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ABSTRACT: A series of N-benzylated-5-methoxytryptamine
analogues was prepared and investigated, with special emphasis
on substituents in the meta position of the benzyl group. A
parallel series of several N-benzylated analogues of 2,5-
dimethoxy-4-iodophenethylamine (2C-I) also was included
for comparison of the two major templates (i.e., tryptamine
and phenethylamine). A broad affinity screen at serotonin
receptors showed that most of the compounds had the highest
affinity at the 5-HT2 family receptors. Substitution at the para
position of the benzyl group resulted in reduced affinity,
whereas substitution in either the ortho or the meta position
enhanced affinity. In general, introduction of a large lipophilic group improved affinity, whereas functional activity often followed
the opposite trend. Tests of the compounds for functional activity utilized intracellular Ca2+ mobilization. Function was measured
at the human 5-HT2A, 5-HT2B, and 5-HT2C receptors, as well as at the rat 5-HT2A and 5-HT2C receptors. There was no general
correlation between affinity and function. Several of the tryptamine congeners were very potent functionally (EC50 values from
7.6 to 63 nM), but most were partial agonists. Tests in the mouse head twitch assay revealed that many of the compounds
induced the head twitch and that there was a significant correlation between this behavior and functional potency at the rat 5-
HT2A receptor.
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■ INTRODUCTION

Recently, an extremely potent hallucinogenic phenethylamine,
25I-NBOMe (N-(2-methoxybenzyl)-2,5-dimethoxy-4-iodophe-
nethylamine; “smiles”) 1 has been available on the illicit drug
market.1 For purposes of enforcement, it is presently
considered by the Drug Enforcement Administration (DEA)
to be an analogue of 2C-I (2), which is currently a Schedule I
controlled substance. The procedure to classify 1 as a Schedule
I substance has been initiated, and it has been placed
temporarily into Schedule I.2 Unfortunately, several deaths
have been associated with the use of 1,3−5 but it is not clear
whether the deaths resulted from the ingestion of lethal
amounts of pure solid drug, or whether the drug has some
inherent toxicity that is not normally associated with other
hallucinogens.
There has been increasing global interest in 1 and closely

related analogues. For example, the European Monitoring

Centre for Drugs and Drug Addiction (EMCDDA) has
received a range of notifications from EU Member States
about analytically confirmed nonfatal and fatal intoxications
associated with 1. This was then followed by a risk assessment
conducted by the Scientific Committee of the EMCDDA in
order to assess health and social risks associated with this
particular analogue.6 In addition, the World Health Organ-
ization’s Expert Committee on Drug Dependence reviewed the
status of a range of new substances for its 36th meeting in June
2014, which included 1 and its 4-bromo and 4-chloro
analogues.7 In September 2014, the Council of the European
Union decided to subject 1 to control measures and criminal
penalties throughout the European Union.8
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Typically, simple N-alkylation dramatically attenuates or
abolishes hallucinogenic activity in phenethylamines.9,10 The N-
benzyl moiety, however, confers exceptionally high potency
onto the molecule,11−15 and we have presented evidence that
the N-benzyl may engage F339 in the human 5-HT2A
receptor.14 We also examined various N-arylmethyl substituents
and found that a variety of aryl groups were effective in
enhancing potency.16,17 In addition, the presence of a polar
substituent at the ortho position of the aryl ring (a possible
hydrogen bond acceptor) further enhances activity.18 Silva et
al.18 also have reported that in an in vitro cylindrical rat tail
artery strip 1 had a pEC50 of 10.09 and an Emax of 30%.
Two decades ago, Glennon et al.19 reported that the affinities

of the N-benzyl compound 3a, as well as the 4-bromo- and 4-
iodo-N-benzyl compounds, 3b and 3c, respectively, were 2−3
times higher than that of the parent primary amine. There have
been no further reports on these compounds, and in our own
work, we had never examined 3- or 4-substituted benzyl
substituents in the phenethylamine series.

In addition to the phenethylamine type 5-HT2A agonists,
certain simple tryptamines possess similar pharmacology,
particularly 4- or 5-oxygenated molecules. In the report by
Glennon et al., placing an N-benzyl moiety on the amine of 5-
methoxytryptamine had essentially no effect on affinity.
Interestingly, N-benzyl-5-methoxytryptamine previously had
been reported to be an antagonist of serotonin-induced
contraction in the rat stomach fundus, the isolated guinea pig
uterus, and the isolated guinea pig taenia cecum.20 In addition,
Leff et al.21 had shown that N-benzyl-5-methoxytryptamine had
only weak partial agonist activity at 5-HT2 type receptors in
rabbit aorta and rat jugular vein.
Surprisingly, however, in the Glennon report,19 a 5-HT2A

receptor affinity of 0.1 nM was reported for the N-4-
bromobenzyl compound (compound 33 in the Glennon
report, numbered here as 5f), with 1000-fold selectivity for 5-
HT2A over 5-HT2C receptors. We found these data particularly
intriguing. This degree of selectivity was overestimated,
however, because affinity at the 5-HT2A receptor was measured
by displacement of an agonist ragioligand, whereas affinity at
the 5-HT2C receptor was measured by displacement of an
antagonist radioligand. Nonetheless, no specific 5-HT2A-
selective agonist has been available, although such a compound
would be very valuable for serotonin neuroscience research.
Although it was reported19 that 4-bromo compound 5f had

0.1 nM affinity at the human 5-HT2A receptor, the 4-fluoro-, 4-
chloro-, and 4-iodo-substituted benzyl congeners had reported
affinities of 40, 105, and 120 nM, respectively, in that same
report. We found this discontinuity in the structure−activity

relationship (SAR) puzzling, where the 4-bromo compound
would be such an outlier in the family of halogen-substituted
benzyls. Further investigation by Jensen, however, revealed that
the authentic 4-bromo compound 5f actually had relatively low
affinity for the 5-HT2A receptor, more consistent with the
reported affinities of the other halogenated compounds.22

Although spectroscopic data were not reported by Glennon et
al.19 that might explain the basis for this discrepancy, their
publication indicated elemental analysis data to be consistent
with the proposed structure. If the elemental analysis data were
correct, the mostly likely explanation for the discordant
biological data therefore seemed to be that 5f might have
been an isomer other than the 4-substituted compound.

On the basis of the hypothesis that the original data were
associated with an isomer other than the 4-bromo compound,
we subsequently discovered that N-3-bromobenzyl compound
5e did have higher affinity for the 5-HT2A receptor (Ki 1.48
nM), compared to that of the 4-bromo congener 5f (Ki 11.2
nM). Further, the effect of an ortho-oxygenated N-benzyl
appeared not to be significant for affinity in the tryptamine
series, suggesting perhaps different binding orientations of the
N-benzyltryptamines versus the N-benzylphenethylamines
within the receptor. That is, compound 5a has been reported
to have agonist potency (pEC50 7.08) in a rat tail artery assay
not significantly different from the compound with an
unsubstituted N-benzyl moiety (pEC50 7.00), although the
Emax was slightly higher for the 2′-methoxy compound.18 These
findings prompted us to synthesize a small series of structurally
related congeners to determine whether other substitutions
might have even greater affinity and/or selectivity for the 5-
HT2A receptor.
Thus, in this article we describe the facile synthesis of

compounds 1, 4a−4e, and 5a−5l, preliminary screening at a
variety of 5HT family receptors, and more detailed testing at
human 5-HT2A, 5-HT2B, and 5-HT2C receptors, including
affinity measurements using displacement of the agonist
radioligand [125I]-DOI and functional effects in elevating
intracellular calcium. We also present behavioral data for the
mouse head twitch response (HTR) as a measure of in vivo 5-
HT2A receptor activation.23

Compound 1 has been previously reported,24 and the NMR
and electron ionization mass spectra of 4a and 4b have been
reported but without any biological data.25 We thus decided to
compare all of the series members at the same time to elucidate
a consistent SAR.
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■ CHEMISTRY
All of the compounds were most easily prepared using a
modification of the facile method first reported by Abdel-Magid
et al.26 The free base of 2 was stirred in 3 mL of MeOH for 30
min with the appropriate aldehyde, followed by reduction of
the intermediate enamine with NaBH4. Following appropriate
workup, the bases were converted to their HCl or maleate salts
and crystallized in good to excellent yields.

■ PHARMACOLOGY
Affinities at a panel of 5-HT receptors were determined by the
NIMH-sponsored PDSP program (http://pdsp.med.unc.edu/
kidb.php). Affinities at both the human and rat 5-HT2A and 5-
HT2C receptors also were determined, using both agonist and
antagonist radioligands. As a measure of functional potency and
efficacy, changes in intracellular Ca2+ levels were measured
using a fluorometric imaging plate reader (FLIPRTETRA,
Molecular Devices), at the human 5-HT2A, 5-HT2B, and 5-
HT2C receptors, and at the rat 5-HT2A and 5-HT2C receptors.
Finally, as a measure of in vivo 5-HT2A receptor activation, we
assessed the ability of all compounds to induce the mouse
HTR.23 We hypothesized that functional potency at the rat 5-
HT2A receptor might correlate best with the mouse head twitch
behavioral data because ligand affinities at the rat 5-HT2A
receptor correlate with the mouse 5-HT2A receptor but not
with the human 5-HT2A receptor.27

■ RESULTS
Further exploration of a small library of 3-substituted N-benzyl
tryptamines allowed us to develop a tentative SAR for this
series, and it is clear that substituents on the N-benzyl 3-
position do modulate affinity in the tryptamine series. In the
broad screening of 5-HT receptor types, all of the compounds
had the highest affinity at the 5-HT2 family of receptors
(Tables 1 and 2).
At the 5-HT2A and 5-HT2C receptors, the highest affinity was

observed in the competition displacements with [125I]-DOI.
Except for 5c and 5f, all of the tryptamine compounds had low
nanomolar or subnanomolar affinity for the human 5-HT2A
receptor. The known phenethylamine 1 had by far the highest
affinity at 5-HT2A/2C receptors, with subnanomolar affinity at
both subtypes. We have previously reported an affinity for 1 at
the human 5-HT2A receptor of 0.04 nM.14 Of the tryptamines,
only the 3-iodobenzyl compound 5i, had subnanomolar affinity
at the 5-HT2A receptor, although all of the tryptamines had high
affinity at this receptor. It should be noted that N-methylation
of 5e completely abolished affinity at the 5-HT2A receptor (Ki >
10 μM; data not shown), indicating that tertiary amines are not
tolerated in the N-benzyltryptamines.
The rank order of affinity of all compounds at the [125I]-

DOI-labeled h5-HT2C receptor generally paralleled that
measured at the 5-HT2A receptor, although the affinities tended
to be somewhat lower. Again, among the tryptamines studied 5i
had the highest affinity at this receptor, as well as at the 5-HT2B
receptor. Affinities measured at the [125I]-DOI site tended to be
on the order of 5−10 times higher than that at the antagonist
labeled sites at both receptors.
Functional potencies at the rat and human 5-HT2A and 5-

HT2C receptors and the human 5-HT2B receptor are shown in
Table 3. Compound 1 was a nearly full agonist at both receptor
types, with a 4.2 nM EC50 at the human 5-HT2A receptor and
11 nM EC50 at the rat 5-HT2A receptor. The most potent

compound was 5a, with an EC50 of 1.9 nM and 85% efficacy at
the h5-HT2A. Notably, this compound has the N-2-methox-
ybenzyl substituent, the same as the most potent phenethyl-
amine 1, suggesting that it may be optimal for activation of the
5-HT2A receptor when placed at the 2-position of the N-benzyl
moiety. Efficacies of the tryptamines at the rat and human 5-
HT2A receptors and human 5-HT2C receptor varied from about
40% to 80%, with a few compounds that were full agonists (e.g.,
5a and 5c), whereas at the rat 5-HT2C receptor all of the
compounds were full agonists.
It is noteworthy that the functional potencies in the rat and

human 5-HT2A receptors are essentially identical for phenethyl-
amine compounds 1, and 4a−4e, yet the potencies for
tryptamine compounds 5a−5l are 4−10-fold higher at the
human 5-HT2A receptor than at the rat 5-HT2A receptor. This
finding may reflect the single amino acid difference in the
orthosteric binding site of these two receptors at position 5.46.
In the rat or mouse 5-HT2A receptor, residue 5.46 is an alanine,
whereas in the human receptor it is a serine. We have
previously shown that mutation of this residue in the human
receptor from serine to alanine has little effect on affinity or
function for phenethylamine 5-HT2A agonists but does have a
significant effect for tryptamines.28 One might infer, therefore,
from these potency differences that the indole NH in the

Table 1. Affinities of New Compounds for the Human 5-
HT2A and 5-HT2C Receptors Using Both Agonist and
Antagonist Radioligandsa

h5-HT2A pKi ± SEM (Ki nM) h5-HT2C pKi ± SEM (Ki nM)

cmpd [3H]ketanserin [125I]DOI [3H]mesulergine [125I]DOI

1 9.28 ± 0.11
(0.52)

9.80 ± 0.15
(0.16)

9.16 ± 0.09
(0.69)

9.30 ± 0.16
(0.50)

4a 8.81 ± 0.17
(1.5)

9.57 ± 0.09
(0.27)

8.38 ± 0.01
(4.17)

9.90 ± 0.07
(0.13)

4b 7.93 ± 0.13
(11.7)

9.15 ± 0.16
(0.70)

7.85 ± 0.02
(14.1)

8.44 ± 0.14
(3.63)

4c 8.63 ± 0.18
(2.34)

9.42 ± 0.09
(0.38)

8.06 ± 0.07
(8.71)

8.99 ± 0.18
(1.02)

4d 8.40 ± 0.04
(3.98)

9.24 ± 0.12
(0.57)

8.12 ± 0.02
(7.59)

8.79 ± 0.08
(1.62)

4e 7.28 ± 0.14
(52.5)

8.49 ± 0.09
(3.24)

7.34 ± 0.02
(45.7)

8.48 ± 0.25
(3.31)

5a 7.78 ± 0.05
(16.6)

8.82 ± 0.19
(1.51)

7.49 ± 0.14
(32.4)

8.47 ± 0.10
(3.39)

5b 8.11 ± 0.10
(7.76)

8.98 ± 0.14
(1.05)

7.42 ± 0.12
(38.0)

8.23 ± 0.09
(5.89)

5c 7.16 ± 0.16
(69.2)

7.98 ± 0.04
(10.5)

6.90 ± 0.03
(126)

7.85 ± 0.13
(14.1)

5d 7.60 ± 0.12
(25.1)

8.63 ± 0.19
(2.34)

7.00 ± 0.01
(100)

7.85 ± 0.10
(14.1)

5e 8.17 ± 0.11
(6.76)

8.83 ± 0.10
(1.48)

7.58 ± 0.05
(26.3)

8.25 ± 0.11
(5.62)

5f 6.37 ± 0.12
(427)

7.95 ± 0.22
(11.2)

6.60 ± 0.15
(251)

7.54 ± 0.19
(28.8)

5g 7.67 ± 0.04
(21.4)

8.58 ± 0.17
(2.63)

7.32 ± 0.09
(47.9)

8.06 ± 0.14
(8.71)

5h 8.28 ± 0.08
(5.25)

8.98 ± 0.10
(1.05)

7.55 ± 0.06
(28.2)

8.37 ± 0.05
(4.27)

5i 8.46 ± 0.09
(3.47)

9.21 ± 0.16
(0.62)

8.19 ± 0.09
(6.46)

8.98 ± 0.08
(1.05)

5j 8.32 ± 0.17
(4.79)

8.93 ± 0.11
(1.17)

7.65 ± 0.03
(22.4)

8.47 ± 0.08
(3.39)

5k 7.55 ± 0.05
(28.2)

8.53 ± 0.19
(2.95)

6.99 ± 0.06
(102)

7.83 ± 0.26
(14.8)

5l 8.05 ± 0.15
(8.91)

8.51 ± 0.17
(3.09)

7.88 ± 0.23
(13.2)

8.68 ± 0.30
(2.09)

apKi ± SEM (affinities in nM); n = 3−5 separate displacement curves.
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present series also engages this serine in the human receptor
but not the alanine in the rat receptor, consistent with
mutagenesis studies reported by others.29,30

Figure 1 shows an illustrative dose−response curve for
compound 5h in the mouse HTR. HTR data for all compounds
are given in Table 4. Although some of the compounds failed to
induce the HTR at doses up to 30 mg/kg, most of the
“inactive” compounds displayed relatively low potency at 5-
HT2A (see Figure 2), so it is possible that they would induce
the HTR if tested at higher doses. Importantly, for the subset of
compounds that induced the HTR, behavioral potency was
significantly correlated with functional potency at the r5-HT2A
receptor (r = 0.69, p < 0.03; Figure 2), but there was no
correlation with functional EC50 values at the r5-HT2C receptor
(r = 0.17, p > 0.1). Despite the overall correlation between
mouse HTR and r5-HT2A potency, the relationship was not
always orderly for individual compounds. Compound 1 was by
far the most potent compound in that assay, with an ED50 of
0.078 mg/kg (data taken from Halberstadt and Geyer31). It is
not clear why 1 should be so much more potent than any other
compound because, for example, 4d is inactive but appears
nearly comparable functionally, with an EC50 of 14 nM and
efficacy of 69%, compared with an EC50 of 11 nM for 1 with an
efficacy of 79%. The next most potent compounds in the
mouse HTR are 4c and 5j, with identical ED50s of 2.31 mg/kg,
about 300-fold less potent than 1. Although they have similar
functional EC50 values (36 and 26 nM), nothing in the

functional or binding data can explain their lower potency
compared to that of 1. Further, compounds 5a, 5b, and 5g have
virtually identical ED50 values in the mouse HTR, yet their
functional EC50s at the rat 5-HT2A receptor are 21, 34, and 80
nM, respectively.
With the exception of 5k and 5l, which had relatively low

functional potencies at the r5-HT2A (EC50 values of 770 and
120 nM, respectively), all of the meta-substituted N-benzyl
derivatives of 5-methoxytryptamine induced the HTR. That
included the 3-methyl (5j; ED50 = 2.31 mg/kg), 3-methoxy
(5b; ED50 = 3.28 mg/kg), 3-fluoro (5g; ED50 = 3.33 mg/kg), 3-
chloro (5h; ED50 = 4.43 mg/kg), 3-bromo (5e; ED50 = 5.18
mg/kg), and 3-iodo (5i; ED50 = 7.77 mg/kg) compounds.
The HTR produced by compounds 5b and 5j showed a

biphasic bell-shaped dose−response function (the response
peaked at 10 mg/kg and 30 mg/kg was inactive). Other 5-HT2A
agonists, including DOI, DOM, 2C-T-7, and 5-MeO−DIPT,
have been shown to produce similar nonmonotonic
responses.32−34 Fantegrossi et al.34 have argued that the
descending arm of the biphasic HTR dose−response is a
consequence of 5-HT2C activation, which attenuates the
response to 5-HT2A activation. Recently, however, it was
reported that N-(2-hydroxybenzyl)-2,5-dimethoxy-4-cyanophe-
nethylamine (25CN-NBOH), a 5-HT2A agonist with 100-fold
selectivity over 5-HT2C, also induces the HTR with a biphasic
dose−response.35 The fact that the descending arm of the
response to 25CN-NBOH was not affected by a 5-HT2C

Table 2. PDSP Screening Affinities for All Compounds at Other Human Serotonin Receptor Typesa

cmpd 5-HT2B 5-HT1A 5-HT1B 5-HT1D 5-ht1e 5-HT3 5-ht5a 5-HT6 5-HT7

1 8.86 ± 0.03
(1.4)

5.99 ± 0.05 (1033) 5.23 ± 0.06
(5886)

6.27 ± 0.05
(533)

>10,000 >10,000 5.55 ± 0.07
(2795)

7.5 ± 0.06
(32)

5.81 ± 0.06
(1542)

4a 8.34 ± 0.03
(4.6)

6.03 ± 0.05 (925) 5.49 ± 0.05
(3232)

6.36 ± 0.05
(439)

5.77 ± 0.05
(1707)

>10,000 7.24 ± 0.06
(57)

7.17 ± 0.06
(67)

6.23 ± 0.06
(583)

4b 7.78 ± 0.03
(17)

5.97 ± 0.05 (1064) 5.8 ± 0.05
(1592)

6.49 ± 0.05
(325)

5.89 ± 0.05
(1285)

>10,000 5.99 ± 0.06
(1020)

7.12 ± 0.03
(75)

5.8 ± 0.06
(1575)

4c 7.7 ± 0.04
(20)

5.94 ± 0.06 (1155) >10,000 6.37 ± 0.05
(423)

>10,000 >10,000 5.64 ± 0.09
(2290)

6.59 ± 0.06
(257)

5.59 ± 0.05
(2547)

4d 7.89 ± 0.04
(13)

6.17 ± 0.06 (670) 5.80 ± 0.05
(1568)

6.79 ± 0.05
(162)

6.10 ± 0.04
(792)

>10,000 6 ± 0.08
(1009)

6.76 ± 0.06
(175)

6.45 ± 0.05
(355)

4e 7.17 ± 0.04
(68)

6.19 ± 0.06 (649) 5.22 ± 0.05
(5093)

6.51 ± 0.05
(311)

>10,000 5.61 ± 0.05
(2460)

5.73 ± 0.06
(1848)

6.46 ± 0.05
(350)

6.19 ± 0.05
(641)

5a 8.04 ± 0.03
(9)

6.64 ± 0.05 (231) >10,000 5.89 ± 0.05
(1292)

>10,000 >10,000 >10,000 7.06 ± 0.03
(87)

5.75 ± 0.06
(1770)

5b 8.6 ± 0.03
(2.5)

6.48 ± 0.05 (335) >10,000 6.48 ± 0.06
(334)

>10,000 >10,000 5.9 ± 0.06
(1261)

7.6 ± 0.03
(25)

6.39 ± 0.05
(406)

5c 7.49 ± 0.03
(33)

7.12 ± 0.06 (76) 5.97 ± 0.04
(1060)

6.79 ± 0.06
(161)

>10,000 >10,000 5.62 ± 0.09
(2388)

6.45 ± 0.03
(353)

7.44 ± 0.05
(37)

5d 7.62 ± 0.03
(24)

6.54 ± 0.05 (286) >10,000 6.11 ± 0.05
(782)

>10,000 5.21 ± 0.07
(6169)

>10,000 6.69 ± 0.05
(203)

5.96 ± 0.05
(1086)

5e 8.45 ± 0.03
(3.6)

6.81 ± 0.05 (155) 5.19 ± 0.06
(6433)

6.42 ± 0.05
(381)

>10,000 >10,000 6.21 ± 0.06
(612)

7.34 ± 0.03
(45)

6.93 ± 0.06
(116)

5f 6.83 ± 0.03
(150)

7.11 ± 0.05 (78) 5.35 ± 0.05
(4374)

6.57 ± 0.05
(271)

>10,000 >10,000 5.99 ± 0.08
(1034)

6.25 ± 0.03
(566)

6.45 ± 0.06
(358)

5g 7.66 ± 0.03
(22)

6.53 ± 0.04 (295) 5.57 ± 0.06
(2674)

6.50 ± 0.06
(319)

>10,000 >10,000 5.61 ± 0.05
(2450)

7.23 ± 0.03
(59)

6.62 ± 0.05
(242)

5h 8.16 ± 0.02
(6.6)

6.71 ± 0.05 (195) 5.36 ± 0.06
(4392)

6.55 ± 0.06
(282)

>10,000 >10,000 5.64 ± 0.06
(2310)

7.30 ± 0.03
(50)

6.55 ± 0.05
(281)

5i 9.12 ± 0.03
(0.76)

6.91 ± 0.05 (122) 5.53 ± 0.05
2963)

6.70 ± 0.06
(199)

>10,000 >10,000 5.81 ± 0.05
(1536)

7.58 ± 0.03
(27)

7.66 ± 0.05
(22)

5j 8.71 ± 0.03
(1.9)

6.57 ± 0.04 (271) 5.37 ± 0.07
(4241)

6.55 ± 0.06
(283)

5.41 ± 0.05
(3876)

>10,000 5.41 ± 0.06
(3852)

7.21 ± 0.03
(62)

6.67 ± 0.05
(212)

5k 7.56 ± 0.02
(28)

6.62 ± 0.05 (240) >10,000 6.56 ± 0.06
(278)

>10,000 >10,000 5.51 ± 0.06
(3091)

7.06 ± 0.03
(87)

6.58 ± 0.05
(262)

5l 8.39 ± 0.04
(4.1)

6.90 ± 0.05 (127) >10,000 6.18 ± 0.05
(659)

>10,000 >10,000 6.08 ± 0.08
(841)

8.01 ± 0.06
(9.7)

6.87 ± 0.05
(136)

apKi ± SEM, (affinity in nM).
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antagonist35 demonstrates that the inhibition of the HTR at
high doses does not necessarily result from competing activity
at 5-HT2C. One potential alternative explanation for the
biphasic HTR is that high levels of 5-HT2A activation may
produce competing behaviors that interfere with expression of
head shaking. Along those lines, it has been reported that high
doses of quipazine, 5-MeO-DMT, and (+)-LSD produce

stereotypic behaviors that preclude head shakes and wet dog
shakes in rats.36,37

■ DISCUSSION

Unfortunately, despite the report by Glennon et al.,19

compound 5e was not selective for the h5-HT2A receptor
versus the h5-HT2C receptor. Using affinity at the [125I]-DOI-
labeled receptors, the selectivity of 5e was slightly less than 4-
fold. Even using affinity at the [125I]-DOI-labeled h5-HT2A
receptor and the [3H]-mesulergine-labeled h5-HT2C receptor,
“selectivity” was only about 18-fold. The most selective
compound in the entire series, with respect to affinity, was
5d, but with only 6-fold selectivity.
With respect to selectivity in function at the h5-HT2A vs h5-

HT2C, the most selective tryptamine was 5j, with 44-fold
selectivity and less than a 3-fold difference in affinity at the
agonist-labeled receptors. Indeed, we were disappointed that
none of the compounds had high selectivity for the h5-HT2A
receptor.
Overall, with the exception of compound 1, none of the

compounds was particularly potent in producing the HTR. This
low potency is somewhat surprising, given that many known
hallucinogens with high affinity for the 5-HT2A receptor, such

Table 3. Functional Data for New Compounds in Rat and Human 5-HT2A and 5-HT2C and Human 5-HT2B Receptorsa

r5-HT2A h5-HT2A h5-HT2B r5-HT2C h5HT2C

cmpd
pEC50 (EC50

nM) Emax %
pEC50

(EC50 nM) Emax %
pEC50 (EC50

nM) Emax %
pEC50 (EC50

nM) Emax %
pEC50 (EC50

nM) Emax %

5-HT 8.3 ± 0.04
(5.4)

100 ± 1.5 8.7 ± 0.05
(2.0)

100 ± 1.6 9.31 ± 0.04
(0.49)

99.9 ± 1.1 9.70 ± 0.03
(0.20)

99.6 ± 0.73 9.52 ± 0.08
(0.30)

98.5 ± 2.4

1 8.0 ± 0.04
(11)

79.4 ± 1.1 8.4 ± 0.05
(4.2)

86.4 ± 1.4 7.81 ± 0.09
(15)

65 ± 2 7.02 ± 0.05
(95)

104 ± 2 7.38 ± 0.12
(41.7)

92 ± 0

4a 7.6 ± 0.04
(27)

51.7 ± 0.9 7.6 ± 0.03
(28)

71.6 ± 0.9 7.4 ± 0.3
(38)

NAb 6.88 ± 0.06
(133)

91 ± 3 7.47 ± 0.36
(33.8)

41 ± 6

4b 7.3 ± 0.04
(50)

53.8 ± 0.9 7.2 ± 0.03
(60)

74.1 ± 0.8 7.1 ± 0.1
(87)

38 ± 2 6.88 ± 0.05
(132)

97 ± 2 7.36 ± 0.31
(43.2)

50 ± 7

4c 7.4 ± 0.06
(36)

65.6 ± 1.6 7.4 ± 0.04
(42)

88.0 ± 1.5 6.82 ± 0.07
(134)

83 ± 3 6.98 ± 0.02
(105)

104 ± 1 7.24 ± 0.13
(57.6)

87 ± 5

4d 7.8 ± 0.03
(14)

68.5 ± 0.9 7.8 ± 0.04
(17)

87.5 ± 1.3 7.05 ± 0.05
(85)

90 ± 2 7.44 ± 0.05
(36)

101 ± 2 7.28 ± 0.17
(57.6)

74 ± 5

4e 6.8 ± 0.03
(150)

67.3 ± 0.9 6.8 ± 0.03
(170)

88.0 ± 1.4 6.21 ± 0.04
(610)

90 ± 2 6.54 ± 0.04
(290)

105 ± 2 6.66 ± 0.14
(200)

77 ± 5

5a 7.7 ± 0.03
(21)

80.9 ± 1.1 8.7 ± 0.05
(1.9)

85.2 ± 1.4 8.2 ± 0.1
(6.7)

52 ± 2 7.79 ± 0.04
(16)

102 ± 2 7.24 ± 0.12
(57.1)

119 ± 6

5b 7.5 ± 0.04
(34)

52.2 ± 0.9 8.2 ± 0.04
(6.2)

70.0 ± 1.0 6.0 ± 0.4
(949)

NAb 6.78 ± 0.05
(168)

102 ± 2 6.75 ± 0.15
(178)

65 ± 5

5c 6.7 ± 0.03
(190)

75.0 ± 1.3 7.4 ± 0.04
(42)

84.1 ± 1.3 7.64 ± 0.04
(23)

81 ± 1 7.73 ± 0.04
(19)

102 ± 2 7.12 ± 0.11
(75.1)

112 ± 5

5d 6.3 ± 0.04
(450)

49.7 ± 1.2 7.5 ± 0.05
(30)

74.7 ± 1.5 6.8 ± 0.3
(168)

NAb 6.05 ± 0.05
(898)

104 ± 3 6.36 ± 0.09
(439)

94 ± 5

5e 6.9 ± 0.03
(130)

65.5 ± 0.8 7.9 ± 0.04
(13)

73.8 ± 1.1 7.5 ± 0.2
(29)

20 ± 2 6.38 ± 0.04
(422)

112 ± 3 6.49 ± 0.23
(321)

64 ± 8

5f 5.8 ± 0.04
(1500)

77.6 ± 2.4 6.4 ± 0.02
(430)

90.3 ± 1.2 6.54 ± 0.05
(290)

90 ± 2 6.69 ± 0.03
(204)

108 ± 2 6.28 ± 0.14
(529)

83 ± 7

5g 7.1 ± 0.04
(80)

69.1 ± 1.3 8.0 ± 0.1
(10)

89.3 ± 1.1 7.42 ± 0.08
(38)

37 ± 1 7.34 ± 0.07
(46)

100 ± 3 6.72 ± 0.13
(192)

83 ± 5

5h 7.1 ± 0.03
(83)

70.1 ± 1.0 7.9 ± 0.04
(14)

81.2 ± 1.3 7.3 ± 0.2
(50)

NAb 6.54 ± 0.04
(286)

105 ± 2 6.50 ± 0.13
(316)

85 ± 6

5i 6.9 ± 0.04
(120)

73.4 ± 1.4 7.8 ± 0.04
(16)

79.0 ± 1.1 7.4 ± 0.2
(43)

31 ± 2 6.51 ± 0.05
(313)

110 ± 3 6.35 ± 0.09
(445)

94 ± 5

5j 7.6 ± 0.04
(26)

56.2 ± 0.9 8.2 ± 0.04
(6.5)

73.3 ± 1.0 NAb 6.72 ± 0.04
(192)

104 ± 2 6.54 ± 0.10
(289)

75 ± 4

5k 6.1 ± 0.03
(770)

69.6 ± 1.4 7.1 ± 0.04
(87)

75.5 ± 1.2 6.97 ± 0.07
(107)

51 ± 2 6.79 ± 0.03
(162)

104 ± 2 6.29 ± 0.11
(512)

75 ± 5

5l 6.9 ± 0.05
(120)

32.0 ± 0.7 7.5 ± 0.04
(32)

46.9 ± 0.8 NAb 6.69 ± 0.05
(205)

101 ± 2 6.55 ± 0.11
(283)

60 ± 4

aValues are pEC50 ± SEM, with (EC50) values in nM and Emax given in percentage of the maximum response to 5-HT. bNA, not active; Emax ≤ 15%.

Figure 1. Representative dose−response plot in the mouse head
twitch assay for compound 5h. *p < 0.05 versus vehicle (Tukey’s test).
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as 2,5-dimethoxy-4-iodoamphetamine (DOI), R-(−)-2,5-dime-
thoxy-4-methylamphetamine (R-DOM), R-(−)-2,5-dimethoxy-
4-bromoamphetamine (R-DOB), 2,5-dimethoxy-4-propylthio-
phenethylamine (2C-T-7), psilocin, and 5-MeO-N,N-diisopro-
pyltryptamine (5-MeO−DIPT) produce the head twitch in
mice at doses of ≤1 mg/kg.32,33,38−40 However, certain
tryptamine hallucinogens, including 5-MeO-N,N-dimethyltrypt-
amine (5-MeO-DMT) and α-methyltryptamine, are active
within the same dose range (3−30 mg/kg) as the N-
benzyltryptamines tested herein.40−42 It is unlikely that the
low in vivo potencies of the compounds studied here are related
to the use of an automated HTR detection system because we
have confirmed that the results obtained using this system are
consistent with published data based on visual scoring.23 For
example, the potency of LSD measured using the automated
system (ED50 = 0.13 μmol/kg)23 is almost exactly the same as
the potency assessed using direct observation (ED50 = 0.14
μmol/kg).41 One possible explanation for the low potencies
might be rapid first pass metabolism of N-benzyl-analogues in
general43 combined with a slow release from subcutaneous
tissue due to the highly hydrophobic nature of the compounds.
Substitution on the N-benzyl ring has different effects,

depending on whether the phenethylamines or the tryptamines
are being studied. For example, ortho-bromo-substituted
tryptamine congener 5d failed to induce the HTR when tested

at doses up to 30 mg/kg (∼60 μmol/kg), yet N-3-bromobenzyl
5e is active. By contrast, N-2-bromobenzyl phenethylamine 4c
is active, whereas N-3-bromobenzyl 4d is inactive in the HTR
assay.
None of the phenethylamines or tryptamines with 4-

substituted N-benzyl groups, 4b, 4e, 5c, or 5f, was active in
the HTR. All of these compounds were partial agonists with
relatively low potency in the r5-HT2A functional assay.
Although 5e, with a 3-substituted N-benzyl, has an EC50 and
Emax virtually identical to 4e, it is active in the HTR assay. It is
possible that differences in pharmacokinetics or metabolic
lability could explain these data. Nevertheless, if only the
compounds active in the mouse HTR assay are compared, one
finds a significant correlation between potency in the rat 5-
HT2A receptor and potency in the HTR assay, as shown in
Figure 3.
Taken together, these data show that for N-benzylphenethyl-

amines the highest in vivo potency in mice is associated with an
ortho-substituent on the benzyl group, whereas the N-
benzyltryptamines are more active in vivo when a meta-

Table 4. Activity of New Compounds in Producing the Mouse Head Twitch

ED50 mg/kg (95%
CI)

test duration
(min) N dose range

active doses
(mg/kg)

max
counts

maximally effective dose
(mg/kg)

magnitude of peak effect ×
vehicle

1 0.078 (0.055−
0.111)

30 5 0.03−1.0 0.1, 0.3, 1 102.6 1 16.0

4a 4.34 (1.41−13.32) 10 10 0.3−30 3, 10, 30 11.4 30 5.7
4b inactive 5 0.3−30
4c 2.31 (1.41−3.77) 20 5 0.3−30 3, 10, 30 23.2 10 3.0
4d inactive 5−7 0.3−10
4e inactive 6 1−30
5a 3.15 (1.94−5.12) 20 10 0.3−30 10, 30 25.4 10 3.9
5b 3.28 (1.53−7.04) 10 5−6 1−30 10 9.2 10 3.7
5c inactive 5 30
5d inactive 5 0.3−30
5e 5.18 (2.35−11.38) 10 5−6 1−30 10, 30 14.2 30 4.4
5f inactive 5 0.3−30
5g 3.33 (2.25−4.93) 10 6 1−30 10, 30 14.5 10 7.3
5h 4.43 (2.03−9.69) 10 5−6 1−30 10, 30 10.6 30 8.0
5i 7.77 (3.40−17.53) 10 6 1−30 10, 30 20.2 30 3.4
5j 2.31 (0.82−6.51) 10 5 0.3−30 10 14.6 10 3.5
5k inactive 5 30
5l inactive 4−5 30

Figure 2. Plots of active and inactive compounds as a function of
potency and efficacy at the rat 5-HT2A receptor (panel A) and the
human 5-HT2A receptor (panel B).

Figure 3. Regression analysis of pED50 for the mouse head twitch
response on the pEC50 for function for active compounds at the rat 5-
HT2A receptor; n = 10.
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substituent is present. Hence, there are SAR differences
between the N-benzyltryptamines and the N-benzylphenethyl-
amines for the induction of the HTR, which likely reflect
different binding orientations in the 5-HT2A receptor.
Obviously, the indole system is larger than a simple phenyl
ring, something that would clearly affect the binding modes for
the two different series at the orthosteric site. For example, the
distance from the indole C(3) atom to the 5-oxygen atom is
4.94 Å, whereas the corresponding distance from the 5-
methoxy oxygen to C(1) of the aryl ring is only 3.70 Å. Even
the distance of 4.85 Å from C(1) of the aryl ring to the 4-iodo
atom of the phenethylamines is less than the 4.94 Å distance
measured from C(3) of the indole to the 5-methoxy.
One exception is that for both the N-benzyltryptamines and

N-benzylphenethylamines, oxygenated substituents are toler-
ated at the ortho- and meta-positions of the benzyl moiety. For
example, 1, 4a, 5a, and 5b are all active in the HTR assay,
whereas 4d and 5d are inactive over a range of doses. This
observation again would be consistent with some structural
feature in the 5-HT2A receptor that could engage a polar oxygen
atom at the ortho-position of the N-benzyl moiety. There has
been speculation, based on virtual docking studies with
phenethylamines and tryptamines, that an oxygen atom in the
ortho-position of the N-benzyl moiety may interact with a
hydrogen bond donor (possibly the OH of Tyr 370(7.43) in the
h5-HT2A receptor.

14,18 It is conceivable that an oxygen atom at
the meta-position in N-benzyltryptamines also could form a
hydrogen bond with Tyr 370, possibly involving a water
molecule.
Unfortunately, a 5-HT2A selective agonist did not emerge

from this small library of compounds. There are now only two
selective 5-HT2A agonists reported,

44,45 but they have not been
available for extensive study. Thus, research on 5-HT2A
receptor function has been forced to employ either a mixed
5-HT2A/2C agonist such as DOI in combination with a specific
5-HT2C antagonist, or to administer antagonists alone, the latter
paradigm really being appropriate to study receptor function
only when there are high levels of endogenous receptor
activation or constitutive activity of the receptors. Genetic
knockout mice have not revealed particular behavioral
phenotypes and have served primarily to demonstrate that a
particular drug depends on the presence of 5-HT2A or 5-HT2C
receptors for its effect. Hence, the psychopharmacology of a
“pure” 5-HT2A agonist remains completely unknown. Fur-
thermore, the tremendous present interest in the role of the 5-
HT2A receptor in normal brain function makes it imperative
that scientists in the field gain access to a 5-HT2A specific
agonist so that research into the roles of the 5-HT2A receptor
can be more fully elucidated.

■ METHODS
Chemistry. General Methods. Reagents were purchased from

Sigma-Aldrich Co. (St. Louis, MO) or Alfa Aesar (Ward Hill, MA) and
used as delivered, unless otherwise specified. Thin layer chromatog-
raphy was carried out using J. T. Baker flexible sheets (silica gel IB2-F)
with fluorescent indicator, visualizing with UV light at 254 nm or
iodine stain. Melting points were determined using a Mel-Temp
apparatus and are uncorrected. NMR experiments were carried out
using a Bruker Advance 300 MHz instrument, and the chemical shift
(δ) values are in parts per million (ppm) relative to tetramethylsilane
at 0.00 ppm. The solvent was CD3OD. NMR samples were dissolved
in MeOD. Ph = aromatic protons/carbons of benzyl group; In =
aromatic protons/carbons of the indole nucleus; Ar = either phenyl or
indole resonances, or phenyl in the case of compounds 1−4f.

Coupling constants (J) are presented in Hertz. Abbreviations used in
the reporting of NMR spectra include: br = broad, s = singlet, d =
doublet, t = triplet, q = quartet, and quint = quintuplet.

Mass spectra were performed by high resolution LC-QTOF-MS on
protonated molecules [M + H]+. UHPLC-Q-TOF-MS conditions for
UHPLC separation employed a mobile phase consisting of 100%
MeCN that included 1% formic acid (organic phase) and an aqueous
solution of 1% formic acid (aqueous phase). The column was
maintained at 40 °C with a 0.6 mL/min flow rate and 5.5 min
acquisition time. The elution was a 5−70% MeCN gradient ramp over
3.5 min, then up to 95% MeCN in 1 min and held for 0.5 min before
returning to 5% MeCN in 0.5 min. Q-TOF-MS data were acquired in
positive mode scanning from 100 to 1000 m/z with and without auto
MS/MS fragmentation. Ionization was achieved with an Agilent
JetStream electrospray source and infused internal reference masses.
Agilent 6540 Q-TOF-MS parameters: gas temperature, 325 °C; drying
gas, 10 L/min; and sheath gas temperature, 400 °C. Internal reference
masses of 121.05087 and 922.00979 m/z were used.

For compounds 1 and 4a−4e, 0.5 mmol of the free base of 4-iodo-
2,5-dimethoxyphenethylamine10,46 was stirred for 30 min at room
temperature with 0.55 mmol of the appropriate aldehyde in 3 mL of
methanol. The reaction was then placed on an ice bath, and 48 mg
(1.25 mmol) of NaBH4 was added in three portions over 15 min. The
ice bath was removed and the reaction allowed to stir for an additional
15 min. The reaction was then transferred to a separatory funnel with
50 mL of EtOAc. The organic phase was washed three times with
saturated NaCl, then dried overnight over Na2SO4. The drying agent
was removed by suction filtration, and the filtrate was concentrated
under reduced pressure. EtOH (1 mL) was added to the amber
residue, and the HCl salt was prepared by acidification with 0.5 mL of
1 N HCl/EtOH. Dilution with EtOAc or diethyl ether then led to
crystallization of the HCl salts, generally in good yields. In most cases,
the supernatant was simply decanted from the crystalline product,
followed by resuspension of the crystals in Et2O and decantation, then
air drying to afford the products as white to off-white fine needles. No
attempt was made to optimize the yields, but in one case the
supernatant was reduced to dryness and the residue crystallized from
EtOH/Et2O to afford an additional 6% of product. This small
additional recovery was not deemed sufficient to warrant the extra
effort. Thus, all reported yields are those obtained after the first
crystallization.

The synthesis of tryptamines 5a−5l followed essentially the same
procedure, except that maleate salts were prepared. As an example, 1.0
mmol of 5-methoxytryptamine free base (Aldrich) was stirred for 30
min with 1.10 mmol of the appropriate aldehyde in 5 mL of methanol.
The reaction was then placed on an ice bath, and 96 mg (2.5 mmol) of
NaBH4 was added in three portions over 15 min. The ice bath was
removed and the reaction allowed to stir for an additional 15 min. The
reaction was then transferred to a separatory funnel with 50 mL of
EtOAc and was washed three times with saturated NaCl. The organic
phase was dried overnight over Na2SO4, then filtered and concentrated
under reduced pressure. Maleic acid (116 mg, 1 mmol) and 1.0 mL of
acetone were then added to the residual amber oil, and the solution
swirled until all of the maleic acid had dissolved. The reaction was then
diluted with 10 mL of EtOAc, and Et2O was added nearly to the cloud
point. In most cases, crystallization occurred rapidly and sponta-
neously, and the product solution was stored overnight in a cold room.
Crystalline products were collected by suction filtration, washed on the
filter with EtOAc, and then air-dried to afford white to off-white fine
needles.

N-(2-Methoxybenzyl)-2-(4-iodo-2,5-dimethoxyphenyl)ethan-1-
amine Hydrochloride (1). Obtained as needles following crystal-
lization from acetone/EtOAc/Et2O; yield 86%; mp 168−170 °C, Lit24
mp 162−166 °C, 166.13 1H NMR (300 MHz, CD3OD) δ ppm 7.46
(1H, td, J = 8.2, 1.7 Hz, Ar−H), 7.37 (1H, dd, J = 7.6, 1.6 Hz, Ar−H),
7.35 (1H, s, Ar−H), 7.09 (1H, d, J = 8.3 Hz, Ar−H), 7.02 (1H, td, J =
7.5, 1.0 Hz, Ar−H), 6.86 (1H, s, Ar−H), 4.24 (2H, s, NB-CH2), 3.88
(3H, s, OCH3), 3.81 (3H, s, OCH3), 3.78 (3H, s, OCH3), 3.20−3.25
(2H, m, α-CH2), 3.03−2.98 (2H, m, β-CH2).

13C NMR (CD3OD): δ
ppm 159.37 (Ar−Cq), 154.44 (Ar−Cq), 153.60 (Ar−Cq), 132.81
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(Ar−CH), 132.73 (Ar−CH), 126.99 (Ar−Cq), 123.19 (Ar−CH),
122.13 (Ar−CH), 120.29 (Ar−Cq), 114.98 (Ar−CH), 112.16 (Ar−
CH), 85.04 (Ar−Cq-iodine), 57.59 (OCH3), 56.71 (OCH3), 56.24
(OCH3), 48.1 (NB-CH2), 48.0 (α-CH2), 28.49 (β-CH2). HRMS
calculated for C18H23INO3 [M + H]+, 428.07171; observed [M + H]+,
428.07239. The EI mass spectrum also has been reported by Casale
and Hays.25

N-(3-Methoxybenzyl)-2-(4-iodo-2,5-dimethoxyphenyl)ethan-1-
amine Hydrochloride (4a). Obtained as needles following crystal-
lization from acetone/EtOAc/Et2O; yield 85%; mp 171−2 °C. 1H
NMR (300 MHz, CD3OD) δ ppm 7.38 (1H, t, J = 7.7 Hz, Ar−H),
7.34 (1H, s, Ar−H), 6.98−7.10 (3H, m, Ar−H), 6.86 (1H, s, Ar−H),
4.19 (2H, s, NB-CH2), 3.83 (3H, s, OCH3), 3.81 (3H, s, OCH3), 3.79
(3H, s, OCH3), 3.22−3.27 (2H, m, α-CH2), 2.99−3.04 (2H, m, β-
CH2).

13C NMR (CD3OD): δ ppm 161.77 (Ar−Cq), 154.43 (Ar−
Cq), 153.63 (Ar−Cq), 133.82 (Ar−Cq), 131.48 (Ar−CH), 127.01
(Ar−Cq), 123.14 (Ar−CH), 122.92 (Ar−CH), 116.53 (Ar−CH),
116.13 (Ar−CH), 114.95 (Ar−CH), 85.00 (Ar−Cq-iodine), 57.59
(OCH3), 56.68 (OCH3), 55.93 (OCH3), 52.23 (NB-CH2), 48.1 (α-
CH2), 28.65 (β-CH2). HRMS calculated for C18H23INO3 [M + H]+,
428.07171; observed [M + H]+, 428.07319. The EI mass spectrum has
also been reported by Casale and Hays.25

N-(4-Methoxybenzyl)-2-(4-iodo-2,5-dimethoxyphenyl)ethan-1-
amine Hydrochloride (4b). This particular compound was extremely
difficult to crystallize, providing unfilterable gels upon attempts to
crystallize it from EtOH, EtOH/Et2O, or MeOH/Et2O. It was finally
obtained by dissolving in a minimum amount of boiling acetonitrile
and allowing the solution to cool. Upon cooling, the solution also took
on a gel-like appearance, but unlike other attempts, this material could
be collected by vacuum filtration through a sintered glass filter funnel.
The voluminous white solid was washed on the filter with a small
amount of cold acetonitrile, then left on the funnel with suction until
dry; yield 72%; mp 180−182 °C. 1H NMR (300 MHz, CD3OD): δ
ppm 7.41 (2H, d, J = 8.7 Hz, 2 x Ar−H), 7.34 (1H, s, Ar−H), 7.00
(2H, d, J = 8.5 Hz, 2 x Ar−H), 6.85 (1H, s, Ar−H), 4.15 (2H, s, NB-
CH2), 3.82 (3H, s, OCH3), 3.81 (3H, s OCH3), 3.79 (3H, s OCH3),
3.18−3.23 (2H, m, α-CH2), 2.96−3.01 (2H, m, β-CH2).

13C NMR
(CD3OD): δ ppm 162.27 (Ar−Cq), 154.42 (Ar−Cq), 153.64 (Ar−
Cq), 132.59 (2 x Ar−CH), 127.05 (Ar−Cq), 124.22 (Ar−Cq), 123.16
(Ar−CH), 115.64 (2 x Ar−CH), 114.94 (Ar−CH), 84.98 (Ar−Cq-
iodine), 57.59 (OCH3), 56.68 (OCH3), 55.90 (OCH3), 51.90 (NB-
CH2), 47.8 (α-CH2), 28.67 (β-CH2). HRMS calculated for
C18H23INO3 [M + H]+, 428.07171; observed [M + H]+, 428.07320.
The EI mass spectrum has also been reported by Casale and Hays.25

N-(2-Bromobenzyl)-2-(4-iodo-2,5-dimethoxyphenyl)ethan-1-
amine Hydrochloride (4c). Obtained as needles following crystal-
lization from acetone/EtOAc/Et2O; yield 79%; mp 170−1 °C. 1H
NMR (300 MHz, CD3OD): δ ppm 7.74 (1H, dd, J = 7.9, 1.3 Hz, Ar−
H), 7.61 (1H, dd, J = 7.7, 1.7 Hz, Ar−H), 7.49 (1H, td, J = 7.5, 1.3
Hz), 7.39 (1H, td, J = 7.9, 1.9 Hz), 7.35 (1H, s, Ar−H), 6.89 (1H, s,
Ar−H), 4.42 (2H, s, NB-CH2), 3.82 (3H, s, OCH3), 3.81 (3H, s,
OCH3), 3.31−3.36 (2H, m, α-CH2), 3.03−3.08 (2H, m, β-CH2).

13C
NMR (CD3OD): δ ppm 154.46 (Ar−Cq), 153.62 (Ar−Cq), 134.74
(Ar−CH), 133.03 (Ar−CH), 132.81(Ar−CH), 132.32 (Ar−Cq),
129.70 (Ar−CH), 126.87 (Ar−Cq), 125.94 (Ar−Cq), 123.19 (Ar−
CH), 114.98 (Ar−CH), 85.08 (Ar−Cq-iodine), 57.60 (OCH3), 56.73
(OCH3), 51.99 (NB-CH2), 48.7 (α-CH2), 28.62 (β-CH2). HRMS
calculated for C17H20BrINO2 [M + H]+, 475.97166; observed [M +
H]+, 475.97212.
N-(3-Bromobenzyl)-2-(4-iodo-2,5-dimethoxyphenyl)ethan-1-

amine Hydrochloride (4d). Obtained as needles following crystal-
lization from acetone/EtOAc/Et2O; yield 89%; mp 199−201 °C. 1H
NMR (300 MHz, CD3OD): δ ppm 7.69−7.74 (1H, m, Ar−H), 7.60−
7.66 (1H, m, Ar−H), 7.45−7.51 (1H, m, Ar−H), 7.41 (1H, d, J = 7.7
Hz, Ar−H), 7.35 (1H, s, Ar−H), 6.86 (1H, s, Ar−H), 4.22 (2H, s, NB-
CH2), 3.81 (3H, s, OCH3), 3.79 (3H, s, OCH3), 3.22−3.27 (2H, m, α-
CH2), 2.98−3.03 (2H, m, β-CH2).

13C NMR (CD3OD): δ ppm
154.44 (Ar−Cq), 153.63 (Ar−Cq), 134.97 (Ar−Cq), 134.03 (Ar−
CH), 133.87, (Ar−CH), 132.12 (Ar−CH), 129.89 (Ar−CH), 126.93
(Ar−Cq), 124.00 (Ar−Cq), 123.18 (Ar−CH), 114.95 (Ar−CH),

85.06 (Ar−Cq-iodine), 57.59 (OCH3), 56.70 (OCH3), 51.51 (NB-
CH2), 48.3 (α-CH2), 28.68 (β-CH2). HRMS calculated for
C17H20BrINO2 [M + H]+, 475.97166; observed [M + H]+, 475.97281.

N-(4-Bromobenzyl)-2-(4-iodo-2,5-dimethoxyphenyl)ethan-1-
amine Hydrochloride (4e). Obtained as needles following crystal-
lization from acetone/EtOAc/Et2O; yield 81%; mp 196−7 °C. 1H
NMR (300 MHz, CD3OD) δ ppm 7.64 (2H, d, J = 8.7 Hz, 2 x Ar−H),
7.42 (2H, d, J = 8.5 Hz, 2 x Ar−H), 7.34 (1H, s, Ar−H), 6.86 (1H, s,
Ar−H), 4.21 (2H, s, NB-CH2), 3.81 (3H, s, OCH3), 3.79 (3 H, s,
OCH3), 3.22−3.27 (2H, m, α-CH2), 2.98−3.03 (2H, m, β-CH2).

13C
NMR (CD3OD): δ ppm 154.43 (Ar−Cq), 153.62 (Ar−Cq), 133.50 (2
x Ar−CH), 133.00 (2 x Ar−CH), 131.71 (Ar−Cq), 126.92 (Ar−Cq),
124.92 (Ar−Cq), 123.16 (Ar−CH), 114.94 (Ar−CH), 85.02 (Ar−Cq-
iodine), 57.60 (OCH3), 56.68 (OCH3), 51.58 (NB-CH2), 48.2 (α-
CH2), 28.66 (β-CH2). HRMS calculated for C17H20BrINO2 Calculated
[M + H]+, 475.97166; observed [M + H]+, 475.97268.

N-(2-Methoxybenzyl)-2-(5-methoxy-1H-indol-3-yl)ethan-1-
amine Hydrochloride (5a). Obtained as needles following crystal-
lization from EtOH/EtOAc; yield 91%; mp 232−4 °C. 1H NMR (300
MHz, CD3OD): δ ppm 7.42 (1H, td, J = 7.9, 1.7 Hz, Ph-H), 7.33 (1H,
dd, J = 7.4, 1.6 Hz, Ph-H), 7.28 (1H, dd, J = 8.9, 0.6 Hz, In−H), 7.16
(1H, s, In−H), 6.97−7.03 (2H, m, Ph-H), 6.95 (1H, d, J = 2.4 Hz, In−
H), 6.81 (1H, dd, J = 8.8, 2.4 Hz, In−H), 4.23 (2H, s, NB-CH2), 3.78
(3H, s, OCH3), 3.67 (3H, s, OCH3), 3.28−3.33 (2H, m, α-CH2,
overlapping with solvent), 3.12−3.17 (2H, m, β-CH2).

13C NMR
(CD3OD): δ ppm 159.25 (Ph−Cq), 155.42 (In-Cq), 133.67 (Ar−
Cq), 132.77 (Ph−CH), 132.68 (Ph−CH), 128.34 (Ar−Cq), 125.35
(In-CH), 122.12 (In-CH), 120.13 (Ar−Cq), 113.41 (Ph−CH), 113.21
(In-CH), 112.06 (Ph−CH), 109.51 (Ar−Cq), 101.00 (In-CH), 56.35
(OCH3), 55.93 (OCH3), 48.90 (α-CH2), 48.3 (NB-CH2), 23.21 (β-
CH2). HRMS calculated for C19H23N2O2 [M + H]+, 311.17540;
observed [M + H]+, 311.17548.

N-(3-Methoxybenzyl)-2-(5-methoxy-1H-indol-3-yl)ethan-1-
amine Maleate (5b). Obtained as needles following crystallization
from acetone/EtOAc/Et2O; yield 84%; mp 124−5 °C. 1H NMR (300
MHz, CD3OD): δ ppm 7.33−7.39 (1H, m, Ph-H), 7.26 (1H, dd, J =
8.9, 0.6 Hz, In−H), 7.13 (1H, s, In−H), 6.99−7.01 (4H, m,
overlapping 3 x Ph-H, 1 x In−H), 6.80 (1H, dd, J = 8.8, 2.4 Hz, In−
H), 6.24 (2H, s, maleate), 4.18 (2H, s, NB-CH2), 3.81 (3H, s, OCH3),
3.80 (3H, s, OCH3), 3.28−3.35 (2H, α-CH2, overlapping with
solvent), 3.11−3.16 (2H, m, β-CH2).

13C NMR (CD3OD): δ ppm
170.89 (maleate), 161.79 (Ph−Cq), 155.39 (In-Cq), 136.79 (maleate),
133.89 (Ar−Cq), 133.60 (Ar−Cq), 131.50 (Ph−CH), 128.44 (Ar−
Cq), 125.00 (In-CH), 122.87 (Ph−CH), 116.40 (Ph−CH), 116.15
(Ph−CH), 113.35 (In-CH), 113.07 (In-CH), 109.84 (Ar−Cq), 101.04
(In-CH), 56.39 (OCH3), 55.88 (OCH3), 52.16 (NB-CH2), 49.0 (α-
CH2), 23.36 (β-CH2). HRMS calculated for C19H23N2O2 [M + H]+,
311.17540; observed [M + H]+, 311.17572

N-(4-Methoxybenzyl)-2-(5-methoxy-1H-indol-3-yl)ethan-1-
amine Maleate (5c). Obtained as needles following crystallization
from acetone/EtOAc/Et2O; yield 82%; mp 172−3 °C. 1H NMR (300
MHz, CD3OD): δ ppm 7.36 (2H, d, J = 8.0 Hz, 2 x Ph-H), 7.26 (1 H,
dd, J = 8.8, 0.5 Hz, In−H), 7.12 (1H, s, In−H), 6.99 (1H, d, J = 2.5
Hz, In−H), 6.97 (2H, d, J = 6.6 Hz, 2 x Ph-H), 6.80 (1H, dd, J = 8.9,
2.4 Hz, In−H), 6.24 (2H, s, maleate), 4.15 (2H, s, NB-CH2), 3.81
(3H, s, OCH3), 3.80 (3H, s, OCH3), 3.27−3.32 (2H, m, α-CH2,
overlapping with solvent), 3.09−3.14 (2H, m, β-CH2).

13C NMR
(CD3OD): δ ppm 170.90 (maleate), 162.24 (Ph−Cq), 155.37 (In-
Cq), 136.78 (maleate), 133.60 (Ar−Cq), 132.52 (2 x Ph−CH), 128.45
(Ar−Cq), 124.97 (In-CH), 124.27 (Ar−Cq), 115.64 (2 x Ph−CH),
113.34 (In-CH), 113.06 (In-CH), 109.89 (Ar−Cq), 101.06 (In-CH),
56.39 (OCH3), 55.89 (OCH3), 51.78 (NB-CH2), 48.5 (α-CH2), 23.38
(β-CH2). HRMS calculated for C19H23N2O2 [M + H]+, 311.17540;
observed [M + H]+, 311.17632

N-(2-Bromobenzyl)-2-(5-methoxy-1H-indol-3-yl)ethan-1-amine
Maleate (5d). Obtained as needles following crystallization from
acetone/EtOAc/Et2O; yield 72%; mp 93−5 °C. 1H NMR (300 MHz,
CD3OD): δ ppm 7.70 (1H, dd, J = 7.9, 1.3 Hz, Ph-H), 7.54 (1H, dd, J
= 7.7, 1.9 Hz, Ph-H), 7.45 (1H, td, J = 7.5, 1.4 Hz, Ph-H), 7.36 (1H,
td, J = 7.8, 1.8 Hz, Ph-H), 7.26 (1H, dd, J = 8.9, 0.6 Hz, In−H), 7.16
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(1H, s, In−H), 7.02 (1H, d, J = 2.3 Hz, In−H), 6.80 (1H, dd, J = 8.9,
2.4 Hz, In−H), 6.24 (2H, s, maleate), 4.41 (2H, s, NB-CH2), 3.82
(3H, s, OCH3), 3.40−3.45 (2H, m, α-CH2), 3.16−3.21 (2H, m, β-
CH2).

13C NMR (CD3OD): δ ppm 170.89 (maleate), 155.41 (In-Cq),
136.75 (maleate), 134.71 (Ph−CH), 133.64 (Ar−Cq), 133.04 (Ph−
CH), 132.76 (Ph−CH), 132.40 (Ar−Cq), 129.65 (Ph−CH),128.44
(Ar−Cq), 125.94 (Ar−Cq), 125.12 (In-CH), 113.38 (In-CH), 113.10
(In-CH), 109.67 (Ar−Cq), 101.06 (In-CH), 56.40 (OCH3), 51.90
(NB-CH2), 49.3 (α-CH2), 23.32 (β-CH2). HRMS calculated for
C18H20BrN2O [M + H]+, 359.07535; observed [M + H]+, 359.07581.
N-(3-Bromobenzyl)-2-(5-methoxy-1H-indol-3-yl)ethan-1-amine

Maleate (5e). Obtained as needles following crystallization from
acetone/EtOAc/Et2O; yield 86%; mp 137−8 °C. 1H NMR (300 MHz,
CD3OD): δ ppm 7.67−7.68 (1H, m, Ph-H), 7.61 (1H, dt, J = 7.7, 1.6
Hz, Ph-H), 7.34−7.45 (2H, m, Ph-H), 7.27 (1H, d, J = 8.7 Hz, In−H),
7.14 (1H, s, In−H), 7.01 (1H, d, J = 2.3 Hz, In−H), 6.80 (1H, dd, J =
8.9, 2.4 Hz, In−H), 6.24 (2H, s, maleate), 4.21 (2H, s, NB-CH2), 3.82
(3H, s, OCH3), 3.31−3.36 (2H, m, α-CH2, overlapping with solvent),
3.11−3.16 (2H, m, β-CH2).

13C NMR (CD3OD): δ ppm 170.92
(maleate), 155.40 (In-Cq), 136.78 (maleate), 135.10 (Ar−Cq), 134.00
(Ph−CH), 133.82 (Ph−CH), 133.61 (Ar−Cq), 132.10 (Ph−CH),
129.81 (Ph−CH), 128.45 (Ar−Cq), 125.01 (In-CH), 124.03 (Ar−
Cq), 113.37 (In-CH), 113.08 (In-CH), 109.82 (Ar−Cq), 101.06 (In-
CH), 56.42 (OCH3), 51.52 (NB-CH2), 49.1 (α-CH2), 23.40 (β-CH2).
HRMS calculated for C18H20BrN2O [M + H]+, 359.07535; observed
[M + H]+, 359.07547
N-(4-Bromobenzyl)-2-(5-methoxy-1H-indol-3-yl)ethan-1-amine

Maleate (5f). Obtained as needles following crystallization from
acetone/EtOAc/Et2O; yield 75%; mp 181−3 °C. 1H NMR (CD3OD):
δ ppm 7.60 (2H, d, J = 8.5 Hz, 2 x Ph-H), 7.37 (2H, d, J = 8.5 Hz, 2 x
Ph-H), 7.26 (1H, d, J = 8.9 Hz, In−H), 7.13 (1H, s, In−H), 6.99 (1H,
d, J = 2.3 Hz, In−H), 6.80 (1H, dd, J = 8.9, 2.4 Hz, In−H), 6.24 (2H,
s, maleate), 4.20 (2H, s, NB-CH2), 3.81 (3H, s, OCH3), 3.31−3.36
(2H, m, α-CH2, overlapping with solvent), 3.11−3.16 (2H, m, β-CH2).
13C NMR (CD3OD): δ ppm 170.89 (maleate), 155.38 (In-Cq), 136.7
5 (maleate), 133.61 (Ar−Cq), 133.51 (2 x Ph−CH), 132.92 (2 x Ph−
CH), 131.77 (Ar−Cq), 128.43 (Ar−Cq), 125.02 (In-CH), 124.90
(Ar−Cq), 113.36 (In-CH), 113.06 (In-CH), 109.76 (Ar−Cq), 101.06
(In-CH), 56.41 (OCH3), 51.50 (NB-CH2), 48.90 (α-CH2), 23.40 (β-
CH2). HRMS calculated for C18H20BrN2O [M + H]+, 359.07535;
observed [M + H]+, 359.07597.
N-(3-Fluorobenzyl)-2-(5-methoxy-1H-indol-3-yl)ethan-1-amine

Maleate (5g). Obtained as needles following crystallization from
acetone/EtOAc/Et2O; yield 78%; mp 150−2 °C. 1H NMR (300 MHz
CD3OD): δ ppm 7.44−7.51 (1H, m, Ph-H), 7.16−7.29 (4H, m,
overlapping 3 x Ph-H, 1 x In−H), 7.14 (1H, s, In−H), 7.01 (1H, d, J =
2.4 Hz, In−H), 6.80 (1H, dd, J = 8.9, 2.4 Hz, In−H), 6.24 (2H, s,
maleate), 4.24 (2H, s, NB-CH2), 3.81 (3H, s, OCH3), 3.31−3.37 (2H,
m, α-CH2, overlapping with solvent), 3.12−3.17 (2H, m, β-CH2).

13C
NMR (CD3OD): δ ppm 170.89 (maleate), 164.38 (Ph−Cq-3′, d, J =
246.2 Hz), 155.40 (In-Cq), 136.74 (maleate), 135.08 (Ph−Cq-1′, d, J
= 7.5 Hz), 133.61 (In-Cq), 132.31 (Ph−C-5′, d, J = 8.3 Hz), 128.45
(In-Cq), 126.88 (Ph−C-6′, d, J = 3.0 Hz), 125.00 (In-CH), 117.79
(Ph−C-2′, d, J = 22.5 Hz), 117.60 (Ph−C-4′, d, J = 21.8 Hz), 113.37
(In-CH), 113.08 (In-CH), 109.79 (In-Cq), 101.06, (In-CH), 56.41
(OCH3), 51.58 (NB-CH2, J = 1.5 Hz), 49.1 (α-CH2), 23.38 (β-CH2).
HRMS calculated for C18H20FN2O [M + H]+, 299.15542; observed
[M + H]+, 299.15602.
N-(3-Chlorobenzyl)-2-(5-methoxy-1H-indol-3-yl)ethan-1-amine

Maleate (5h). Obtained as needles following crystallization from
acetone/EtOAc/Et2O; yield 79%; mp 116−8 °C. 1H NMR (300 MHz,
CD3OD): δ ppm 7.52 (1H, br, s, Ph-H), 7.34−7.49 (3H, m, Ph-H),
7.26 (1H, d, J = 8.9 Hz, In−H), 7.14 (1H, s, In−H), 7.01 (1H, d, J =
2.4 Hz, In−H), 6.80 (1H, dd, J = 8.9, 2.4 Hz, In−H), 6.24 (2H, s,
maleate), 4.22 (2H, s, NB-CH2), 3.82 (3H, s, OCH3), 3.31−3.37 (2H,
m, α-CH2, overlapping with solvent), 3.12−3.17 (2H, m, β-CH2).

13C
NMR (CD3OD): δ ppm 155.41 (In-Cq), 136.76 (maleate), 136.10
(Ar−Cq), 134.82 (Ar−Cq), 133.60 (Ar−Cq), 131.89 (Ph−CH),
131.04 (Ph−CH), 130.84 (Ph−CH), 129.38 (Ph−CH), 128.45 (Ar−
Cq), 125.01 (In-CH), 113.36 (In-CH), 113.08 (In-CH), 109.78 (In-

Cq), 101.04 (In-CH), 56.40 (OCH3), 51.54 (NB-CH2), 49.1 (α-
CH2), 23.39 (β-CH2). HRMS calculated for C18H20ClN2O [M + H]+,
315.12587; observed [M + H]+, 315.12666

N-(3-Iodobenzyl)-2-(5-methoxy-1H-indol-3-yl)ethan-1-amine
Maleate (5i). Obtained as needles following crystallization from
acetone/EtOAc/Et2O; yield 84%; mp 131−2 °C. 1H NMR (300 MHz,
CD3OD): δ ppm 7.87 (1H, brs, Ph-H), 7.81 (1H, d, J = 7.9 Hz, Ph-
H), 7.45 (1H, d, J = 7.7 Hz, Ph-H), 7.27 (1H, d, J = 8.3 Hz, In−H),
7.21 (1H, t, J = 7.8 Hz, Ph-H), 7.13 (1H, s, In−H), 7.01 (1H, d, J = 2.3
Hz, In−H), 6.80 (1H, dd, J = 8.9, 2.3 Hz, In−H), 6.24 (2H, s,
maleate), 4.18 (2H, s, NB-CH2), 3.82 (3H, s, OCH3), 3.31−3.36 (2H,
m, α-CH2, overlapping with solvent), 3.11−3.16 (2H, m, β-CH2).

13C
NMR (CD3OD): δ ppm 155.39 (In-Cq), 139.98 (Ph−CH), 139.88
(Ph−CH), 136.76 (maleate), 134.98 (Ar−Cq), 133.58 (Ar−Cq),
132.03 (Ph−CH), 130.31 (Ph−CH), 128.46 (Ar−Cq), 124.99 (In-
CH), 113.36 (In-CH), 113.08 (In-CH), 109.80 (Ar−Cq), 101.03 (In-
CH), 95.42 (Ar−Cq-iodine), 56.42 (OCH3), 51.41 (NB-CH2), 49.1
(α-CH2), 23.37 (β-CH2). HRMS calculated for C18H20IN2O [M +
H]+, 407.06148; observed [M + H]+, 407.06188.

N-(3-Methylbenzyl)-2-(5-methoxy-1H-indol-3-yl)ethan-1-amine
Maleate (5j). Obtained as needles following crystallization from
acetone/EtOAc/Et2O; yield 78%; mp 125−7 °C. 1H NMR (300 MHz,
CD3OD): δ ppm 7.22−7.35 (5H, m, overlapping 4 x Ph-H and 1 x
In−H), 7.13 (1H, s, In−H), 6.99 (1H, d, J = 2.3 Hz, In−H), 6.80 (1H,
dd, J = 8.9, 2.4 Hz, In−H), 6.24 (2H, s, maleate), 4.17 (2H, s, NB-
CH2), 3.82 (3H, s, OCH3), 3.29−3.35 (2H, m, α-CH2, overlapping
with solvent), 3.10−3.15 (2H, m, β-CH2), 2.36 (3H, s, CH3).

13C
NMR (CD3OD): δ ppm 170.90 (maleate), 155.38 (In-Cq), 140.47
(Ar−Cq), 136.80 (maleate), 133.61 (Ar−Cq), 132.46 (Ar−Cq),
131.49 (Ph−CH), 131.40 (Ph−CH), 130.27 (Ph−CH), 128.46 (Ar−
Cq), 127.93 (Ph−CH), 125.00 (In-CH), 113.35 (In-CH), 113.06 (In-
CH), 109.87 (Ar−Cq), 101.07 (In-CH), 56.40 (OCH3), 52.24 (NB-
CH2), 48.9 (α-CH2), 23.37 (β-CH2), 21.36 (CH3). HRMS calculated
for C19H23N2O [M + H]+, 295.18049; observed [M + H]+, 295.18090.

N-(3-Methylthiobenzyl)-2-(5-methoxy-1H-indol-3-yl)ethan-1-
amine Maleate (5j). Obtained as needles following crystallization
from acetone/EtOAc/Et2O; yield 80%; mp 151−2 °C. 1H NMR (300
MHz, CD3OD): δ ppm 7.31−7.39 (3H, m, Ph-H), 7.26 (1H, d, J = 8.9
Hz, In−H), 7.19 (1H, dt, J = 7.0, 1.9 Hz, Ph-H), 7.13 (1H, s, In−H),
7.00 (1H, d, J = 2.4 Hz, In−H), 6.80 (1H, dd, J = 8.9, 2.4 Hz, In−H),
6.24 (2H, s, maleate), 4.19 (2H, s, NB-CH2), 3.81 (3H, s, OCH3),
3.30−3.35 (2H, m, α-CH2, overlapping with solvent), 3.11−3.16 (2H,
m, β-CH2), 2.48 (3H, s, CH3).

13C NMR (CD3OD): δ ppm 170.91
(maleate), 155.40 (Ar−Cq), 141.95 (Ar−Cq), 136.78 (maleate),
133.60 (Ar−Cq), 133.34 (Ar−Cq), 130.74 (Ph−CH), 128.46 (Ar−
Cq), 128.40 (Ph−CH), 128.30 (Ph−CH), 127.20 (Ph−CH), 125.00
(In-CH), 113.36 (In-CH), 113.08 (In-CH), 109.84 (Ar−Cq), 101.04
(In-CH), 56.41 (OCH3), 52.05 (NB-CH2), 49.1 (α-CH2), 23.38 (β-
CH2), 15.37 (CH3). HRMS calculated for C19H23N2OS [M + H]+,
327.15256; observed [M + H]+, 327.15362.

N-(3-Trifluoromethylbenzyl)-2-(5-methoxy-1H-indol-3-yl)ethan-
1-amine Maleate (5k). Obtained as needles following crystallization
from acetone/EtOAc/Et2O; yield 62%; mp 161−2 °C. 1H NMR (300
MHz, CD3OD): δ ppm 7.84 (1H, brs, Ph-H), 7.62−7.78 (3H, m, Ph-
H), 7.26 (1H, d, J = 8.8 Hz, In−H), 7.14 (1H, s, In−H), 7.02 (1H, d, J
= 2.1 Hz, In−H), 6.80 (1H, dd, J = 8.9, 2.3 Hz, In−H), 6.24 (2H, s,
maleate), 4.32 (2H, s, NB-CH2), 3.81 (3H, s, OCH3), 3.35−3.40 (2H,
m, α-CH2), 3.13−3.18 (2H, m, β-CH2).

13C NMR (CD3OD): δ ppm
170.91 (maleate), 155.41 (In-Cq), 136.74 (maleate), 134.85 (Ph−
CH), 134.04 (Ph−Cq), 133.60 (In-Cq), 132.56 (Ph-Cq, d, J = 32.3
Hz), 131.24 (Ph−CH), 128.46 (In-Cq), 127.84 (Ph−CH, q, J = 4.0
Hz), 127.46 (Ph−CH, q, J = 3.8 Hz), 125.4 (CF3, q, J = 272 Hz),
125.01 (In-CH), 113.36 (In-CH), 113.06 (In-CH), 109.79 (In-Cq),
101.06 (In-CH), 56.39 (OCH3), 51.63 (NB-CH2), 49.20 (α-CH2),
23.41 (β-CH2). HRMS calculated for C19H20F3N2O [M + H]+,
349.15222; observed [M + H]+, 349.15259

Pharmacology. Receptor Affinity. Receptor affinity values for a
panel of human serotonin receptors were obtained for all compounds
through the NIMH-sponsored PDSP program (www.pdsp.med.unc.
edu). Affinity data from screening are reported in Table 1. Following
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the initial screen, more detailed values were obtained for affinity at the
human 5-HT2A and 5-HT2C receptors using both an antagonist
radioligand ([3H]ketanserin for 5-HT2A) and ([3H]mesulergine for 5-
HT2C) and an agonist radioligand ([3H]-DOI) for both receptors.
Those data are reported in Table 2.
Receptor Efficacy and Potency in the Ca2+ Mobilization

Assay. Changes in intracellular Ca2+ levels were measured using a
Fluorometric Imaging plate reader (FLIPRTETRA, Molecular Devices),
essentially as described in the PDSP (NIMH Psychoactive Drug
Screening Program) Assay Protocol Book (www.pdsp.med.unc.edu).
PO1C cells stably transfected with r5-HT2C or r5-HT2A receptors, and
HEK 293 cells stably transfected with h5-HT2A, h5-HT2B, or h5-HT2C

receptors were plated (20,000 cells/well) into poly-L-lysine coated
394-well clear-bottom black-walled microplates (Greiner Bio-one)
with 50 μL of media (DMEM media supplemented with 500 μg/mL
Geneticin sulfate (G-418), 10% dialyzed fetal bovine serum, and 50 U
of penicillin/50 μg of streptomycin) and incubated overnight (37 °C,
5% CO2). The following day, media were replaced with 20 μL of
FLIPR Calcium 4 Assay Kit (Molecular Devices) diluted in assay
buffer (HBSS, 2.5 mM probenecid, and 20 mM HEPES, pH 7.4−7.8)
and incubated for 45 min at 37 °C and 15 min at room temperature.
Compounds were initially dissolved in DMSO. The 16-point curves
were prepared as 3× serial dilutions for each compound with final
concentrations ranging from 10 μM to 0.003 nM. Basal fluorescence
was measured for 10 s, then 10 μL of test or control compounds was
added followed by continued fluorescence measurement for an
additional 120 s. Raw data were normalized to baseline fluorescence
(0%) and 5HT at 10 μM (100%), expressed as percent activation, and
plotted as a function of molar concentration of test compound using
Prism 5.0 (GraphPad Software). These data are reported in Table 3.
Mouse Head Twitch Response. Animals. Male C57BL/6J mice

(6−8 weeks old) were obtained from Jackson Laboratories (Bar
Harbor, ME, USA) and housed in a vivarium at the University of
California, San Diego, an AAALAC-approved animal facility that meets
Federal and State requirements for the care and treatment of
laboratory animals. Mice were housed up to four per cage in a
climate-controlled room with a reversed light-cycle (lights on at 1900
h, off at 0700 h). Food and water were provided ad libitum, except
during behavioral testing. Testing was performed between 1000 and
1830 h. Experiments were conducted in accord with NIH guidelines
and were approved by the UCSD animal care committee.
Procedures. The HTR was assessed using a head-mounted magnet

and a magnetometer detection coil. Mice were anesthetized (100 mg/
kg ketamine, 3 mg/kg acepromazine, and 20 mg/kg xylazine, IP), and
a neodymium magnet (4.57 × 4.57 × 2.03 mm, 375 mg) was attached
to the skull using dental cement. The magnet was positioned so that
the N−S axis was parallel to the dorsoventral plane of the head. Mice
were allowed to recover for 2 weeks after surgery. HTR experiments
were conducted in a well-lit room. Test compounds were dissolved in
water containing 5% Tween-80 and administered SC (5 or 10 mL/kg).
Mice were injected with drug or vehicle and placed in a glass cylinder
surrounded by a magnetometer coil. Head movements were recorded
and analyzed for HTR as described previously.23,31 Coil voltage was
low-pass filtered (5−10 kHz), amplified, and digitized (40 kHz
sampling rate) using a Powerlab/8SP with LabChart v 7.3.2
(ADInstruments, Colorado Springs, CO, USA). The data were filtered
off-line (40−200 Hz band-pass), and HTRs were identified by
manually searching for sinusoidal wavelets possessing at least two
bipolar peaks, spectrum in the 40−160 Hz range, amplitude exceeding
the background noise level, and duration <0.15 s, with stable coil
voltage during the period immediately before and after each response.
Analysis. HTR counts were analyzed using one-way analyses of

variance (ANOVAs). Post-hoc comparisons were made using Tukey’s
studentized range method. Significance was demonstrated by
surpassing an α-level of 0.05. ED50 values and 95% confidence limits
were calculated using nonlinear regression. These data are reported in
Table 4.
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