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Fast-scan cyclic voltammetry (FSCV) is an electroanalytical
technique used to measure real time neurochemical signaling

dynamics in vivo of electroactive biomolecules including cate-
cholamines.1 FSCV used with carbon-fiber microelectrodes offers
several advantages including subsecond temporal resolution, excel-
lent sensitivity, micrometer spatial resolution, and minimal
damage in vivo.2,3 FSCV is also one of the most selective elec-
trochemical approaches because FSCV is a multivariate techni-
que. The shape of the characteristic cyclic voltammogram for
most neurochemicals is unique and can be used as a fingerprint
identifier for measured analyte.4,5

Mathematical programming software packages, such as Ma-
tlab, have become widely available throughout the scientific
community, and they enable the use of sophisticated mathema-
tical tools developed in the 1970s.6 One of these methods,
principal component regression (PCR), is a chemometric tech-
nique that combines principal component analysis with inverse
least-squares regression.7�9 In PCR, a training set containing ref-
erence voltammograms at known concentrations is assembled.
Abstract representations of the training set voltammograms called
principal components (PCs) are calculated. PCs that describe
relevant information necessary for concentration prediction are
retained, and PCs that describe noise are discarded. The projec-
tion of the training set voltammograms onto the relevant PCs
(called scores) are calibrated to the reference concentration
values through regression analysis. Finally, concentration values
of unknown voltammograms are predicted by calculating their
relevant scores and using the calibration determined from the
training set. Incorporation of PCR into the analysis of in vivo
FSCV measurements improved neurochemical concentration

determination of analytes with overlapping cyclic voltammo-
grams in single cells, brain slices, and awake behaving rats.4,7,8,10�12

The applicability of calibration models to the unknown data
sets being predicted should be properly characterized before
concentration prediction of unknown samples.13 A residual analysis
procedure developed by Jackson and Mudholkar14 has been
incorporated into the PCR analysis of in vivo FSCV data to
address this concern.7,8,10 If the extraneous variance in the
unknown measurement (denoted as Q) is greater than a calcu-
lated tolerance level (denoted asQR) the multivariate calibration
is insufficient to predict neurochemical concentration values in
the unknown measurement. However, this procedure is not
perfect and has been shown to fail.12

The accuracy of multivariate calibration models should also be
verified before concentration prediction and is addressed in a
process called validation.9,13 One disadvantage to the current
PCR analysis of in vivo FSCV data is that, unlike in vitro mea-
surements, there is no independent method to calculate the
“true” concentration of the species being measured. The refer-
ence concentration values of in vivo training sets are determined
empirically by dividing the measured peak current by an in vitro
calibration factor so any validation procedure may not be of
much use. In vitro standards cannot be used because of differ-
ences in peak shapes and peak potentials between in vitro and
in vivo cyclic voltammograms. Therefore, qualitative information
concerning the identity of the species detected is of prime
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ABSTRACT: Principal component regression is a multivariate data analysis
approach routinely used to predict neurochemical concentrations from in vivo
fast-scan cyclic voltammetry measurements. This mathematical procedure can
rapidly be employed with present day computer programming languages. Here, we
evaluate several methods that can be used to evaluate and improve multivariate
concentration determination. The cyclic voltammetric representation of the calcu-
lated regression vector is shown to be a valuable tool in determining whether the
calculated multivariate model is chemically appropriate. The use of Cook’s distance
successfully identified outliers contained within in vivo fast-scan cyclic voltammetry
training sets. This work also presents the first direct interpretation of a residual color plot and demonstrated the effect of peak shifts
on predicted dopamine concentrations. Finally, separate analyses of smaller increments of a single continuous measurement could
not be concatenated without substantial error in the predicted neurochemical concentrations due to electrode drift. Taken together,
these tools allow for the construction of more robust multivariate calibration models and provide the first approach to assess the
predictive ability of a procedure that is inherently impossible to validate because of the lack of in vivo standards.
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importance. If there existed an approach to assess the predictive
ability of multivariatemodels without using standards, an indirect
“pseudovalidation” method could be incorporated into the PCR
analysis. The validity of constructed in vivo calibration models
would then be judged on the ability of models to properly
identify the characteristic voltammetric shapes and sensitivities
associated with the analytes being studied, rather than properly
predicting specified concentration values as is traditionally done
with in vitro measurements.

The goal of this work was to improve the PCR prediction of
neurochemical concentrations detected by FSCV in vivo by using
examples that demonstrate the pitfalls associated with the approach.
In addition, other diagnostic tools are applied here to character-
ize the overall multivariate calibration model. As suggested in the
literature,15 these diagnostics should be simple, graphical, and
give specific guidance of how to improve the calibration meth-
odology. We qualitatively evaluate an estimation of pure analyte
cyclic voltammograms determined from the PCR calibration
relationship, incorporate Cook’s distance to successfully identify
and remove standards classified as outliers in the training set, and
describe the first interpretation of a residual color plot. In
addition, PCR prediction of in vivo FSCV data was previously
limited to 90 s because the presence of electrode drift causedQ to
cross the QR tolerance level.

10 One way to circumvent this prob-
lem would be to break up a long continuous measurement into
smaller epochs, perform PCR with residual analysis on each
epoch, and concatenate the results into one concentration trace
for each analyte. However, this approach has not been evaluated.
This work presents these tools in a simplified manner such that
users may recognize their importance without complicated
mathematical manipulations.

’THEORY

Throughout the paper, uppercase bold letters represent matrices,
lowercase bold letters represent vectors, and normal notation
represents scalar values.
PCR and K Generation. PCR prediction of unknown neuro-

chemical concentrations (Cunk) can be described according to

Cunk ¼ FVc
TAunk ð1Þ

where Aunk contains the unknown cyclic voltammograms to be
predicted, Vc contains the relevant PCs of rank r (the superscript
T represents the matrix transpose), and F contains the regression
coefficients that relate unknown concentrations of each analyte
to the scores of the relevant PCs.9 The regression coefficients inF
are calculated using the training set according to

F ¼ CTSAprojTS
T AprojTSAprojTS

T
h i�1

ð2Þ

whereCTS are the training set reference concentration values and
AprojTS are the relevant PC scores of the training set cyclic
voltammograms.9 Here we defineCTS as being size j�m, where j
is the number of analytes and m is the number of training set
samples. The training set voltammetric matrix (ATS) is size n �
m, where n is the number potential steps in the cyclic voltam-
metric waveform.
Ignoring error, the relevant currents of any unknown data set

can be predicted if pure analyte cyclic voltammograms are known
according to

Aunk ¼ KCunk ð3Þ

where K is a matrix containing cyclic voltammograms of each
analyte j in units of current per concentration change. Substitut-
ing eq 3 into eq 1 shows thatK is the inverse of the quantity FVC

T

calculated during the PCR procedure. However, since the
quantity FVC

T is not square, K can be calculated by taking the
pseudoinverse of FVC

T.16 We have previously used the calcula-
tion of K to compare the specific current contributions of dopa-
mine, pHchange, and electrode drift after an intravenous infusion of
cocaine in a freely moving rat.17

Each column of K, kj, can be thought of as a cyclic voltam-
metric representation of the regression vector for each analyte in
the relevant multivariate calibration space of the training set.
Stated another way, each kj vector can be thought of as the PCR
interpretation of sensitivity at each potential for a specific analyte
j based on the training set cyclic voltammograms, reference
concentration values, and the relevant PCs of the multivariate
model. Therefore, the shape of each kj vector could be used as an
overall qualitative measure to assess whether constructed PCR
calibration models are chemically appropriate.
Leverage. Several statistics exist for the evaluation and

optimization of multivariate calibration models.18 Leverage (hi)
is a measure of uniqueness and describes how far away the ith
sample is away from the other m � 1 training set samples in the
calibration space. While there are multiple ways to calculate hi, if
singular value decomposition is used to decompose the n � m
training set voltammetric matrix,7,8,16 then each hi value is easily
calculated as the ith diagonal element of the following multi-
plication

hi ¼ diagðVrVr
TÞ ð4Þ

where Vr is the m � r subset that spans the relevant row
information of the training set voltammetric matrix.19 hi is a scalar
that takes on values between 0 and 1, with samples of higher
leverage having greater potential to influence the calculation of
the regression vector. A good rule of thumb in for eliminating
high leverage samples is to delete those that have hi values higher
than 2r/m or 3r/m.18,19

While conservative, eliminating samples based on leverage is
not always ideal. First, multiple outliers make the identification of
truly high leverage outliers difficult.20 It is also possible that a
sample with high leverage may have an extreme composition
relative to other samples in the training set, which may occur at
either the low or high end of a calibration. These regions are
usually of great interest to the user during the analysis. Leverage
does not take into account accuracy so samples could be
eliminated based on the possibility of harm, rather than the
actual error.
Practically, in vivo FSCV training sets can be inherently high

leverage. In vivoFSCV training samples are generated by stimulating
the freely moving rat to elicit neurochemical release of varying
amplitudes. Stimulations are given to encompass a wide range of
responses, but they do not always evenly span the calibration space.
In addition, only five cyclic voltammograms per analyte are
traditionally incorporated into a training set.7,8,12 Therefore, exclud-
ing samples with hi > 3r/m is not ideal in practice.
Studentized Residual. Another figure of merit that can be

used to evaluate multivariate calibrations is termed studentized
residual and has the notation ti. If ei is the difference between the
estimated and reference concentration values, ti can be calculated as

ti ¼ ei
SEC

ffiffiffiffiffiffiffiffiffiffiffiffi
1� hi

p ð5Þ
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where SEC is the standard error of the calibration.18 Pure concen-
tration prediction error cannot be used to evaluate fit because of hi.
Samples with high leverage tend to determine the overall multi-
variate calibration model, which would tilt the regression vector
toward them, and would as such have a lower overall prediction
error.18,21 Because studentized residuals should be normally dis-
tributed with common variance, a statistical test can be used to
determine if the ith sample is a potential outlier.18,19 However, a
significant value of ti may also sometimes be indicative of an
imprecise estimate of the reference concentration. Deletion of this
sample may cause an underestimation of the PRESS statistic that is
sometimes used for rank estimation.19

Cook’s Distance. Cook’s distance22 (Di) combines hi and ti,
and is a measure of the effect of the ith sample on the overall
multivariate calibration. In PCR, Di is calculated as (without
mean centering of the training set voltammetric matrix)

Di ¼ ti2

r
hi

1� hi
ð6Þ

where r is the number of retained PCs.19 Di is a measure of the
distance that the regression vector moves within the calibration
space if the ith sample is removed from the training set.19,22,23 Di

takes into account the overall extent to which a sample can be
considered an outlier (ti) and the sensitivity of the regression
vector to outliers at each data point [hi/(1 � hi)].

22

Large values
of Di indicate that the ith sample is highly influential in the
calculation of the regression coefficients and deletion of the ith
sample would cause a dramatic difference in their values.22�25

Calculated Di values can be compared to the F-distribution to
determine the extent to which the removal of the ith sample
changes the calculation of the regression coefficients greater than
a user-defined tolerance. In PCR, the tabulated F-value used is
F1�γ(r, m� r� 1) where γ is the significance level.25 However,
in this case, γ is a descriptive significance level and does not take
the familiar p-value interpretation.23,26,27 Specifically, a Di value
that equals F1�γ(r, m � r � 1) means that deletion of the ith
sample moves the regression vector to the distance away
corresponding to the edge of a γ confidence ellipsoid around
the original regression vector. Di is not distributed as F, and
therefore, Di is not a true test statistic. Instead, Di is an indicator
of how close the regression vectors are with and without the ith
sample (for further review, see refs 23, 26, and 27).
Di values that are greater than the tabulated F1�γ(r,m� r� 1)

mean that deletion of the ith sample causes the regression vector
to move farther than a tolerable amount in the relevant multi-
variate calibration space. It is incorrect to state that one is (1� γ)%
confident a particular sample is an outlier if its Di value is greater
than the tabulated F1�γ(r, m � r � 1) value. Instead, the ith
sample is said to be very influential in calculating the regression
vector because its deletion grossly repositions the regression
vector greater than a predefined amount.24 Such samples should
be removed from the training set because of their adverse
influence on the overall regression model.19 Cook’s distance has
been used successively with multivariate calibration to remove
outliers in training sets and should serve as excellent assessment
of the prediction model.19,25,28,29Di is more powerful than either
hi or ti alone because Di simultaneously reflects error of predic-
tion and uniqueness of spectral information.29 Unfortunately,
because hi is used in the calculation of Di, Di suffers from the
disadvantage that multiple outliers may not be detected.30

’RESULTS AND DISCUSSION

The Use of K as a Qualitative Diagnostic Tool. Because of
ineffective validation, there is a need for a rapid, simple diagnostic
criterion that can be used to verify that the PCR model correctly
identified the characteristic voltammetric pattern and sensitivity
associated with each neurochemical of interest. In a qualitative
way, the kj vector provides this information as illustrated by the
following two data sets. Figure 1A and B shows an example of a
proper training set consisting of five dopamine cyclic voltammo-
grams and five pH change cyclic voltammograms. The cyclic
voltammograms for each species had a consistent shape and
spanned the calibration space well with an estimated rank of two.
The calculated values of kj for dopamine (kDA) and pH change
(kpH) are shown in Figure 1C and D, respectively. These cyclic
voltammetric representations are consistent with those of the
training set and the known cyclic voltammograms of these two
neurochemicals.4,31 The sensitivity at the peak potentials of
dopamine and pH change were also consistent with values
reported in the literature.1,4,31

Figure 1E and F shows an example of a questionable training
set with an estimated rank of three (the rank of in vivo FSCV
training sets varies with signal-to-noise ratio and is not a
diagnostic criterion for an invalid training set12). The dopamine
cyclic voltammograms showed a consistent shape that spanned a
wide concentration range. However, the 0.14 basic pH change
cyclic voltammogram was inconsistent with the rest of the pH
change cyclic voltammograms. The pH change cyclic voltammo-
gram normally has three peaks known as the C-peak at approxi-
mately �0.2 V on the oxidative sweep, the QH-peak at approx-
imately 0.3 V on the oxidative sweep, and the Q-peak at approx-
imately �0.3 V on the reductive sweep.31 Using the other pH
change cyclic voltammograms for comparison, the peak current
of the C-peak for the 0.14 basic pH change was much too large
given (a) the peak currents for the QH- and Q-peaks and (b) the
overall shape for reasons that are not understood. The C-peak
has been shown to be highly dependent on the extracellular
environment, so possible variations in the local extracellular
environment could alter the ratio of the measured currents of
the C-, Q-, and QH-peaks.31 Since the C-peak was used for
quantitation, the 0.14 basic pH change reference value was also
likely incorrect.
Figure 1G and H shows the calculated kDA and kpH vectors for

the poor training set. Even though the dopamine cyclic voltam-
mograms of the poor training set were of good quality, the shape
of kDAwas distorted. Moreover, the shape of kpHwas even worse
with only the C-peak was apparent. The broad shape of the pH
change cyclic voltammogram was incorporated into kDA rather
than kpH, as well as most of the QH- and Q-peaks. In fact,
the sensitivity of dopamine at the reduction potential was a
positive value.
Since K is calculated from the inverse of FVc

T, there are three
reasons that would cause kj vectors to deviate from ideal
behavior. First, the number of relevant PCs chosen during factor
selection could be incorrect. This was unlikely because factor
selection has been previously evaluated for in vivo FSCV training
sets.12 Second, the reference concentration values could be
incorrect, leading to erroneous relationships between the projec-
tions onto the regression vectors and predicted concentrations.
To illustrate this point, the QH-peak was used instead of the
C-peak to determine the amplitude of the basic pH shifts from
the questionable training set in Figure 1F. kDA and kpH were
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recalculated and are shown in Figures 1I and J. These values were
consistent with the known cyclic voltammograms.4 This result
showed that the reference pH changes determined using theQH-
peak were more appropriate, given the shapes of the pH change
cyclic voltammograms of the questionable training set.
PCR assumes that the amplitude of the entire cyclic voltam-

mogram linearly increases with concentration so the choice of
which of the C-, QH-, or Q-peaks is used for quantitation should

be irrelevant because their relative ratios should remain constant.
However, the amplitude of the C-peak has been shown to vary
depending on the extracellular environment meaning that the
C-peak is more susceptible to voltammetric inconsistencies and
overall error.31 In that work, it was suggested that a current versus
time trace taken at the C-peak was unsuitable for quantitation of
pH changes in vitro or in vivo. The results here provide clear
evidence that extends this conclusion to multivariate analysis of

Figure 1. K representations of a proper and a questionable training set. (A) Dopamine cyclic voltammograms of the proper training set. (B) pH change
cyclic voltammograms of the proper training set. (C) kDA for the proper training set shown in (A) and (B). (D) kpH for the proper training set shown in
(A) and (B). (E) Dopamine cyclic voltammograms of the questionable training set. (F) pH change cyclic voltammograms of the questionable training
set. (G) kDA for the questionable training set shown in (E) and (F). (H) kpH for the questionable training set shown in (E) and (F). (I) and (J) show the
recalculated kDA and kpH vectors, respectively, for the questionable training set shown in (E) and (F) if the QH-peak is used for pH change quantitation
rather than the C-peak. The arrows in (A), (B), (C), (D), (G), and (H) indicate the direction of the voltammetric sweep.
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in vivo FSCV data. Instead, the QH- or Q-peak should be used to
determine the value of the reference pH changes for in vivo
FSCV training sets.
A third possibility for improper kDA or kpH values is that

inconsistent cyclic voltammograms could be included in the
training set that drastically alter the multivariate calibration
space. Such samples could unduly influence the position of the
regression vector and thus K. While the K approach can be used
as a simple, rapid, qualitative graphical diagnostic tool to assess
model construction, another criterion should be included to
identify any cyclic voltammograms of the training set that act as
outliers, unduly influencing the position of the regression vectors
and the relevant calibration space.
Identifying and Removing Training Set Outliers Using

Cook’s Distance. If there is a significant change in a calibration
model upon the deletion of one sample, the sample is likely an
outlier and should not be included in the training set. Mathe-
matically, if Di is larger than a tabulated F-value, that sample
should be considered for rejection. Originally, Cook suggested
that a value of 0.1 be used for γ, but this selection was arbitrary.22

Using a value of 0.1 for γ determined that 31 out of a library of the
119 training sets contained at least one poor standard. The
shapes and corresponding concentration values for the poor
cyclic voltammograms were qualitatively evaluated by careful
visual inspection to verify the presence of outliers for these
questionable training sets. Several of these questionable training
sets did not contain poor standards, indicating that a γ value of
0.1 was too sensitive (data not shown). A γ value of 0.1 led to the
calculation of tolerable distance shifts that were too small for the
high leverage FSCV data (see Theory). Instead, a γ value of 0.05
was used here that yielded satisfactory results, as shown below.
Figure 2 shows how Cook’s distance can be used to improve

the PCR analysis of in vivo FSCV data. Figure 2A and B shows
the dopamine and pH change cyclic voltammograms, respec-
tively, for a poor training set. The 0.25 μM dopamine and 0.062
basic pH change samples were clearly uncharacteristic of the
other neurochemical cyclic voltammograms. The estimated rank
of this training set was two. The 0.25 μM dopamine cyclic
voltammogram had an extra peak at �0.2 V on the forward
sweep, and the 0.062 basic pH shift had a positive current
deflection at 0.4 V on the forward sweep.
The cause for the uncharacteristic shapes of these cyclic

voltammograms was unknown but could have been due to
improper stimulation parameters (magnitude and/or location
within the brain), deterioration of the glass seal of the carbon-
fiber microelectrode, or possible biofouling of the sensor. The
extraneous peak at�0.2 V on the forward sweep on the 0.25 μM
dopamine cyclic voltammogram was at the same potential as the
C-peak of the pH change cyclic voltammogram. The C-peak is
associated with changes in electrode capacitance and is not
restricted to only pH change cyclic voltammograms.31 This
extraneous peak in the 0.25 μM dopamine cyclic voltammogram
suggests that there may have been adsorption or desorption of
electrochemically inert species on the surface of the carbon-fiber
microelectrode31 coincident with dopamine release during the
stimulation event that generated this cyclic voltammogram.
kDA and kpH for this poor training set are shown in Figure 2C

and D, respectively. The inclusion of the questionable standards
negatively affected the interpretation of pure analyte voltammo-
grams by the PCR model, especially for pH change. Figure 2E
shows the score plot for the poor training set from Figure 2A and
B. Visually, the 0.25 μM dopamine and the 0.062 basic pH shift

samples resemble possible outliers in the relevant calibration
space. hi of the questionable dopamine and pH change standards
were calculated to be 0.61 and 0.60, respectively, higher than all
the other samples, indicating that these two samples had
moderate potential to influence the multivariate calibration.
Indeed, the position of the regression vectors appear tilted
toward these outliers and away from the other analyte standards.
The calculated Di values for these questionable dopamine and

pH standards were 5.49 and 5.01, respectively, which were
significantly higher than the tablulated F-value of 4.74. The
significantDi values indicate that these two samples were outliers
and should not have been included in the calibration model
because of their overall adverse impact on the regression vectors.
The regression vectors were recalculated with the outliers
removed from this training set and are plotted in Figure 2F.
There was a dramatic shift in the position of the regression
vectors for each neurochemical. Without the outliers, the regres-
sion vectors more accurately spanned the remaining training set
samples for both dopamine and pH change.
kDA and kpH were also recalculated without the outliers and

are shown in Figure 2G and H, respectively. kDA and kpH differed
in shape from the proper training set shown in Figure 1, but they
were consistent with the remaining neurochemical cyclic vol-
tammograms of this training set. The shape of a pH change cyclic
voltammogram depends on both the extracellular environment
and carbon surface chemistry,31 and has been published with
varying C-/QH-/Q-peak ratios.10,17,32,33

Di was also used to evaluate the poor training set shown in
Figure 1E and F. hi was calculated to be 0.86 for the questionable
pH change cyclic voltammogram labeled as a 0.14 basic pH shift.
Such a large hi indicates that this sample had a large potential to
influence the calculation of the regression vectors. Calibrating
with the pH change, cyclic voltammograms with the C-peak gave
a Di value of 6.65 and calibrating with the QH-peak gave a Di

value of 11.42. Since both of these values were larger than the
tabulated F-value of 4.76, this standard was considered an outlier
no matter how the reference pH change value was determined.
The removal of this questionable cyclic voltammogram gener-
ated new kDA and kpH vectors that were consistent with those
shown in Figure 1C and D.
Cook’s distance may also likely improve model selection.

Recently, it was shown that Malinowski’s F-test improved factor
selection for in vivo FSCV training sets.12 This approach esti-
mates rank by identifying PCs that contain statistically more
variance than PCs that span noise. While the ideal rank of a
training set containing only dopamine and pH is two, many
training sets had an estimated rank higher than two. One reason
for a large estimated rank is that inconsistencies were present in
the cyclic voltammograms that were significantly larger than the
noise. For these training sets, Malinowski’s F-test could retain
more PCs to span inconsistencies in outlier cyclic voltammo-
grams rather than only the relevant calibration space.
Cook’s distance was used to test this hypothesis. Of the 119

training sets analyzed, 15 were identified to contain outliers
based on Cook’s distance. Interestingly, Malinowski’s F-test
estimated the rank to be larger than two for 13 of the 15 training
sets. Upon removal of the identified outliers, the estimated rank
decreased for 10 of those 13 training sets. This result shows that
the estimated rank increased for some training sets only to span
samples that would adversely impact the overall prediction of the
multivariate calibrationmodel. Therefore, Cook’s distance can be
used to improve both the prediction ability and selection of the
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relevant factor space of multivariate in vivo FSCV calibration
models.
While discarding data is not ideal, in vivo measurements are

considerably more difficult than in vitro measurements and
require more experimental flexibility. Since only 15 out of 119
training sets contained outlier cyclic voltammograms, this
occurrence is not an overwhelming concern. Furthermore,
the residual analysis procedure can be used as a check to
determine if any of these outlier cyclic voltammograms of the
training set are contained within the unknown data being
predicted. The residual analysis procedure identifies all
sources of variance not accounted for by the relevant principal
components of the training set. If the distortions of measured
data existed, they would show up as artifacts in the residual

color plot and residual Q-plot, informing the user that
discarded cyclic voltammograms of the training set are repre-
sentative of the unknown data and the training set should be
reconstructed.
Interpretation of Residual Color Plots for the Identifica-

tion of Deterministic Error. A residual color plot7,8 provides
extra information to the Q-plot for assessing training set aug-
mentation; the specific peak potentials causing the error can
quickly be identified, but this has not been widely reported in the
literature. Figure 3A shows a representative color plot of stim-
ulated neurochemical release measured in the nucleus accum-
bens of a freely moving rat. At the time of the stimulation
(as indicated by the red bar), dopamine was released, followed by
a basic pH change that lasted for approximately 7 s. There was

Figure 2. Use of Cook’s distance to improve PCR calibration. (A) and (B) show the dopamine and pH change cyclic voltammograms (respectively) of a
poor training set. (C) and (D) show kDA and kpH, respectively, for the poor training set shown in (A) and (B). (E) Score plot showing both the dopamine
(blue squares) and pH change (red triangles) cyclic voltammograms of the training set in (A) and (B). The solid lines represent the calculated regression
vectors for both dopamine (blue) and pH change (red). The circled points represent the 0.25 μM dopamine and 0.062 basic pH change standards. (F)
Score plot as in (E) with the 0.25 μM dopamine and 0.062 basic pH change standards removed. The regression vectors without these standards were
recalculated and are plotted. The original regression vectors in (E) are also shown as faded solid lines. (G) and (H) show the recalculated kDA and kpH
vectors, respectfully, after the removal of the 0.25 μM dopamine and 0.062 basic pH change standards.
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also a transient increase in dopamine before the stimulation
was given.
An unrepresentative training set was generated by exchanging

representative dopamine cyclic voltammograms for those taken
from a different animal to illustrate how the residual color plot
can be used to improve the multivariate calibration and to show
why training sets generated in one animal is risky for concentra-
tion prediction in another animal. Both the dopamine calibration
factor and the pH change cyclic voltammograms remained
consistent. After concentration prediction using the unrepresen-
tative training set, the residual color plot was calculated and is
shown in Figure 3B. There was considerable deterministic error
that was only present during the prediction of dopamine events.
Specifically, positive-negative current deflections at the oxidation
and reduction peak positions were calculated.
The origin of the residual color plot can be explained by the

unfolded cyclic voltammograms shown in Figure 3C. The
unfolded cyclic voltammogram of dopamine taken at maximal
release from Figure 3A is shown as the solid black trace in

Figure 3C, and one of the dopamine cyclic voltammograms of the
unrepresentative training set used for the prediction is shown as
the dashed trace in Figure 3C. There was a difference in peak
separation (ΔEp) of approximately 130 mV between dopamine
from the measured stimulation and the dopamine cyclic voltam-
mograms of the training set. Such shifts in ΔEp can arise from
differences in electron transfer kinetics or resistance differences
between carbon-fiber microelectrodes.34

Subtracting training set dopamine from stimulated dopamine
release gives the pattern shown in Figure 3D that arises from the
differences in ΔEp. This difference shows positive�negative
current deflections at the oxidation and reduction peak potentials
apparent in the color representation (Figure 3B). Ideally, the
residual color plot should contain only random noise. Determi-
nistic error will arise if the training set is not representative of the
unknown data set either because of differences in the in the
shapes of analyte cyclic voltammograms or because of the
presence of an interfering species. Theoretically, these should
cause the Q-plot to cross the QR threshold, but this does not

Figure 3. Interpretation of a residual color plot when an unrepresentative training set is used for concentration prediction. (A) Color plot
representation of stimulated dopamine release in the nucleus accumbens of a freely moving rat. The voltammetric sweep is plotted to the left of the color
plot. (B) Residual color plot after an unrepresentative training set was used for concentration prediction. (A) and (B) share the time axis below (B), with
the red bar indicating a stimulation given to the animal (60 Hz, 24 pulses, 125 μA). (C) Unfolded normalized dopamine cyclic voltammograms for the
stimulated dopamine release in (A) (solid line) and a dopamine cyclic voltammogram from the unrepresentative training set (dashed line). (D)
Unfolded cyclic voltammogram representing the subtraction of the improper training set dopamine cyclic voltammogram from the stimulated dopamine
release shown in (C). The green and blue shadings are shown to highlight differences at the oxidation and reduction peaks, with the color scheme
mimicking that of the residual color plot shown in (B). (E) Concentration prediction comparison between the proper representative and improper
unrepresentative training sets.
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always occur. To minimize the possibility of such errors, training
sets should be collected within the same animal at the same
location of the unknown measurement.
Small differences in ΔEp values occurred even though the

exact same type of carbon-fiber microelectrodes was used for all
experiments. This effect has been shown before35 and is likely
due to a combination of slight differences in electron transfer
properties of the carbon-fiber and possible fouling in vivo. The
ratio of oxidative to reductive peak current of in vivo dopamine
cyclic voltammograms is also known to vary between elec-
trodes35 which would likely alter predicted concentrations if
they were included in training sets from other electrodes.
The predicted stimulated dopamine release differed by ap-

proximately 50 nM or 18% between the two training sets
(Figure 3E), but the same general trend was measured. This
difference in predicted dopamine concentrations arose even
though the difference in ΔEp values was only 3.8% of the total
cyclic voltammetric waveform (two 1.7 V sweeps). Therefore,
slight variations in peak shapes may yield qualitative information
on neurochemical changes, but neurochemical quantitation will
likely be inaccurate. However, if events are detected near the limit
of detection, small peak shifts can deteriorate even qualitative
information. Therefore, the creation of a standard training set of
in vivo cyclic voltammograms applicable to all experiments36 is
risky. Moreover, if the residual analysis procedure was to be used,
a standardized training assumes that the noise level of all elec-
trodes in all animals performing all types of behavioral tasks is
constant. It was previously hypothesized that the noise level of
in vivo FSCVmeasurements was correlated to animal movement,12

so tasks that involve more motor movements would likely
contain an overall larger noise level. Therefore, standard training
sets may also invalidate the proper application of the residual
analysis procedure.
This example used unrepresentative training set cyclic vol-

tammograms from a different animal to illustrate the use of the
residual color plot, but the residual color plot can also be used to
identify prediction errors within the same animal. The same
positive-negative current deflections may be represented in a
residual color plot if analyte cyclic voltammograms in the training
set have different peak potentials from those present in the
unknown data within the same animal. This would indicate to the
user that an electrochemiocal shift has occurred (possibly due to
electrode deterioration) and the training set must be augmented
before neurochemical concentration prediction by PCR.
Transformation of the QR Value. The residual error in the

Q-plot at time t, Qt, describes the amount of residual error
contained in a specific cyclic voltammogram. Qt is calculated by
summing the squared residual current in the data not included in
the retained PCs of the training set. QR represents a tolerable
noise level based on the discarded noise of the training set and is
calculated independently of Qt.

7,8 Because each Qt value is
calculated by summing the square residual current between the
original data and the data described by the primary PCs at each
point of the cyclic voltammogram, an approximate noise thresh-
old in units of current can be calculated as

iTH ¼ (

ffiffiffiffiffiffi
QR

n

r
ð7Þ

where iTH could be either positive or negative. The quantity iTH
represents a current value that 1�R%of currents due to random
noise would be below based on the amount of random noise

discarded during PC selection. Stated another way, iTH is the
(1 � R) percentile of random noise currents.
The value of iTH can give a user an approximation of tolerable

noise in units that have physical significance, rather than being an
abstract transformation representing the sum of squared cur-
rents. The analysis of all 119 library training sets taken from two
laboratories gave an average iTH value of 0.41( 0.17 nA, but this
value will vary based on several factors including the signal-to-
noise ratio of the training set cyclic voltammograms, the quality
of the carbon-fiber microelectrode, the activity level of the
animal, and the level of environmental noise.12 Users should
be familiar with the noise level during their experiments so an
uncharacteristically large value of iTH would indicate too large of
an amount of information being discarded during factor selection
and could alert the user that QR is too high to be of practical use.
Analysis of ContinuousMultipleMinuteData Sets.Figure 4

describes the effect of electrode drift in the analysis of in vivo
FSCV data. A carbon-fiber microelectrode was lowered into the
nucleus accumbens of an awake rat, and 11 min of continuous
data was recorded in the absence of stimulation or any behavioral
event. Digital background subtraction can be used to eliminate
the large charging current associated with FSCV, but the
presence of any electrode drift will still be visualized.
Figure 4A shows a concatenated current versus time trace from

the eleven consecutive 60 s data epochs at the oxidation potential
of dopamine. This trace was made by digitally background
subtracting five cyclic voltammograms recorded at the beginning
of each epoch and concatenating current values, using the last
current value of the previous epoch as the new baseline for the
next epoch, rather than again starting at zero which is normal for
digitally subtracted data. Clearly, there is a large change in
the recording, but this information is insufficient to discern
whether this change is due to dopamine (Figure 4B), pH change
(Figure 4C), or another species. In fact, a cyclic voltammogram
taken at 60 s (after digital background subtraction of the first
epoch) shown in Figure 4D did not correspond to that of
dopamine or pH change and had a shape consistent with elec-
trode drift.17

Because electrode drift was present in the measurement, it
should be included as an analyte in the training set. When
background drift was included in the training set, analog back-
ground subtraction was used to remove the charging current of
the electrode rather than digital subtraction.17 PCR predicted
that the magnitude of electrode drift increased with time
(Figure 4E), with only minimal changes in dopamine
(Figure 4F) or pH change levels (Figure 4G). The Q-plot was
below the QR threshold throughout the entire trace, verifying
that the training set accounted for all significant variance in the
measured data (Figure 4H). These predictions were expected
because the animal neither was performing a behavioral task nor
was under the effect of any pharmacological agents (including
anesthesia), and the carbon-fiber microelectrode is known to
cause minimal damage in vivo.3

There is an inappropriate way to analyze these data sets that
we have seen investigators employ, attempting to circumvent the
effect of electrode drift. The data were analyzed in consecutive
60 s epochs, each of which were digitally background subtracted
using five cyclic voltammograms recorded at the beginning of
each epoch so the carbon-fiber microelectrode did not appear to
significantly drift over the course of the unknown measurement
epoch being predicted. The predicted concentration values were
concatenated using the last concentration value of the previous
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epoch as the baseline for the next epoch. This procedure pre-
dicted an approximate 200 nM decrease in dopamine (Figure 4I,
located on the second row and third column of the figure) and a
0.3 basic pH shift (Figure 4J), both of which were uncharacter-
istic given the animal was idle during the course of the measure-
ment. The Q-plot was below the QR threshold throughout the
unknown measurement (Figure 4K). However, the cyclic vol-
tammogram at 60 s (Figure 4D) verifies that the concentrations
predicted in this manner must be incorrect. The electrode drift
cyclic voltammogram shown in Figure 4D had a projection onto
the analyte regression vectors corresponding to a decrease in
dopamine concentration and a basic pH shift (Figure 4L, located
on the first row and third column of the figure), leading to the
erroneous concentration values in Figure 4I and J.

Although theQ-plot was below theQR threshold for each epoch,
theQ-plot exhibited unusual discontinuities upon concatenating the
data. Values increased as time progressed during the duration of
each 60 s epoch as shown in Figure 4K. The limiting duration of
analysis of in vivo FSCV by PCR was determined by the magnitude
of electrode drift that caused theQ-plot to cross theQR threshold.

10

Here, incorrect concentrations were predicted even though the
Q-plot was below the QR threshold throughout the entire trace
meaning that electrode drift was statistically insignificant, but
dramatically influenced the predicted concentration values. Ideally,
theQ-plot should have no structure (only random variations such as
that shown in Figure 4H) so a pattern such as that shown in
Figure 4K could illustrate the presence of another analyte in the
unknown data set not present in the training set.

Figure 4. Neurochemical prediction by PCR with and without electrode drift in the training set. The carbon-fiber microelectrode was located in the
nucleus accumbens of a freely moving rat. (A) Concatenated digital background subtracted current versus time traces at the oxidation potential of
dopamine. The vertical dotted lines in (A) represent the start of a new 60 s data epoch. (B) Dopamine and (C) basic pH change cyclic voltammograms
from this animal. (D) Digital background-subtracted cyclic voltammogram taken at 60 s. (E) Electrode drift predicted by PCR. (F) Dopamine
concentration predicted with electrode drift in the training set. (G) pH change predicted with electrode drift in the training set. (H)Q-plot for the data
predicted in (E) through (G). The horizontal dashed line represents QR. (I) (Second row, third column) Concatenated dopamine concentrations
predicted without electrode drift in the training set. (J) Concatenated pH changes predicted without electrode drift in the training set. (K) Concatenated
Q-plots for the data predicted in (I) and (J). The horizontal dashed line representsQR. The vertical dotted lines in (I), (J), and (K) represent the start of a
new 60 s data epoch. (L) (First row, third column) Score plots and regression vectors for the training set without background drift. Blue squares
represent the dopamine cyclic voltammograms, and red triangles represent pH change cyclic voltammograms. Acidic and basic pH change cyclic
voltammograms are noted. The black circle represents the background drift cyclic voltammogram in (D), and its projections onto the dopamine
regression vector (blue) and pH regression vector (red) are plotted.
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It is not advisible to use linear/polynomial fits to remove
electrode drift. The temporal behavior of electrode drift has been
shown to be nonlinear and unpredictable.17 PCR also offers two
other advantages in the removal of electrode drift. First, in PCR,
the current values at all potentials are taken into account during
prediction rather than relying on information at one specific
potential which could bias the prediction of electrode drift.
Second, the shape of electrode drift is specific so the presence
of noise and even other analytes in the measurement are
completely ignored will not bias the fit of the final prediction.
Therefore, it is best that electrode drift should be incorporated
into the training set of multiple minute data sets rather than using
risky analysis “tricks” to circumvent the problem.

’CONCLUDING REMARKS

This work presents examples of several vital improvements in
the multivarate prediction of neurochemicals detected with
FSCV using PCR with residual analysis in a simple, straightfor-
ward manner without complicated mathematical manipulations.
An approach based on the pseudoinverse of the PCR calibration
matrix allowed for a simple, straightforward, rapid graphical way
to qualitatively assess whether multivariate prediction models
were chemically appropriate. Using this approach, it was shown
that the C-peak of the pH cyclic voltammogram should not
be used to determine the reference pH change values of in
vivo FSCV training sets. The incorporation of Cook’s distance
successfully demonstrated how outliers could be removed from
the training set before unknown concentrations are predicted.
The residual color plot was shown to be effective in identifying
specific differences between training set cyclic voltammograms
and the unknown data being predicted, giving specific informa-
tion regarding how training sets can be augmented to be more
representative of the unknown data to be predicted. Finally, the
presence of electrode drift can introduce significant error in the
prediction of dopamine and pH change for multiminute recordings,
even if the continuous data set was analyzed in smaller segments.

This work has two important conclusions. First, we give
concrete examples of errors that arise when PCR is performed
inappropriately with in vivo FSCV data. PCR should only be
performed in an animal where a training set can be properly
constructed from consistent data measured within the same
animal with the same carbon-fiber microelectrode to prevent
prediction errors. This may limit the utility of PCR, but it will
prevent incorrect biological conclusions from being reached that
may only arise from erroneous data analysis. Second, while the
accuracy of neurochemical concentration data obtained from
PCR is impossible to determine due to the lack of in vivo
standards, theK-matrix approach can provide a simple, graphical,
and qualitative assessment of the ability of PCR to recognize the
characteristic voltammetric shape and sensitivitities associated
with a particular neurochemical, thereby generating neurochem-
ical concentration information that makes chemical sense. The
incorporation of several tools, including the K-matrix approach,
Cook’s distance, the residual color plot, and proper accounting of
electrode drift is crucial in providing more precise, valid, and robust
information regarding neurochemical signaling dynamics in vivo.

’METHODS

Electrochemical and Animal Experimentation. FSCV data
was collected with cylindrical, T-650 type (Thornel, Amoco Corporation,

Greenville, SC) carbon-fiber microelectrodes prepared as described
elsewhere.17,37 Voltages are reported versus a Ag/AgCl reference
electrode. The voltammetric waveform used was a triangular excursion
at 400 V/s from�0.4 to 1.3 to�0.4 V. Data was acquired and collected
as described previously.38 Animal experimentation was conducted on
male Sprague�Dawley rats (Charles River Laboratory, Willmington,
MA) weighing approximately 300 g in accordance with the University of
North Carolina Institutional Animal Care and Use Committee. Surgical
protocols and freely moving experimental procedures used to generate
the data analyzed here were carried out as described elsewhere.10,39,40

Data Analysis. Data analysis was carried out using locally written
software in the MATLAB (Mathworks, Natick, MA) and LabVIEW
(National Instruments, Austin, TX) programming environments. Vol-
tammetric data was filtered at 2 kHz. PCR was performed as described
previously, using singular value decomposition to decompose the training
set voltammetric matrix.7,8,12,16 Rank was estimated using Malinowski’s
F-test.12,41,42 Score plots and analyte regression vectors were calculated
from theory.9,43,44

Data was taken from experiments performed using analog back-
ground subtraction17 in the nucleus accumbens to determine the effect
of electrode drift on predicted neurochemical concentrations. The
output was initially zero, with only analyte electrochemistry and elec-
trode drift being detected. The data was collected continuously but was
broken up into 11 separate consecutive 60 s epochs.

Neurochemical concentrations were predicted both with and without
electrode drift in the training set. If electrode drift was to be accounted
for, electrode drift training set cyclic voltammograms were collected at
various times before and after the measurement. Because the unit for
quantitation of electrode drift was arbitrary, reference values were taken
to be the measured current at the peak at�0.3 V on the forward sweep.
Because the analog background subtraction reduced the amplitude of
the background, digital background subtraction45 was unnecessary.

When electrode drift was not accounted for, a training set was created using
only dopamine and pH change cyclic voltammograms. Although the data was
collected using analog background subtraction, digital background subtraction
can still be performed on analog background subtracted data. Each of the 11
consecutive, 60 s data epochs were digitally background subtracted using
an average of five cyclic voltammograms collected at the beginning of the
data epoch, and neurochemical levels were predicted using PCR. The
resulting traces were concatenated together to create analyte predictions
over 11 min, where the last concentration value of the previous epoch
was taken as the baseline value for the next file being predicted.
In Vivo FSCV Training Sets. The training sets used in this work

were taken from a library of 119 in vivo training sets measured in freely
moving rats.12 The cyclic voltammograms were taken from stimulated
neurochemical release measured in the dorsal and ventral striatum, but the
location in the brain where the training sets were generated was irrelevant
for the analyses. Unless noted, training sets were used without modification.

Each training set consisted of five dopamine and five pH change cyclic
voltammograms. The reference concentration values reported in the library
were determined by dividing peak current by a calibration factor determined
using flow injection analysis46 after the experiment was performed.40 The
oxidation potential for dopamine (approximately 0.6 V on the positive
sweep) and the C-peak of pH change (approximately�0.2 V on the positive
sweep)31 were chosen for determining library reference concentrations of the
training set, by convention. In this work, the QH-peak (approximately 0.3 V
on the positive sweep) was also used for pH change quantitation to compare
to the values calculated with the C-peak from the library.
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