the topographical features encoded by the multicomponent
system.
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We begin with a simple example, the conversion of an array of cylindrical microwells to an
array of micropillars terminated in smooth, spherically-curved concave and convex surfaces
(Figure 1c–h). An isolated droplet of a “first liquid” is deposited in each microwell of the
array through the simple, rapid, highly-parallel process of discontinuous dewetting.[15] The
entire array is covered with a solution of the first liquid in a volatile solvent, and the excess
(all that is not physically trapped in the microwells) is drained away. The solvent is
evaporated with a short low-temperature bake. A “second liquid,” immiscible with the first,
is then added to cover the entire array, replacing the liquid-air interfaces with liquid-liquid
interfaces. The liquid-liquid interfaces define “micro-menisci.” Solidification and retrieval
of the second liquid produces an array of meniscus-terminated micropillars (Figure 1h),
which can be used as microlens arrays[16] (Figure S1), while the curved bottoms of replica-
molded microwell arrays (Figure 1i, Figure 2a–j) can be used for cell culture.[17]

To generate the meniscus terminated microwell/micropillar structures shown here,
polyhydric alcohols (“polyols”) were used as first liquids, with dewetting solutions
consisting of roughly equal mixtures of polyols and water. Polydimethylsiloxane (PDMS)
prepolymer was used as the second liquid. Cylindrical microwell array substrates were
fabricated from the negative photoresist SU-8 by standard photolithography and used as is,
or after in vacuo surface treatment with octyl- or ethyltrichlorosilane. SU8 photolithography
is common practice in the microfabrication community, and soft lithography of PDMS is
nearly ubiquitous. While not regularly employed in conventional lithographies, polyols are
commonly used in other laboratory operations, and in general this class of chemicals is
nontoxic, inexpensive, and highly water-soluble.

The direction and magnitude of curvature for these micro-menisci are determined by the
contact angle of the polyol/PDMS/substrate system (Figure 1a,b). The contact angle is in
turn controlled by the interfacial tensions at the liquid-liquid and liquid-solid interfaces
according to Young's equation:

(1)

Interfacial tensions for the liquid-liquid and liquid-solid combinations used here are not
available in the literature and are difficult to determine empirically. Fortunately, the surface
energies (i.e. the interfacial tension against air) of most of the liquids and solid surfaces one
would wish to employ in this lithography method are available, and these parameters can be
used along with Young's equation to make accurate qualitative predictions about wetting
behavior. When the difference in surface energy of two phases is small, the interfacial
tension between the two is generally also small, especially when the two phases are
chemically similar.[18] Conversely, when the surface energy of one phase is much greater
than the surface energy of its partner, the interfacial tension tends to be large.

From equation (1) it can be observed that as the interfacial tension between the polyol and
the substrate (γpolyol/substrate) goes to zero, cos(θ) tends toward positive values, yielding <90°
contact angles. Thus, when the polyol and the substrate have similar surface energies,
γpolyol/substrate is low, and “wetting” behavior is observed. Similarly, small surface energy
differences between PDMS and the substrate are correlated with small γPDMS/substrate values,
negative cos(θ) values (θ>90°), and “non-wetting” behavior of the polyol.

Contact angle control via surface energy manipulation was demonstrated using the
transformation of cylindrical microwells to meniscus-terminated micropillars/microwells
(Figure 2). The non-wetting condition was observed with octyltrichlorosilane-treated SU-8
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substrates (surface energy 22.9 mN m−1), since both it and the “second liquid” PDMS (20.8
mN m−1) had roughly the same surface energy, and presumably a low interfacial tension
(γPDMS/substrate). Wetting was generally observed for the higher surface energy untreated
SU-8 substrates (45.2 mN m−1),[19] while both wetting and non-wetting behavior was
observed for intermediate surface energy ethyltrichlorosilane-treated SU-8 (SE 34.1 mN
m−1).

Although in theory, it is possible to modify the surface energy of any of the three phases, in
practice, for the combination of liquids and substrates used above, it is most convenient to
modify the properties of the SU-8 substrate and the polyol first liquid. “Digital” control of
contact angle could be effected by use of specific combinations of substrate surface
treatment and a pure polyol (Figure 2k). “Analog” modulation was obtained through use of
mixtures of two miscible polyols (Figure 2l). By varying the ratio at which the two materials
are mixed, a binary polyol with any surface energy between that of the two pure materials
can be produced—increasing the polyol surface energy indirectly modifies the polyol-
associated interfacial tensions (γpolyol/substrate and γPDMS/polyol), generally increasing both
terms while γPDMS/substrate is held constant, resulting in θ being pushed incrementally
towards larger values. The overlap in contact angle range for each substrate type (Figure
2k), coupled with the precise control of contact angle afforded by the use of binary polyol
mixtures (Figure 2l), means that the entire range of contact angles (and meniscus curvatures)
from the extremes of Figure 2a (5°) to 2e (160°) are accessible using this set of three
common materials. The 0–5° and 160–180° range can be spanned by use of different liquids
and/or substrates or surface treatments.

Altering the polyol fill volume and substrate geometry yielded additional topographic
features (Figure 3) using the same fabrication procedure outlined in Figure 1c–i. These are
but a few examples of the wide range of structures that can be produced and may find use as
fasteners, adhesives, microcontainers, photonics and fluidic components.[20–22] Fabrication
details are given in the Supporting Information.

As is typical of liquid lithography, the resulting final product features are similar to, but
distinct from, the features present on the substrate. Although still geometrically modest,
microstructures like those presented in Figure 3 are challenging if not impossible to produce
in standard microfabrication laboratories which lack advanced lithographic equipment (e.g.
micro-stereolithography).[23] Even with such equipment, these structures can only be made
out of a very limited set of materials, usually at high cost and with low throughput. Liquid
lithography allows production of structures with smooth curved surfaces and cavities of
well-defined size and placement, starting from substrate structures without these features
(such as the straight side-walled, “prismatic” structures produced by standard
photolithography or CNC milling). Thus, in these examples, liquid lithography can be
thought of as a simple method of extending the range of structures which can be produced in
an individual microfabrication laboratory given the restraints of what specific lithography
techniques and capabilities are available. Additionally, simple microwell and microchannel
molds, such as those used in the production of the Figure 3 structures, can also be obtained
from commercial foundries so that liquid lithography, like soft lithography, should be
readily accessible to most labs.

In all cases presented thus far, an SU-8 substrate, a polyol first liquid, and PDMS
prepolymer second liquid were used to effect liquid lithography with the transformation
recorded in the solidified PDMS. These materials were chosen due to their familiarity within
the micro-fabrication community and their easy incorporation into this molding method, but
the method is not reliant on them. Further, either of the immiscible liquids is a candidate for
solidification. Varying the materials, solidified layer and/or substrate geometry can lead to
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increasingly intricate microstructures. A notable example is the use of a solidifiable liquid in
place of the polyol and the application of a very high surface energy, sacrificial liquid in
place of the PDMS prepolymer. Sorbitol (glucose sugar alcohol) was used as the high
surface energy “second” liquid since it is inexpensive, non-toxic, and highly water-soluble.
Initially, SU-8 was employed as the solidifiable “first” liquid. Fully-cured PDMS elastomer
formed the substrate. Solutions of SU-8 in gamma-butyrolactone (GBL) were deposited on
the substrate, followed by dewetting and baking to remove solvent. Sorbitol was overlaid
and thermal reflow of SU-8 was initiated (Figure 4a–c). Solidification of the SU-8 was
achieved by a phase change from liquid to solid upon cooling to room temperature, and
exposure to UV light chemically cross-linked the material for added strength.

The high surface energy of the sorbitol yielded large second-liquid-associated interfacial
tensions [γsorbitol/substrate and γsorbitol/SU-8, equation (2)], driving cos θ towards 1.0 and a
contact angle of 0° (i.e. “perfect wetting”). Areas of the substrate which contained high
surface-area-to-volume (SA/V) ratio features were wetted preferentially, and SU-8 was
effectively “pushed” into the edges and grooves of the substrate structure (Figure 4a,c).
Even with a simple substrate geometry (a triangular microwell array), relatively complex
multi-level structures could be produced (Figure 4d,e).

(2)

Structures which bear progressively diminished resemblence to the initial substrate mold can
be formed by utilizing sequential rounds of liquid lithography wherein the product of the
first stage forms the structured substrate for the second stage. As a demonstration, we
created an array of micrometer-scale rotundas (Figure 4h,i, Figure S3). Many other
sophisticated structures can similarly be built by performing sequential liquid lithography or
by employing more than two immiscible liquids.

To demonstrate the diversity of materials suitable for liquid lithography, a complex
microfabricated “mesh” structure was produced from the biodegradable thermoplastic
poly(DL-lactide) (PDLLA) using the same “groove-filling” phenomenon discussed above.
The mesh consisted of an array of micro-baskets set within a plane (Figure 4f,g). The entire
face of the mesh was covered in pores of 15 μm or less, and the thickness of the PDLLA did
not exceed 20 μm at any point. Both pore size and thickness can be further reduced, and
more elaborate architectures are possible using the same simple, rapid, low-waste process
(see Supporting Information). Template patterns were defined by three-layer
photolithography. PDMS substrates were produced from these photoresist templates by soft
lithography (at minimum dozens of such substrates can be made in this manner). One PDMS
substrate was used to make forty of these mesh structures, with no damage to the substrate
features. Taken together, these two 'pattern amplification' steps allow a large number of final
products to be manufactured via liquid lithography, diluting the cost of producing the
complex, multi-level substrate template as production volume increases. These structures
may find use in the formation of intricately patterned, biodegradable scaffolding, for
example, in tissue engineering.[24] Similar structures were also fabricated from polystyrene
(Figure S2).

Although polymerizable monomer/prepolymer materials can be manipulated in the same
manner, the ability to pattern high MW themoplastic polymers directly permits use of
materials familiar to biological study (e.g. polystyrene).[25] Additionally, while this method
is similar to soft lithography in the cost and ease of making micro-structured cell culture
surfaces, our technique can readily make use of materials besides PDMS, which is
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increasingly being recognized for its propensity to leach unreacted oligomers into the cell
culture medium, and to absorb small, hydrophobic molecules into its porous matrix.[24–27]

Many micro-fabricated “organ-on-a-chip” devices incorporate flat, micro-porous membrane
components, which allow diffusion of molecular species across the membrane and co-
culture of different cell types on opposing faces.[28–31] However, cells in many tissues are
present in a configuration of 3D micrometer-scale topography. This method allows
production of porous membranes which retain their ability to co-culture complementary cell
types, while presenting in-vivo-like local topography, even as global (macro-scale) planarity
is maintained, allowing imaging of the entire array by conventional microscopy methods.
Although it's known that some cell types recognize and respond to 3D micro-scale
structure,[32–34] further study is required to determine if in vivo-like local micro-topography
could enhance the physiological mimicry of cells grown on these porous membrane
scaffolds.

We have developed an alignment-free method capable of rapidly and inexpensively
producing arrays of intricate microstructures. Liquid lithography is flexible from a materials
standpoint, working well with thermoset polymers, solvent-processible thermoplastics, and
other photoactive and non-photoactive materials. The structured substrates may be
fabricated out of a variety of substances by conventional photolithography, soft lithography,
CNC drilling, 3-D printing or other methods.

The particular structures shown in this work are not a comprehensive set. Liquid types and
volumes, as well as substrate surface energies and geometries can be programmed to permit
a greatly expanded portfolio of microstructures. Computational modeling should enable
formation of increasingly sophisticated structures, although for basic substrate geometries
predictions of the liquid interface topography can be made intuitively without elaborate
calculations. We expect liquid lithography to find immediate use as a simple means of
expanding the range of structures that can be fabricated in laboratories equipped with
standard lithography instrumentation. In the longer term, we believe that the speed and
economy by which this method produces microstructures, along with its significant
materials possibilities, will allow this technology to find substantial applications in a
multiplicity of fields.

Experimental Section
SU-8 photoresist substrates were produced through standard photolithography. Surfaces
were modified by exposure to either ethyl- or octyltrichlorosilane in vacuo for >3 hours.
PDMS substrates were produced via soft lithography[5] using photoresist templates.

Substrates with recessed microstructures were charged with first liquid through
discontinuous dewetting [15]. Dewetting occurred on flat surfaces outside of raised
microstructure arrays, while the arrays themselves pinned macroscopic “droplets,“ ≤1 mm
tall, existing continuously between (and sometimes above) the raised features.

First liquid solutions were composed of: 10, 20, 25 or 40% w/w mixtures of one or two
polyol materials in water; 5, 25 or 50% SU-8 in GBL; or 25% PDLLA or poly(styrene) in
gamma-valerolactone (GVL). After substrates were charged with first liquid (solution), the
volatile solvent, when present, was baked away before (polyols and SU8) or after (PDLLA
and PS) overlay of second liquid.

Meniscus-terminated micropillars were produced using treated and untreated SU8 microwell
array substrates, PDMS prepolymer second liquid, and polyol first liquid (dipropylene
glycol, tetraethylene glycol, 1,2,6-hexanetriol, glycerol, D-ribose, or sorbitol, 40% w/w in
water). After discontinuous dewetting, water was removed by a 65 °C bake for 4–20 min.
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PDMS was overlaid and exposed to vacuum for 30 s to remove air trapped between the
polyol surface and microwell opening. PDMS was cured at 65 C for 1–2 hr, demolded,
rinsed with DI water and baked at 120 °C for 30 min. Meniscus-terminated microwells
(Figure 2a–j) were produced from the micropillars through soft lithography. The structures
in Figure 3c–j were produced similarly, without the replica molding step, using 10, 20, 25,
40 or 100% tetraethylene glycol or glycerol solutions (see Supporting Information).

SU-8, PDLLA and PS structures were produced using molten sorbitol second liquid (120
°C) and fully-cured PDMS substrates. In SU-8 molding, substrates were charged with SU-8
solutions, and baked at 95 °C 60 min to remove solvent; SU-8 was reshaped around bulk
overlaid sorbitol (Figure 4c) or sorbitol micro-droplets (Figure d,e,h,i) by heating to 120 °C
for 30 min. After cooling to room temperature, the SU-8 was cross-linked by exposing to
400 mJ cm−2 UV light. SU-8 microparticles were extracted from the substrate in array form
by attaching their “tops” to an epoxy slab before demolding (Figure d,e,h,i) and washing out
the sorbitol droplets. In PDLLA and PS molding, molten sorbitol was overlaid within 1
minute of the dewetting step, and heated for 15 min at 120 °C to remove solvent. The thin,
delicate polymer “mesh” structures (Figure 4f,g, Figure S3) were cleaned of overlaying
sorbitol with DI water, and covered with a conformal film of water soluble polymer to serve
as a rigid backing during demolding. The backings were later dissolved in DI water. Details
are provided in the Supporting Information.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
(a) Structured substrates direct placement of liquid volumes and immiscible liquid
interfaces. (b) Definition of liquid/liquid/solid contact angle. When (b) represents a
cylindrical microwell cross-section, cos(θ) is numerically equivalent to the quantity a/R
(microwell radius over meniscus radius). (c–i) An example of the liquid lithography process.
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Figure 2.
Control of micropillar/microwell meniscus curvature via surface energy manipulation. (a–j)
Cross-sections through PDMS microwells produced from replica molding off L.L.-made
micropillars. (a–e) Microwells generated using different combinations of polyols and
substrate surface treatments (a,b, tetraethylene glycol; c,d,e sorbitol; a,c SU-8; b,d and e,
ethyl- and octyltrichlorosilane treated SU-8, resp.). (f–j), Microwells created with native
SU-8 and a mixture of tetraethylene glycol and glycerol, at 0 (f), 20 (g), 40 (h), 70 (i), and
100 % (j) w/w TG/glycerol. (k) Coarse control of curvature using different combinations of
polyols and substrate surface treatments. (l) Fine control of curvature using a mixture of
tetraethylene glycol and glycerol. Error bars span two standard deviations on 9
measurements (k) and 4 measurements (l). Scale bars = 50 μm.

Balowski et al. Page 9

Adv Mater. Author manuscript; available in PMC 2014 August 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Increased structural complexity via manipulation of polyol fill volume and use of substrates
with non-radially-symmetric features. (a) Schematic of the shape dependence on polyol
filling level under wetting/non-wetting conditions. (b) Schematic showing the wicking
behavior of a wetting polyol in high SA/V regions. (c–j) PDMS microstructures produced
from substrates with simple recessed features under different wetting conditions and first
liquid fill volumes. Scale bar = 50 μm.
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Figure 4.
(a) Schematic of liquid pushed into high SA/V features by overlaying high-surface energy
liquid during thermal-initiated reflow (for SU-8) or concurrent with solvent loss (for
PDLLA). (b,c) SU-8 in a notched PDMS microwell without (b) and with (c) thermal reflow.
(d,e) SU-8 trigonal prism “cages” and “tables.” (f,g) PDLLA micro-patterned porous mesh.
(h,i) SU-8 rotundas fabricated using two sequential L.L. operations. Scale bar = 50 μm in
(b–f) and 100 μm in (g–i).
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