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Aim: To evaluate the efficacy and safety of mealtime or post-meal fast-acting insulin aspart (fas-

ter aspart) vs mealtime insulin aspart (IAsp), both in combination with insulin degludec, in partici-

pants with type 1 diabetes (T1D).

Methods: This multicentre, treat-to-target trial (Clinical trial registry: NCT02500706,

ClinicalTrials.gov) randomized participants to double-blind mealtime faster aspart (n = 342) or

IAsp (n = 342) or open-label post-meal faster aspart (n = 341). The primary endpoint was

change from baseline in HbA1c 26 weeks post randomization. All available information, regard-

less of treatment discontinuation, was used for evaluation of the effect.

Results: Non-inferiority for the change from baseline in HbA1c was confirmed for mealtime and

post-meal faster aspart vs IAsp (estimated treatment difference [ETD]: 95%CI, −0.02% [−0.11;

0.07] and 0.10% [0.004; 0.19], respectively). Mealtime faster aspart was superior to IAsp for

1-hour PPG increment using a meal test (ETD, −0.90 mmol/L [−1.36; –0.45]; P < 0.001). Self-

monitored 1-hour PPG increment favoured faster aspart at breakfast (ETD, −0.58 mmol/L

[−0.99; −0.17]; P = 0.006) and across all meals (−0.48 mmol/L [−0.74; −0.21]; P < 0.001).

Safety profiles and overall rate of severe or blood glucose-confirmed hypoglycaemia were simi-

lar between treatments, but significantly less hypoglycaemia was seen 3 to 4 hours after meals

with mealtime faster aspart.

Conclusion: Mealtime and post-meal faster aspart in conjunction with insulin degludec provided

effective glycaemic control compared with IAsp, with no increased safety risk. Mealtime faster

aspart provided PPG control superior to that of IAsp.
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1 | INTRODUCTION

To reduce the incidence and slow the progression of diabetes-related

complications, guidelines recommend HbA1c target levels.1–6

Achievement of the conventionally accepted HbA1c target <7.0%

(53 mmol/mol) in individuals with type 1 diabetes (T1D) usually

requires postprandial glycaemic control.4–6

Exogenous mealtime insulin administration aims to mimic the

physiological secretion pattern of insulin to control postprandial glu-

cose (PPG) excursions. There is an unmet need for mealtime insulin

that better mimics physiological control, while enhancing flexibility

and treatment convenience for patients. The development in basal

insulin analogues, including ultra-long-acting and high-concentration

insulins, such as insulin degludec (degludec) and glargine U300,7 is
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now being complemented by emergence of ultra-fast-acting mealtime

insulins. These agents incorporate modifications to insulin formula-

tions to accelerate absorption and thereby improve insulin time–

action and PPG-lowering profiles.8–12

Fast-acting insulin aspart (faster aspart) is a faster-acting mealtime

insulin with a more rapid rate of absorption into the bloodstream and

greater early-glucose-lowering effect than conventional insulin aspart

(IAsp).13 Faster aspart has been approved for use by the US Food and

Drug Administration (FDA) and the European Medicines Agency

(EMA) as treatment for diabetes in adults.

In the onset 1 trial, the efficacy and safety of faster aspart were

evaluated as part of a basal–bolus regimen with insulin detemir (dete-

mir) in participants with T1D.14 A statistically significant, yet modest,

improvement in HbA1c was observed with mealtime faster aspart

compared with IAsp after 26 weeks of treatment (estimated treat-

ment difference [ETD], −0.15% [95%CI, −0.23; −0.07]; −1.62 mmol/

mol [−2.50; −0.73]), with a superior reduction in 2-hour PPG incre-

ment during a standardized meal test.14 This improvement in glycae-

mic control was maintained after 52 weeks of treatment.15 Faster

aspart administered 20 minutes after the start of the meal was non-

inferior (0.4% margin) to mealtime IAsp regarding change in HbA1c

after 26 weeks of treatment.14

To date, no studies comparing faster aspart with IAsp in a basal–

bolus regimen with ultra-long-acting basal insulins are available. The

onset 8 study is similar in design to the onset 1 study, and aims to

evaluate the efficacy and safety of faster aspart in conjunction with

degludec in participants with T1D. The onset 8 study was designed to

quantify a population average effect, irrespective of adherence to ran-

domized treatment and ancillary therapy use. The primary objective

was to estimate the effect based on difference in HbA1c from base-

line to 26 weeks under these circumstances. As it can sometimes be

challenging to administer bolus insulin before a meal, a post-meal fas-

ter aspart arm (administration within 20 minutes after start of the

meal) was also included to further evaluate the option of administer-

ing faster aspart after a meal when needed.

2 | RESEARCH DESIGN AND METHODS

2.1 | Trial design

In this Phase 3b, multicentre, active-controlled, randomized, parallel-

group study (ClinicalTrials.gov: NCT02500706), mealtime faster aspart

was compared with mealtime IAsp, both double-blind, in adults with

T1D over 26 weeks (Figure S1 in File S1). In a third, open-label treat-

ment arm, participants received post-meal faster aspart (Figure S1 in

File S1). Faster aspart and IAsp were delivered in a basal–bolus regi-

men in conjunction with once-daily degludec. The trial was conducted

in accordance with the Declaration of Helsinki and International Con-

ference on Harmonization of Good Clinical Practice. The study was

conducted at 146 centres in 12 countries/regions (Appendix S1 in File

S1). Follow-up assessment took place 7 and 30 days after end of

treatment.

2.2 | Study population

Adults (≥18 years of age; ≥20 years in Japan and Taiwan) with T1D

were eligible for inclusion if they had received a basal–bolus insulin

regimen for at least 12 months before screening, including a basal

insulin analogue for at least 4 months before screening. Eligibility also

required HbA1c to be 7.0% to 9.5% (53–80 mmol/mol) and BMI to be

35.0 kg/m2 or less.

Key exclusion criteria included: treatment with any antidiabetic or

obesity medication, other than listed inclusion criteria, within

3 months before screening; any anticipated change in concomitant

medications known to affect glucose metabolism persisting beyond

2 weeks of study inclusion; myocardial infarction, stroke or hospitali-

zation for unstable angina and/or transient ischaemic attack within

180 days before screening; use of continuous glucose monitoring;

inadequately-treated hypertension (≥Class 2) or clinically significant

hepatic or renal insufficiency (full criteria in Appendix S1, File S1).

2.3 | Interventions

2.3.1 | Basal titration during the trial

After a two-week screening period, an eight-week run-in period

allowed for basal insulin titration, and participants switched from their

existing basal insulin analogue to degludec (100 U/mL, 3-mL pen

injector) at the start, based on protocol-specified guidelines (Table S1

in File S1). During the run-in period, the investigator titrated degludec

on a weekly basis to the pre-breakfast glycaemic target of 4.0 to

5.0 mmol/L in accordance with titration guidelines (Table S2 in File

S1). Further adjustment of degludec during the treatment period was

performed at the investigator's discretion.

2.3.2 | Bolus dosing during the trial

At the start of the run-in period, participants switched from their pre-

vious bolus insulin to IAsp (all bolus insulins supplied as 100 U/mL,

3-mL pen injector) on a unit-for-unit basis. IAsp dose was not adjusted

during the run-in period unless considered necessary by the investiga-

tor. At the end of the run-in period, participants with HbA1c at 9.5%

(80 mmol/mol) or less were randomized 1:1:1 to receive double-blind

mealtime IAsp, double-blind mealtime faster aspart or open-label

post-meal faster aspart. Mealtime insulins were injected 0 to 2 minutes

before a meal, while post-meal faster aspart was injected at the end

of a meal, no later than 20 minutes after the start of the meal.

During the 26-week treatment period, bolus insulin was titrated

to achieve a glycaemic target of pre-prandial and bedtime plasma glu-

cose (PG) between 4.0 and 6.0 mmol/L. Participants who were consid-

ered proficient in carbohydrate counting continued using this method

for bolus adjustment during the treatment period, while all other par-

ticipants used a predefined bolus-dosing algorithm (Table S3 in

File S1).

Meal carbohydrate content and pre-prandial BG values were used

to determine bolus-insulin doses for participants, based on flexible

dosing principles. Doses were calculated several times daily by each

participant based on the insulin:carbohydrate ratio and insulin correc-

tion factor. Weekly review of the ratio and correction factor was per-

formed by the investigator, based on each participant's self-measured
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blood glucose (SMBG) values. In the event of hypoglycaemia, the dose

could be reduced at the investigator's discretion.

2.4 | Self-measured blood glucose (SMBG)

Participants were supplied with a BG meter (Abbott Precision Neo or

Precision; Abbott Laboratories, Chicago, Illinois) and were instructed

to record the date, time and value of all SMBG measurements relating

to 4-, 7- and 9-point profiles and hypoglycaemic episodes. The

4-point profiles, before each main meal (breakfast, lunch, evening

meal) and at bedtime, were recorded daily for insulin titration pur-

poses. The 7-9-7-point profiles, before and 60 minutes after each

main meal, at bedtime, at 4:00 AM (9-point only) and before breakfast

the following day (9-point only), were recorded on three consecutive

days (7-point profiles for Days 1 and 3, a 9-point profile on Day 2)

before scheduled clinic visits at Weeks 0, 12 and 26.

2.5 | Standardized meal test

Participants were required to attend the standardized meal test with a

fasting SMBG of 4.0 to 8.8 mmoL/L. Before randomization at Week 0

(baseline), a bolus dose of IAsp was administered (0.1 U/kg, calculated

by investigator), followed by a standardized mixed liquid-meal test

(78 g carbohydrate consumed within 12 minutes). Blood samples

were taken immediately before the meal and after 30 minutes, 1, 2,

3 and 4 hours (0 hour defined as start time of meal consumption). The

meal test was repeated at Week 26, using the participant's study med-

ication. Participants randomized to post-meal insulin received a bolus

dose 20 minutes after starting the meal.

2.6 | Assessments

2.6.1 | Primary endpoint

The primary endpoint was change from baseline in HbA1c after

26 weeks of treatment.

2.6.2 | Secondary endpoints

Confirmatory secondary endpoints were change from baseline in

1-hour PPG increment (meal test) and change from baseline in

1,5-anhydroglucitol (1,5-AG), both at Week 26.

Supportive secondary efficacy endpoints were: change from base-

line in fasting plasma glucose (FPG); participants (%) reaching HbA1c

targets (<7.0% [53 mmol/mol]); change from baseline in 30-minute,

1-, 2-, 3- and 4-hour PPG; change from baseline in 30-minute, 2-, 3-

and 4-hour PPG increment (meal test); change from baseline in

7-9-7-point SMBG assessed by the mean of the 7-9-7-point profile,

PPG and PPG increment (at each meal and over all meals); percentage

of participants reaching 1-hour PPG targets (≤7.8 mmol/L); change

from baseline in lipid-lipoprotein profiles; basal, total and individual

mealtime insulin doses (Table S4 in File S1).

Supportive secondary safety endpoints were: treatment-

emergent adverse events (TEAEs), treatment-emergent injection site

reactions; treatment-emergent hypoglycaemic episodes (overall and

after meal [1, 1–2, 2–3 and 3–4 hour timepoints]); physical exami-

nation; vital signs; electrocardiogram; fundoscopy; laboratory

parameters; anti-IAsp antibody development (specific and cross-

reacting with human insulin); and body weight. (See Appendix S1, in

File S1 for TEAEs and treatment-emergent hypoglycaemia

definitions).

2.7 | Statistical methods

All statistical analyses were prespecified. Efficacy endpoints were

summarized using the full analysis set, and results are presented based

on data from all randomized participants for the entire trial period,

which includes data collected after participants prematurely discontin-

ued treatment (in-trial observation period). Safety endpoints were

summarized using the safety analysis set (participants receiving ≥ 1

dose of IAsp or faster aspart). Statistical analysis of primary and sec-

ondary confirmatory endpoints followed a stepwise hierarchical pro-

cedure, which was discontinued after step 4 (Figure S2 and Table S5

in File S1). Non-inferiority, the primary endpoint, was confirmed if the

upper boundary of the two-sided 95% CI was 0.4% or less. Two-sided

P-values are presented unless stated otherwise.

Change from baseline in HbA1c 26 weeks post randomization

was analysed using a statistical model with multiple imputations, in

which, for participants without any available HbA1c measurements at

scheduled visits, HbA1c values were imputed from available informa-

tion from the treatment arm to which the participant had been ran-

domized. Change from baseline in PPG and PPG increment (meal test)

was analysed using an analysis of variance model, and HbA1c and PPG

responder endpoints were analysed using a logistic regression model.

Change from baseline in 7-9-7-point outcomes (mean SMBG, PPG,

PPG increments), 1,5-AG, FPG, lipid-lipoprotein profiles (log-trans-

formed) and body weight were analysed using a model similar to the

statistical model used for the primary endpoint. Number of treatment-

emergent severe or BG-confirmed hypoglycaemic episodes was

analysed using a negative binomial regression model. (Sample-size cal-

culation and further details on statistical methods for primary and sec-

ondary endpoints are provided in Appendix S1, File S1).

3 | RESULTS

3.1 | Trial participants

In total, 1025 participants were randomized to mealtime faster aspart

(n = 342), IAsp (n = 342), or post-meal faster aspart (n = 341), all

exposed to their respective study medications, among whom 1007

participants (98.2%) completed the trial, while 999 participants

(97.5%), similarly distributed across treatment arms, completed the

26-week treatment period without premature discontinuation of ran-

domized treatment (Figure S3 in File S1). The most common reason

for withdrawal from the trial was “withdrawal by subject” (four partici-

pants each in the mealtime faster aspart and IAsp arms, six in the post-

meal faster aspart arm). Seven, nine and ten participants in the

mealtime faster aspart, post-meal faster aspart and mealtime IAsp

arms, respectively, prematurely discontinued randomized treatment.

Baseline demographics and disease characteristics were similar

between the three treatment arms (Table 1).
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3.2 | Efficacy

3.2.1 | Change in HbA1c

During the run-in period, observed mean HbA1c was reduced from 8.1%

(65 mmol/mol) to 7.5% (58 mmol/mol) in participants subsequently ran-

domized to mealtime faster aspart, from 8.0% (63 mmol/mol) to 7.4%

(57 mmol/mol) in those randomized to mealtime IAsp, and from 8.1%

(65 mmol/mol) to 7.4% (57 mmol/mol) in those randomized to post-meal

faster aspart (Figure 1). At the end of the 26-week treatment period,

mean HbA1c was 7.3% (57 mmol/mol), 7.3% (56 mmol/mol) and 7.4%

(57 mmol/mol) in the mealtime faster aspart, mealtime IAsp and post-

meal faster aspart arms, respectively. Non-inferiority of both mealtime

and post-meal faster aspart to mealtime IAsp regarding change from

baseline in HbA1c was confirmed (ETD [95%CI]: mealtime, −0.02%

[−0.11; 0.07], −0.24 mmol/mol [−1.24; 0.76]; post meal, 0.10% [0.004;

0.19]; 1.04 mmol/mol [0.04; 2.04]; one-sided P < 0.001 for non-inferior-

ity). Superiority of mealtime faster aspart vs IAsp regarding change from

baseline in HbA1c could not be confirmed (hierarchical testing discontin-

ued; Table S5 in File S1).

The odds of achieving HbA1c less than 7.0% (53 mmol/mol) were

not statistically significantly different between mealtime faster aspart

and IAsp, or between post-meal faster aspart and mealtime IAsp

(Table S6 in File S1).

3.2.2 | Meal test

Superiority of mealtime faster aspart to IAsp regarding change from

baseline in 1-hour PPG increment was confirmed (ETD [95%CI]:

–0.90 mmol/L [−1.36; −0.45]; P < 0.001) (Figure 2D). Change from

baseline in 30-minute PPG increment was also significantly in favour

of mealtime faster aspart; however, there was no statistical signifi-

cance at other timepoints (Table S6 in File S1). Concerning the post-

meal comparison, change from baseline in 30-minute and 1-hour PPG

increment was significantly in favour of IAsp, with no statistical differ-

ences at other timepoints (Figure 2D, Table S6 in File S1). PPG results,

without adjustment for pre-prandial PG, also favoured mealtime faster

aspart at 30 minutes and 1 hour with ETDs [95%CI] of −0.82 mmol/L

[−1.28; −0.36; P = 0.001] and −1.24 mmol/L [−1.81; −0.67;

P < 0.001], respectively, and no statistical differences were observed

at other timepoints.

3.2.3 | Self-measured blood glucose

Observed mean 9-point SMBG profiles at baseline and after 26 weeks

of treatment were similar between groups (Figure S4 in File S1), and

there were no statistically significant differences in mean SMBG for

mealtime or post-meal comparisons (Table S6 in File S1). Regarding

change from baseline in 1-hour PPG increment (based on SMBG),

TABLE 1 Baseline characteristics

Parameter

Faster aspart
(mealtime)
(n = 342)

Faster aspart
(post-meal)
(n = 341)

Insulin aspart
(mealtime)
(n = 342)

Total
(n = 1025)

Age, y 41.5 (14.4) 41.0 (14.6) 40.8 (14.2) 41.1 (14.4)

Gender, n (% male) 184 (53.8) 186 (54.5) 179 (52.3) 549 (53.6)

Body weight, kg 72.6 (16.6) 71.9 (16.9) 71.8 (17.0) 72.1 (16.8)

BMI, kg/m2 25.1 (4.1) 25.1 (4.4) 25.1 (4.4) 25.1 (4.3)

Duration of diabetes, y 17.6 (12.5) 15.8 (10.6) 16.7 (11.0) 16.7 (11.4)

HbA1c, % (mmol/mol) 7.5 (0.7)
58.0 (7.5)

7.4 (0.6)
57.4 (6.6)

7.4 (0.8)
57.5 (8.7)

7.4 (0.7)
57.7 (7.6)

FPG, mmol/L 6.8 (2.1) 6.9 (2.5) 6.8 (2.5) 6.8 (2.4)

Bolus adjusting method, n (% carbohydrate counting) 142 (41.5) 150 (44.0) 136 (39.8) 428 (41.8)

Abbreviations: Faster aspart, fast-acting insulin aspart; FPG, fasting plasma glucose; SD, standard deviation.
Data are presented as means (SD) unless otherwise stated.
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treatment discontinuation, was used. Abbreviation: Faster aspart, fast-acting insulin aspart
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ETDs [95%CI] were statistically in favour of mealtime faster aspart at

breakfast (−0.58 mmol/L [−0.99; −0.17]; P = 0.006) and over all meals

(−0.48 mmol/L [−0.74; −0.21]; P < 0.001), and no differences were

reported for the faster aspart post-meal comparison. Change from

baseline in 1-hour PPG, based on SMBG profiles, for any individual

meal (breakfast, lunch, evening meal) or for “all meals” was not statisti-

cally significantly different for mealtime faster aspart vs IAsp

(Table S6 in File S1). However, in the faster aspart post-meal compari-

son, change from baseline in 1-hour PPG for “all meals” was statisti-

cally significant in favour of IAsp (ETD [95%CI] 0.34 mmol/L [0.06;

0.63]). The percentage of participants who achieved 1-hour PPG of

7.8 mmol/L or less was significantly greater with mealtime faster

aspart (27.8%) than with IAsp (21.6%; estimated odds ratio, 1.54 [95%

CI 1.05; 2.26]; P = 0.028). There was no statistically significant differ-

ence in the faster aspart post-meal comparison.

3.2.4 | Other secondary endpoints

After 26 weeks there was a numerical increase in 1,5-AG in the meal-

time faster aspart and IAsp arms, with no significant difference

between the two arms (ETD [95%CI], 0.02 μg/mL [−0.31; 0.34]). In

the post-meal faster aspart arm there was a slight decrease in 1,5-AG,

which was statistically significant vs mealtime IAsp (−0.35 μg/mL

[−0.68; −0.03]; P = 0.035). In all three treatment arms, mean FPG

increased from baseline to Week 12 and decreased thereafter, to

Week 26. Fasting SMBG levels on days when meal tests were per-

formed had to be 4.0–8.8 mmol/L. At Week 12, there was no such
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FIGURE 2 PPG increment after a standardized meal test at Week 26. A, Mealtime faster aspart at Week 26 vs baseline. B, Post-meal faster
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requirement. The estimated difference in FPG between mealtime fas-

ter aspart and IAsp at Week 26 was statistically significant (ETD [95%

CI], −0.39 mmol/L [−0.78; −0.0008]; P = 0.05). There was no signifi-

cant difference between post-meal faster aspart and mealtime IAsp

(Table S6 in File S1). No clinically significant differences were seen in

lipid-lipoprotein profiles.

3.3 | Safety

Results concerning hypoglycaemia are presented in Table 2. No statis-

tically significant differences were observed between the faster aspart

(mealtime or post-meal) and IAsp arms regarding the rate of

treatment-emergent severe or BG-confirmed hypoglycaemic episodes,

and the rate of treatment-emergent severe or BG-confirmed hypogly-

caemic episodes during the first, second or third hour after start of a

meal. However, a significant difference in the rate of severe or BG-

confirmed hypoglycaemic episodes occurring 3 to 4 hours after start

of a meal was observed, in favour of mealtime faster aspart vs IAsp

(0.72 [0.54; 0.96]; P = 0.024). No statistically significant difference

between treatment groups was observed concerning mean body

weight at Week 26 (change from baseline: +1.43 kg [mealtime faster

aspart], +1.14 kg [post-meal faster aspart], +1.24 kg [insulin aspart]).

No clinically significant differences between treatment groups

were observed regarding percentage of participants who reported

TEAEs and the overall rate of TEAEs, which was similar between the

three treatment arms (Table S7 in File S1); regarding injection-site and

allergic reactions, which were low in number and evenly distributed

across the three treatment arms (Table S7 in File S1); and regarding

vital signs and the results of physical examination and safety labora-

tory assessments. Additional details are shown in Appendix S1,

File S1.

During the trial, mean and median daily bolus insulin doses

increased by similar amounts in all three treatment groups (Table S7 in

File S1), and the basal/bolus ratio 26 weeks post randomization chan-

ged to a higher proportion of bolus compared with basal insulin across

the three treatment arms (Table S8 in File S1).

4 | DISCUSSION

The results of this study confirm that both mealtime and post-meal

faster aspart, in combination with degludec, were non-inferior to

mealtime IAsp regarding change in HbA1c from baseline to 26 weeks

in individuals with T1D. Furthermore, mealtime faster aspart was

effective in reducing PPG excursions, and superiority to IAsp in

1-hour PPG increment, following a standardized meal test, was con-

firmed. Mean SMBG-derived 1-hour PPG increments also showed a

trend towards improved PPG control, with mealtime faster aspart con-

ferring a significantly lower 1-hour PPG increment than IAsp at break-

fast and also when averaged over all meals. Furthermore, significantly

more participants who received mealtime faster aspart achieved a

1-hour PPG target less than 7.8 mmol/L, based on SMBG, compared

with those who received IAsp. Change in body weight was less than

2 kg in all three treatment arms, which may be expected given that

participants were already on a basal–bolus regimen at baseline.

The improved PPG findings reported in the present study, from

both meal test and SMBG, are consistent with general findings across

the faster aspart clinical trial programme.14,15,17,18 Furthermore, the

results here specifically support the results of the onset 1 study, in

which once- or twice-daily detemir in conjunction with mealtime or

post-meal faster aspart was compared with the same basal regimen

and mealtime IAsp.14 In the onset 1 study, however, there was a sta-

tistically significant difference in HbA1c change after 26 weeks

between mealtime faster aspart and IAsp, unlike in the present study.

Despite the reported improvements in PPG and the similar patient

populations in both studies, it is unclear why a greater difference in

change in HbA1c between mealtime faster aspart and IAsp was not

observed in the present study. There was also a discrepancy between

the two studies in the incidence of meal-related hypoglycaemia at

1 hour after the start of a main meal. In the present study, there was

no significant difference between mealtime faster aspart and IAsp

regarding the rate of severe or BG-confirmed hypoglycaemic episodes

1 hour after a main meal, whereas a statistically significant difference

in favour of IAsp was recorded in the onset 1 study (rate ratio: faster

aspart/IAsp 1.48 [95%CI, 1.11; 1.96]; P = 0.0073).14 Conversely, there

TABLE 2 Treatment-emergent hypoglycaemic events

Faster aspart (mealtime) Faster aspart (post-meal) Insulin aspart (mealtime)

N % E R N % E R N % E R

Treatment-emergent hypoglycaemiaa

Severe 32 9.4 46 0.27 19 5.6 29 0.17 31 9.1 47 0.28

Severe or BG-confirmed 304 88.9 5839 34.09 295 86.5 6707 39.40 302 88.3 6820 40.08

Meal-related severe or BG-confirmed hypoglycaemiaa

Within 1 h after a meal 84 24.6 255 1.49 88 25.8 265 1.56 88 25.7 217 1.28

Between 1 and 2 h after a meal 111 32.5 300 1.75 110 32.3 443 2.60 111 32.5 407 2.39

Between 2 and 3 h after a meal 135 39.5 512 2.99 160 46.9 745 4.38 156 45.6 609 3.58

Between 3 and 4 h after a meal 149 43.6 488 2.85 165 48.4 684 4.02 156 45.6 681 4.00

a Hypoglycaemia was defined as treatment-emergent if the onset of the episode occurred on or after the first day of treatment administration post ran-
domization and no later than 1 d after the last day on treatment. Severe hypoglycaemia was defined according to the American Diabetes Association
classification,16 and BG-confirmed hypoglycaemia was defined as a plasma glucose value <3.1 mmol/L (Novo Nordisk A/S definition), with or without
symptoms consistent with hypoglycaemia.

Abbreviations: %, percentage of participants; BG, blood glucose; E, number of events; faster aspart, fast-acting insulin aspart; N, number of participants;
R, event rate per patient-year of exposure.
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was a significant reduction in meal-related hypoglycaemia in favour of

mealtime faster aspart 3 to 4 hours after a main meal in the present

study. These differences are probably related to the reported left shift

of the concentration–time curve for faster aspart relative to IAsp,

reflective of the faster onset and offset of action of faster aspart.13

While mealtime dosing of insulin is appropriate for many patients

with diabetes, there are situations in which the increased flexibility of

post-meal dosing may be advantageous. During social or other occa-

sions, for example, the timing and/or carbohydrate content of a meal

may be unpredictable. Furthermore, elderly or hospitalized patients, in

whom lack of appetite and nausea are common, may also benefit from

post-meal dosing, as might patients who have forgotten an injection,

or are anxious about severe hypoglycaemia.19,20 Although post-meal

dosing cannot be recommended, the results of the present study sug-

gest that post-meal dosing of faster aspart may be considered in

patients who need it.

This study employed once-daily degludec as the basal insulin.

Degludec is associated with tolerability and overall glycaemic control

similar to other long-acting insulin analogues, with the benefit of a

reduced rate of overall symptomatic hypoglycaemic and severe hypo-

glycaemic events,21–23 which may have contributed to the lower rates

of hypoglycaemia observed here compared with observations during

the onset 1 study.14 In addition, in the present study, an improvement

in glycaemic control, that is, a reduction in HbA1c of approximately

0.6% in each arm, was achieved with weekly titration of degludec

(pre-breakfast target, 4.0–5.0 mmol/L) over the eight-week run-in

period.

Strengths of the onset 8 study include the large patient cohort,

the high percentage of participants who completed the study, the ran-

domized, double-blind design for mealtime groups, and the individual

optimization of basal insulin dose during the run-in period to allow a

clearer comparison of study arms. Furthermore, this is the first study

to evaluate the combination of degludec, a basal insulin proven to

confer fewer hypoglycaemic events, with faster aspart, and the use of

faster aspart post meal. The meal-test protocol was a potential limita-

tion of the study, as the standardized meal composition may not accu-

rately reflect what patients habitually consume. Moreover, all

participants received an insulin dose of 0.1 U/kg for the meal test

without adjustment for individual insulin:carbohydrate ratios. The

meal-test insulin dose was, therefore, only an approximation of the

participant's normal dose. Nevertheless, the reported SMBG 1-hour

PPG increment findings corroborated the meal-test results. Continu-

ous glucose monitoring was not performed; however, monitoring in

prospective studies could help to confirm hypoglycaemic events and

to evaluate the impact of treatment on glucose variability and time in

range.

In conclusion, the findings of this study, together with those

of the onset 1 study, confirm that mealtime and post-meal faster

aspart provide effective HbA1c control in individuals with T1D, as

the findings from both met the criteria for non-inferiority com-

pared with IAsp. Mealtime faster aspart further provides modestly

improved control over early (30-minute and 1-hour) PPG excur-

sions compared with mealtime IAsp. The overall safety profiles for

faster aspart and IAsp are similar and are as expected for the

IAsp formulation. Administration of faster aspart after a meal,

although less favourable compared with mealtime administration,

may be considered for some individuals with T1D under certain

circumstances.
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