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Insulin therapy is necessary to regulate blood glucose levels for people with type 1 diabetes and commonly
used in advanced type 2 diabetes. Although subcutaneous insulin administration via hypodermic injection or
pump-mediated infusion is the standard route of insulin delivery, it may be associated with pain, needle phobia,
and decreased adherence, aswell as the risk of infection. Therefore, transdermal insulin delivery has beenwidely
investigated as an attractive alternative to subcutaneous approaches for diabetes management in recent years.
Transdermal systems designed to prevent insulin degradation and offer controlled, sustained release of insulin
may be desirable for patients and lead to increased adherence and glycemic outcomes. A challenge for transder-
mal insulin delivery is the inefficient passive insulin absorption through the skin due to the large molecular
weight of the protein drug. In this review, we focus on the different transdermal insulin delivery techniques
and their respective advantages and limitations, including chemical enhancers-promoted, electrically enhanced,
mechanical force-triggered, and microneedle-assisted methods.
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1. Introduction

Diabetes mellitus is a group of metabolic diseases characterized by
increased production of glucose by the liver and decreased clearance
of glucose into muscle and fat resulting in abnormal accumulation of
glucose in the blood, all driven by inadequate insulin levels [1]. Approx-
imately 425 million adults suffer from diabetes according to 2018
reports from The International Diabetes Federation [2]. Moreover, the
prevalence of diabetes is increasing and expected to rise across the
world in the coming decades [3]. Diabetes is usually caused by the fail-
ure of insulin secretion by the pancreas (type 1 diabetes) or the defec-
tive responsiveness of the body to insulin (type 2 diabetes) [4,5].

Exogenous insulin administration is essential in the management of
type 1 diabetes and advanced type 2 diabetes [6,7]. Typically, people
with diabetes are instructed to self-inject insulin subcutaneously
several times per day, which requires both training and intensive self-
management with frequent dose adjustments by patients based on glu-
cosemonitoring [8]. The need for frequent injections may be associated
with poor adherence, and also carries the risk of microbial contamina-
tion, local tissue necrosis, and nerve damage [9–11]. Alternatively, pa-
tients may use continuous subcutaneous insulin infusions, also known
as insulin pump therapy, which also carries limitations including tech-
nological difficulties [12]. To address these limitations, a broad range
of delivery methods have been investigated as needle-free alternatives
for daily insulin therapy, including oral, pulmonary, nasal, and transder-
mal approaches [13–20]. However, the poor permeability of insulin
across the tissue barriers hinders bioavailability, which poses a major
limitation in the clinical applications of these approaches [21–23].

A transdermal delivery strategy that transports insulin across the
skin barrier represents a minimally invasive and attractive method for
insulin delivery in contrast to painful hypodermic injections [24,25]. It
also has several advantages over oral, pulmonary, and nasal administra-
tion techniques. For example, insulin delivered via a transdermal system
is able to avoid the chemical and enzymatic degradation in the digestive
tract [26]. This approach can also provide a sustained release to main-
tain therapeutic concentrations for prolonged time [27]. Finally, the
convenience of this administration may increase patient adherence,
leading to improved glycemic control [27].

However, effective insulin delivery via the skin remains challenging
due to the intrinsic, protective properties of the intact skin. Therapeutics
with low molecular weight (b500 Da) can easily penetrate the skin,
while the passive transport of protein drugs with higher molecular
weight, such as insulin, is significantly restricted [28]. To overcome
skin barriers in transdermal insulin delivery, various approaches have
been explored to physically or chemically enhance the transport effi-
ciency of the insulin molecule across the skin. This review presents
the recent advances in transdermal insulin delivery systems, including
chemical enhancers-promoted, electrically facilitated, mechanical
Fig. 1.Representative transdermal strategies for insulin delivery based ondiversemechanisms, i
and microneedle-assisted delivery systems.
force-triggered, and microneedle (MN)-assisted approaches (Fig. 1).
The challenges for potential clinical applications are also discussed.

2. Chemical enhancers-promoted transdermal delivery

In order to improve skin permeability, chemical penetration en-
hancers that can disrupt the skin barrier and provide an adding driving
force for transporting therapeutics have been intensively investigated
[29–31]. There are various effective chemical enhancers, including con-
ventional chemicalmolecules aswell asmembrane-permeable peptides
and vehicles. Chemical enhancers can insert into the highly ordered
lipid bilayer in stratum corneum to disorganize molecular packing or
extract lipids to create lipid-packing defects of nanometer dimensions,
thus leading higher transport efficiency of insulin [32,33].

The Gasem group has previously examined the permeation en-
hancement properties of 43 different chemical enhancers that have
been used in insulin delivery [34]. The authors also discussed the poten-
tial criteria for further screening of enhancers. Sintov et al. reported that
iodine facilitated insulin delivery across the skin as iodine could inacti-
vate endogenous sulfhydryls, such as glutathione and gamma-
glutamylcysteine, thereby reducing the formation of disulfide bonds
and retaining the potency of insulin during its flux through the skin
into the circulation [35]. The ability of trypsin to react with the stratum
corneum was also assessed for enhanced transdermal insulin delivery,
where itwas shown that trypsin altered the protein structure of stratum
corneum from the alpha- to the beta-form and decreased the electrical
resistance of the skin, reflecting a 5.2-fold increase in insulin absorption
(insulin at pH 3) [36].

Wen and coworkers identified a class of membrane-permeable pep-
tides that can promote delivery of cargo into the systemic circulation by
in vivo phage display, in addition to previously characterized peptides
(such as protein transduction domains (PTDs) that could only locally
transport drugs [37]. The synthetic peptide, ACSSSPSKHCG (TD-1),
was suggested to be capable of creating transient opening in the skin
to enable penetration of insulin into hair follicles beyond a depth of
600 μm. An obvious suppression in blood glucose levels (BGLs) (~ 40%
of initial values) was observed in diabetic rats, which was sustained
over 11 h compared to b5 h with subcutaneously injected insulin. This
research spurred development of an alternative series of peptide-
based enhancers designed to transcutaneously deliver hydrophilic mac-
romolecular therapeutics. For example, Chang et al. screened a number
of TD-1-derived cationic cyclopeptides in Caco-2 cell monolayers-based
in vitromodel and assessed in vivoperformance in diabetic rats [38]. The
results indicated that TD-34 (ACSSKKSKHCG) with bis-substituted ly-
sine in N-5 and N-6 sites displayed the best transdermal enhancement
activity, where administration of 2.1 IU insulin with 0.5 μmol of TD-34
led to an approximately 26% reduction in BGLs of rats thatwas sustained
for 8 h.
ncluding chemical enhancers-promoted, electrically facilitated,mechanical force-triggered



Nano/micro vesicles, such as liposomes and nano/microemulsions,
have also been explored as chemical enhancers [39–43]. They can not
only improve skin permeability but also act as the vehicles for drug sol-
ubilization and drug transport through the skin [39,44]. A variety of
nanocarriers have been demonstrated the ability to encapsulate and
transdermally deliver insulin into the dermis, such as lipid-based vesi-
cles [45–47], CaCO3 nanoparticles [48] and nanoemulsions [49,50]. For
example, King et al. reported lipid-based biphasic vesicles as skin pene-
tration enhancers for insulin delivery [46]. These researchers incorpo-
rated insulin-encapsulated biphasic vesicles in a transdermal patch
and applied the patch on the abdominal skin of diabetic mice for 48 h.
The mice showed response to the patch loading 50 mg vesicle-
entrapped insulin for over 51 h with a decrease in blood glucose of ~
43%. Further analysis of the topical administration of biphasic vesicles
demonstrated that the transport and absorption of insulinwasprimarily
mediated by the lymphatic pathway in a diabetic rat model [47].

Goto and coworkers proposed an alternative formulation based on
solid-in-oil (S/O) nanodispersion for protein delivery [49,51,52]. The
prepared the S/O nanodispersions were approximately 250 nm and in-
tegrated with isopropyl myristate (IPM), an oil with a penetration-
enhancing effect, along with insulin and R9 peptides loaded at a molar
ratio of 1:3 [49]. The R9 peptides, a type of arginine-rich peptides, was
involved as PTDs to enhance the skin permeability to insulin. A synergis-
tic effect of isopropyl myristate and PTDs to disrupt the barrier property
of the skin and improve insulin penetration across the skin in vitrowas
demonstrated. Nose, Pissuwan and colleagues formed a different S/O
formulationby introducing gold nanorods into an oil phase for transder-
mal delivery under irradiation of near-infrared light [50,53]. Individu-
ally, the gold nanorods (27 nm in width and 66 nm in length) were
Fig. 2.A representative solid-in-oil nanoformulation for insulin transdermal delivery. A) Scheme
solid-in-oil; INS: insulin; PEG-GNR: mPEG coated gold nanorod; FITC: fluorescein isothiocyanat
insulin after the treatment of various insulin formulations, with orwithout near infrared (NIR) li
treatment with NIR irradiation (iii), SO-INS-GNR treatment alone (iv), and SO-INS-GNR treatme
SO-INS and SO-INS-GNR with and without NIR light irradiation, and subcutaneous injection (S
coated withmethoxy(polyethylene glycol)-thiol and formed a complex
with surfactant (L-195) and insulin, followed by dispersing in the oil
phase, IPM (Fig. 2) [50]. Under near-infrared light (0.4 W/cm2 for
10 min), the photothermal effect caused by gold nanorods might
break the skin barrier by disrupting skin lipids or changing the
size and density of the skin barrier, thus allowing insulin to permeate
through the skin. Additionally, the surfactant L-195 and IPM acted as
enhancers to promote transdermal transport of insulin. After treatment
of nanodispersion and light irradiation, the BGLs of diabetic mice
significantly decreased to approximately 58% of pre-treatment values
at 4 h.

Chemical penetration enhancers can disrupt the skin structure to
promote permeability and improve drug solubility to provide the drug
concentration-gradient driving force. Despite this, many chemical en-
hancers still show limited transdermal delivery efficiency of insulin.
For the most effective chemical enhancers, strategies to prevent their
diffuse out of the stratum corneum and the relevant irritation to the
deeper tissue should be further addressed.
3. Electrically facilitated transdermal delivery

In addition to the chemical penetration enhancers, electrical instru-
ments that facilitate insulin transport through the skin have also re-
ceived considerable attention [54–57]. Unlike chemical penetration
enhancers, these electrical instruments improve the insulin delivery ef-
ficiency through the skin by providing additional driving force via elec-
trical interactions or introducing transient perturbation of the stratum
corneum via high-voltage electrical pulse.
of the preparation of gold nanorod-insulin complexes/oil formulation (SO-INS-GNR) (SO:
e; WO: water in oil). B) Fluorescent images showing transdermal delivery of FITC-labeled
ght irradiation: insulin inwater (W-INS) treatment (i), SO-INS treatment alone (ii), SO-INS
nt with NIR irradiation (v). C) Blood glucose levels of diabetic mice after administration of
CI) of insulin (*P b 0.05, **P b 0.01). Adapted with permission from Ref [50].



3.1. Iontophoresis

Iontophoresis emerged as a transdermal enhancement technique in
the early 20th century. This technique uses a mild electric current for
the delivery of large and/or charged molecules [54,58]. This technology
relies on a pair of electrodes that is placed on the skin to generate an
electrical potential between the skin surface and the capillaries below
(Fig. 3). Positively charged therapeutic molecules are driven toward
the capillaries from the skin surface at the positive electrode, while neg-
atively charged molecules transport through the skin toward the nega-
tive electrode. Extensive studies have identified that electromigration
and electroosmosis are two of the predominant driving forces to affect
the transport of drug ions across the skin into systemic circulation
[59], and the amount of transported charge depends on the intensity
of the electric field and the treatment duration [60,61]. Nonetheless,
the skin is permselective to cations under an electric current since it is
negatively charged at the physiological condition [62]. Therefore, the
transdermal delivery of insulin to give therapeutic levels is challenged
by thenegative charge of human insulin (~5800Da)under physiological
conditions [63–67].

Siddiqui et al. found that adjusting the aqueous solution of concen-
trated insulin (500 IU/mL) to a pH of 3.7 was the most effective condi-
tion for regular insulin iontophoresis [68]. Similarly, Pillai et al.
revealed that anodal iontophoresis of insulin at pH 3.6 resulted in better
stability and permeation of insulin [69,70]. Kajimoto et al. also
attempted to raise the transport efficiency of insulin by utilizing charged
liposomes as carriers during iontophoresis [71]. The in vivoperformance
in a diabetic rat model showed that the transdermal iontophoresis
(0.45 mA/cm2 for 1 h) of cationic liposome-encapsulated insulin
through the transfollicular pathway led to a gradual decrease of 20% in
BGLs at 18 h after administration which was maintained for up to
24 h. A corresponding increase in plasma insulin levels was also de-
tected (~1.4 ng/mL 18 h post-treatment) that exceeded levels detected
in rats treated with intraperitoneally injected insulin.

Pretreatment of skin such as stripping skin [72,73], using
penetration enhancers [74–77] and depilatory cream [75,78,79] has
been reported to enhance the transport of insulin through the
skin under iontophoresis. An investigation on the effect of diverse
chemical enhancers including ethanol (EtOH), propylene glycol (PG),
dimethylacetamide (DMA), ethyl acetate (EtOAc) and IPM demon-
strated that skin permeability was severely improved with DMA,
followed by EtOH and EtOAc, while IPM and PG exhibited relatively in-
significant skin barrier altering potential [77]. By acting on the lipid bi-
layer, these chemicals led to lipid extraction (EtOH, DMA, EtOAc),
changes in skin proteins (EtOH, DMA), or increased lipid fluidity
(IPM), thus produced a synergistic enhancement with iontophoresis.
Fig. 3. Illustration of iontophoresis-assist
Furthermore, hydrogel formulations are considered to be desirable
for iontophoresis, as they can act as an electroconductive base and
adapt to the contours of the skin; these formulations can also be easily
integrated with the iontophoresis delivery systems [80]. Kagatani et al.
reported a pulsatile insulin delivery system with an electro-responsive
poly(dimethylaminopropylacrylamide) (PDMAPAA) gel [81]. The
insulin-loaded PDMAPAA gel was subcutaneously injected into the
skin of rats as a depot. Upon stimulation with a constant current of
1.0mA(0.36mA/cm2), a pulsatileplasmaglucosedecreasewasdetected
in the animals. Both insulin and PDMAPAA gel in this systemmight be
positively charged at the pH of 2.3. When an electrical field is applied,
the cross-linked PDMAPAA network undergoes slight expansion at the
cathode side, allowing solvated insulin to quickly diffusing out the gel
with the outflowof the solution, causedby the electrokineticflowof sol-
vated insulin with water. In another study, Pillai et al. used poloxamer
407 to prepare the insulin gel that was further integratedwith chemical
enhancers for the ex vivo and in vivo skin permeation analysis [82].
Applicationof iontophoresis, either aloneor in combinationwith linoleic
acid, resulted in a 36–40% reduction in BGLs of diabetic rats.

To mitigate the potential electrochemical damage caused during
iontophoresis, such as burns and skin irritation [83], alternating current
iontophoresis was investigated over conventional direct current ionto-
phoresis; this approach showed reduced side effects [84]. Feasibility
studies showed that alternating current iontophoresis-activated trans-
dermal insulin delivery systems were associated with an average deliv-
ery of 57% of the initial insulin amount (2.85mg in 500 μL sample) [85].

Unlike chemical penetration enhancers, iontophoresis does not dis-
rupt the skin structure that may affect its barrier ability. Nonetheless,
the low-level current of such technique limits the transport efficiency
of insulin through the stratumcorneum.Although increasing current in-
tensity can lead to a higher delivery rate, the potential risk of skin irrita-
tion and pain also limits the maximum current intensity.

3.2. Electroporation

Electroporation has evolved as another attractive technique for elec-
trically assisted transdermal drug delivery [55,86,87]. Different from the
continuous application (hours) of low-level current in iontophoresis,
the procedure of electroporation involves using short, high-voltage
pulses to induce transient perturbation in the stratum corneum by cre-
ating micro-pathways across its lipid bilayers [88]. The stratum
corneum forms the major barrier and contributes the major portion of
the electric resistance in the skin (5–25 kΩ/cm2) [88]. In electropora-
tion, the application of high voltage pulses that are higher than the
breakdown potential of the stratum corneum (75–100 V) and thus re-
sults in the formation of temporary pores in the lipid bilayers of the
ed insulin delivery through the skin.



stratum corneumwhich facilitates the transport of the drugs across skin
[89,90].

Several studies have been investigated to validate the enhanced
transdermal delivery of insulin by electroporation. Mohammad and col-
leagues examined the effect of different electroporation parameters
(number of pulses, insulin concentrations, and field strengths) and
chemical enhancers (castor oil, iodine, and oleic acid) on transdermal
insulin delivery in rabbits [91]. In another work, Rastogi et al. explored
electroporation of polymeric nanoparticles encapsulated insulin, dem-
onstrating a 4-fold enhancement in insulin deposition in rat skin com-
pared to electroporation using free insulin, as well as an extended
therapeutic effect from 24 h to 36 h [92]. Sen et al. reported an alterna-
tive transdermal enhancement method by mixing the anionic lipids
with target molecules that were associated with enhancing the
electroporative transport of negatively charged permeants up to
10 kDa in size [93]. The resultant enhancing effect was attributed to
the increased number and size, as well as prolonged lifetime, of the
electropores created during the electroporation in the presence of the
lipid dispersion. Specifically, the anionic lipids were shown to have a
positive effect in dropping the skin resistance and retard the recovery
of resistance after the cessation of pulse application, thereby expanding
the potential of lipid-enhanced electroporation for delivering large bio-
molecules.More recently, these researchers examined the impact of an-
other anionic lipid, 1,2-dimyristoyl-3-phosphatidylserine (DMPS), on
the transdermal transport of insulin using porcine epidermis model
and observed a 20-fold enhancement of insulin with dispersion in
DMPS electroporation for 10 min (100–105 V, 1 ms pulse width at
1 Hz) compared to that without DMPS [94]. Sen and coworkers also
demonstrated a synergistic effect of coupling DMPS and anodal ionto-
phoresis (electroosmosis)with electroporation on the transport of insu-
lin both ex vivo and in vivo, where the combination treatment of DMPS
(in 0.2% sodium dodecyl sulfate) and electroosmosis resulted in a ~10-
fold increase in plasma insulin level in a Sprague-Dawley rat model
[95,96]. This in vivo synergistic treatment of electroporation and ionto-
phoresis was also validated by Sugibayashi and colleagues using
human insulin [97]. Interestingly, this group suggested that insulin
had different aggregation properties under different pH conditions in
their study: insulin at pH 10 had a higher ratio of nonassociation formu-
lation, whereas most of the insulin associated into hexamers at pH 7.
Therefore, a much higher plasma level of insulin was detected with
pH at 10 than at 7.

Considering the clinical application of electroporation, Wong et al.
developed a painless electroporation technique using a microelectrode
array block to mitigate the potential painful sensation induced by elec-
trodes on the human skin while maintaining the delivery efficacy of in-
sulin (Fig. 4) [98]. Studies in diabetic mice indicated a 100-fold increase
in transdermal insulin delivery by electroporation using the electrodes
array (150 V, 120 pulses at 0.2 ms, 1 Hz) compared to passive diffusion.
Fig. 4. Transdermal insulin delivery based on electroporation technique. A) Fluorescence ima
mouse skin. Control: insulin occlusion only; Hyp: hyperthermia at 40 °C for 5 min before and
after treatment. EP (▼) (150 V, 120 pulses at 0.2 ms, 1 Hz); Hyp + EP (△) (40 ± 0.5 °C 5 mi
application only). Oral glucose tolerance test (OGTT) was performed 3 h-post EP. *P b 0.05, **P
The associated human studies suggested that the microelectrodes array
design provided a feasible electroporation condition thatwas both pain-
less and harmless to humans. Of note, the combination of mild hyper-
thermia (40 °C for 20 min) with electroporation resulted in an even
higher delivery efficiency in mice, which is 237-foldmore than the con-
trol values bypassive diffusion. The delivery efficiency is consistentwith
pharmacodynamic studies of insulin: a significant hypoglycemic effect
was observed immediately after the electroporation actuation and
heating treatment that continued up to 10 h. For translation purpose,
Ching et al. developed a compact, low-cost and programmable electro-
poration device that could easily adjust high-voltage (2–300 V) electri-
cal waveforms including both pulsed and pulsed-biphasic forms for
precise regulation of the magnitude and waveform of electroporation
[99]. They also evaluated the potency of this device in vitro for transder-
mal delivery of medications including insulin.

Since the involvement of high-intensity electrical field, electropora-
tion leads to an enhanced delivery efficiency for insulin compared to
iontophoresis. However, the high-voltage pulses inevitably affect the
deeper tissues, causing potential pain and muscle stimulation. Further
studies on device design to minimize the side effect should be per-
formed to facilitate clinical translation.

4. Mechanical force-triggered insulin delivery

Besides electrical field, mechanical force is another alternative to
produce transient channels on the surface of the skin for transdermal
drug delivery [100]. Ultrasound and jet injection are two representative
mechanical force-triggered methods for insulin delivery. Ultrasound
can enhance the permeability of drugs across the skin by hyperthermia
or cavitation effect. Jet injection applies the high-speed liquid to disrupt
the surface of the skin to dispense insulin solutionwithin the skin tissue.

4.1. Ultrasound

Ultrasound, a longitudinal sound wave with a frequency above
20 kHz, has long been used for biomedical purposes since the beginning
of the 20th century for imaging aswell as to ablate tissue, shatter kidney
stones, and to facilitate transdermal drug delivery [101–106]. The me-
chanical force produced by ultrasound has been shown to enhance
skin permeability to therapeutics compounds via ultrasound-induced
hyperthermia or cavitation [107,108]. The application of ultrasound
for drug delivery through the skin is generally termed as sonophoresis,
and the range of frequencies used varies between 20 kHz and 16 MHz
[56,109]. Early on, high-frequency sonophoresis (HFS) (≥ 700 kHz)
was mostly investigated for transdermal drug delivery, with typical
skin penetration enhancements between 1 and 10 folds comparing to
passive diffusion [110,111]. In the early to mid-1990s, scientists devel-
oped a better understanding of the cavitational effects for sonophoresis
ge of skin treated with electroporation of FITC-insulin. B) Transport amount of insulin in
during the 15-min insulin occlusion; EP: electroporation. C) Blood glucose levels of mice
n before EP and during 15-min post-pulsing); Hyp alone (○); control group (●) (insulin
b 0.01, ***P b 0.001. Adapted with permission from Ref [98].



[112] and found low-frequency sonophoresis (LFS) (20–100 kHz) was
more effective than HFS in enhancing skin permeability [113,114].
Tachibana and coworkers used ultrasound with a frequency of 48 kHz
or 105 kHz to yield greater transport of insulin through the skin than
passive diffusion that resulted in significant decrease of BGLs in mice
and rabbits [113,115]. Mitragotri et al. also showed effective LFS-
mediated transdermal transport of proteins, including insulin,
interferon-γ, and erythropoietin (Fig. 5) [114]. Their experiments in a
diabetic rat model showed sufficient insulin delivery by LFS, with a re-
duction of the BGLs from ~400 to ~200 mg/dL in 30 min. A subsequent
investigation demonstrated that LFS at 20 kHz was up to three orders
of magnitude more effective than HFS at 1 MHz for enhancing skin per-
meability [116]. Since then, LFS-mediated transdermal insulin delivery
has been extensively investigated [117,118]. Studies conducted by
Boucaud et al. in rats and newborn pigs illustrated that the use of LFS
(20 Hz) could facilitate rapid, reproducible, and reversible transdermal
delivery of insulin [119,120]. They also demonstrated that the amount
of insulin transported through the skin of rats was significantly associ-
ated with the energy dose and length of an ultrasound pulse, consistent
with the cavitation-related mechanism [121].

Aside from using commercial, large, and heavy ultrasound equip-
ment to deliver insulin across the skin, Smith et al. developed a portable
and energy efficient transducer array for LFS-aided transdermal insulin
delivery [122–128]. Specifically, this lightweight (b38 g) and compact
(56 × 56 × 8 mm3) transducer array consisted of individual cymbal-
shaped transducers, which were arranged into a multi-element array
design (3 × 3). It also had an adjustable resonance frequency between
1 and 100 kHz, depending on the geometry. The efficacy of the portable
transducer was evaluated by comparing the LFS-based insulin delivery
route with subcutaneous injection route in rats [129]. The transducer
was placed on top of an insulin reservoir (4 mL of 50 U/mL) that ad-
hered to the skin of rats. Ultrasound irradiation treatment at 20 kHz
with an intensity of 100 mW/cm2 for 60 min resulted in a reduction of
BGLs by 262 ± 40 mg/dL within 90 min; little change or less decrease
(−190 ± 96 mg/dL) was observed in BGLs of rats administered with
subcutaneously injected insulin (0.15, 0.2 and 0.25 U/kg). In another
study, researchers assessed the effect of the cymbal transducer on York-
shire pigs (45–64 kg) (Fig. 6) [128]. The group treated with the insulin
and LFS for 60min (20 kHz, 100mW/cm2, 20% duty cycle) showed a de-
crease in BGLs of 72±5mg/dL at 60min post-treatment and a decrease
of 91 ± 23 mg/dL at 90 min, indicating the feasibility of the cymbal
transducer for clinical applications. In an attempt to improve the accu-
racy of delivered insulin doses, this team further designed a closed-
loop system that allowed for on-demand delivery of insulin by coupling
ultrasound-assisted insulin delivery with glucose sensing via a feedback
controller [130]. The in vivo experiments were performed on 200-
pound pigs, to which two ultrasound arrays were applied: one for insu-
lin delivery (3 × 3, 30 kHz, 100 mW/cm2) and the other for glucose
Fig. 5. Ultrasound-mediated transdermal insulin delivery. A) In vitro transport profile of insuli
second) at 12.5 (■), 62.5 (◆), 125 (●), and 225 mW/cm2 (▲) (n = 3 or 4). B) In vitro trans
applied every second) (n = 3 or 4). Adapted with permission from Ref [114].
sensing (2 × 2, 20 kHz, 100 mW/cm2). BGLs were assessed every
20 min for 2 h and the level of automatically delivered insulin was de-
termined according to the BGLs by a proportional feedback controller.
The results suggested the feasibility of using the combined cymbal ultra-
sound array system for noninvasive glucose sensing and insulin
delivery.

Aside from stimulating insulin delivery from aqueous solution, Di
et al. applied focused ultrasound (FUS) with an injectable nano-
network for long-term regulation of BGLs [131]. The injectable poly-
meric nano-networkwas cross-linked by oppositely charged nanoparti-
cles, whichwere prepared by coating chitosan (positively-charged) and
alginate (negatively-charged) on insulin-loaded poly(lactic-co-glycolic
acid) (PLGA) nanoparticles. The in vivo study in diabetic mice showed
that after injection of the 3D nano-network, insulin was effectively re-
leased upon FUS-administration for 30 s (950 kHz, 4.31 W) with a cor-
responding decrease of BGLs in 10min that reached the normoglycemic
range (b200mg/dL) in 1 h.Moreover, similar changes in BGLswere also
detected under the same ultrasound treatment condition 4-day and 7-
day post the injection of the nano-network, suggesting that the capabil-
ity of this strategy for a long-term and pulsatile regulation of BGLs. In
another study, the researchers employed chitosan microgels as the car-
riers to achieve the ultrasound-mediated insulin delivery [132].

More recently, Castellanos and coworkers investigated the effects of
ultrasound on evoking secretory responses in pancreatic β-cells [133].
After exposure to unfocused ultrasound for 5 min at a peak intensity
of 1 W/cm2 and frequencies of 400 kHz or 600 kHz, a marked release
of insulin was observed from β-cells (approximately 150 ng/106 cells).
Moreover, application of ultrasound at frequencies of 800 kHz resulted
in 24 ng/106 cells releasing insulin, while retaining the cell viability. In
their further study, researchers sought to elucidate the mechanism by
which ultrasound stimulated secretion and described the role of cal-
cium in the process [134]. These findings implicate the potential of ul-
trasound to augment insulin release from pancreatic cells for diabetes
treatment.

Ultrasound-mediated transdermal drug delivery has been exten-
sively investigated in in vivo animal studies and demonstrated clinical
potential in small macromolecule delivery including insulin. However,
HFS may lead to damage to deep skin tissue, and LFS often needs a cor-
responding medium or scaffold, such as hydrogel, nano-network, and
cells which is invasively injected into skin tissue. Moreover, the require-
ment of sophisticated devices also limits the usage for people with
diabetes.

4.2. Jet injection

Jet injection is another needle-free administration for transdermal
insulin delivery. Instead of solid syringes, the jet injector applies a
high-speed narrow stream containing insulin to create a tiny hole for
n across human skin in the presence of ultrasound (20 kHz, 100-ms pulses applied every
dermal insulin permeability with different ultrasound intensity (20 kHz, 100-ms pulses



Fig. 6. Transdermal insulin triggered by a cymbal transducer. A) Schematic of the cymbal transducer and the motion of the cymbal disk. B) Photo of a 3 × 3 cymbal transducers array.
C) Schematic of a cymbal transducers array on pig skin for transdermal insulin delivery. D) The blood glucose levels of pig treated with pure insulin or ultrasound-mediated
transdermal insulin delivery (n = 3, *P b 0.05, **P b 0.01). Adapted with permission from Ref [128].
insulin transport through the skin [135–137]. Jet injection has been
associatedwith high delivery efficiency exceeding 90%, similar to hypo-
dermic injection [135,138,139]. Moreover, insulin administration by jet
injectors leads to a faster on-set of plasma insulin [140,141]. Wit et al.
demonstrated rapid correction ofmarkedhyperglycemia using jet injec-
tion in overweight and obese patients with diabetes [142]. In addition,
because jet injection dispenses insulin over a larger area of skin tissue
than conventional injection, the pharmacokinetics of this route of insu-
lin administration are more similar to endogenous insulin secretion by
pancreas [143]. Guo et al. compared postprandial glucose control ob-
tained using a jet injector and an insulin pen and found that the im-
proved insulin absorption by the jet injector is beneficial for
postprandial blood glucose regulation [144].

Despite the advantages mentioned above, several concerns limit the
current use of jet injection technology. Although liquid jet injection
technology is a needle-free route, the large volume of high-pressure
spray may also lead to adverse reactions including bruising, bleeding,
and pain [135,145–147]. Studies have reported that jet injectors actually
cause no less pain than hypodermic needles [145,148]. Tominimize the
adverse reactions, Mitragotri and coworkers designed a microjet injec-
tion device that only injects solution volumes within the nanoliter
range [149]. Using pulsed microjets, they reported that insulin was
injected into the skin without deep penetration in a rat model, which
may potentially reduce pain and bleeding. Besides, the sustained and
controlled release of insulin realized by integration with biodegradable
particles may also improve the application of jet injection. When
Mitragotri and coworkers assessed the capability of jet injectors to de-
liver polymeric nanoparticles through the skin, they found the nanopar-
ticles did not penetrate the skin deeply but could release cargoes for
prolonged periods [150]. Several jet injectors are commercially available
though they have not been widely adopted. In the future, the cost, size,
and performance of jet injectors may be optimized to facilitate routine
usage.

5. Microneedle-assisted transdermal delivery

Recently, the emergence of microneedle (MN) techniques has pro-
vided an alternative method for transdermal protein delivery
[151–156]. The micro-scaled needles are able to painlessly disrupt the
stratum corneumand reach the epidermal and dermal layer for drug re-
lease [157,158]. Themicro-channels caused byMNexist temporarily for
drug transport but quickly recover after removal of MN to prevent long-
term damage to the skin tissue [159,160]. Based on the material of the
MN and the mechanism of drug delivery, the MN device is classified
into different types (Fig. 7). Generally, solid MNs are designed to pierce
the skin to improve the drug transport; hollow MNs are used for injec-
tion of a fluid drug formulation through the opening on the skin caused
by needles, and dissolving or degradable MNs are made from polymers
with encapsulated drugs. Below, we also describe recently-developed
bioresponsive MNs that can respond to physiological glucose levels for
on-demand delivery of insulin.

5.1. Solid microneedles

The early generation of MN-aided insulin delivery was often based
on skin perforations from solid MNs, which is also termed as “poke
with patch” [151]. In this approach, the MNs pierce the skin to create
microchannels where insulin can be transported during the subsequent



Fig. 7. Schematic illustration of delivery mechanisms through different types of MNs.
administration of a patch or topical formulation. A plethora of studies
have been reported demonstrating effective delivery of insulin through
the skin during the past decades.

For example, Prausnitz and coworkers demonstrated the hypoglyce-
mic effect of insulin in diabetic rats using MNs [161]. An array of 105
microneedles was prepared by laser-cut from stainless steel sheet and
inserted into the skin of diabetic rats, after which insulin solution was
administered in contact of the skin for 4 h. These solid metal MNs
displayed increased transdermal delivery of insulin and reduction of
BGLs in vivo as much as 80%.

Zhou et al. evaluated the potential of using a commercially available
MN roller for the transdermal delivery of insulin in a rat model, testing
three different lengths (250, 500, and 1000 μm) of the stainless steel
MNs [162]. Rapid reduction in BGLs was observed in 1 h after applica-
tion of theMN rollers, while the glycemic effect diminishedwith the re-
covery of the skin holes that were created by MNs. MN rollers with a
length of 500 μm or shorter were demonstrated to be safe and able to
enhance the transdermal delivery of insulin in vivo. It was also reported
that the reduction of BGLs could be extended by adjusting the treating
area of MNs [163].

Furthermore, a combination of microneedle and iontophoresis was
studied to allow a larger range of delivered drugs for transdermal deliv-
ery [164]. Chen et al. presented a 700-fold higher absorbance rate of in-
sulin from nanovesicles driven by iontophoresis through the
microchannels induced by MNs than that by passive diffusion [165].
The positively charged nanovesicles showed significant permeation
ability with the assistance of MNs and iontophoresis and reduced the
BGLs of diabetic rats by 33.3% and 28.3% of the initial levels at 4 and
6 h, respectively.

To control andmaximize the delivered insulin dose, solid MNswere
recently modified by coating payloads directly onto the surface of MNs.
Al-Qallaf et al. studied the insulin concentration profiles in blood using
drug-coatedmicroneedles with different shapes and dimensions in the-
oretical models [166]. The simulating results indicated a maximum in-
sulin concentration was achieved by rocket-shaped MNs.

5.2. Hollow microneedles

Hollow MNs are designed to facilitate drugs delivery into the skin
through the interior of needles (Fig. 5). Prausnitz and coworkers
injected insulin into the diabetic rat skin through hollow glass MNs by
microinfusion, resulting in a steady drop of up to 70% of preinfusion
BGLs over a 5-h period [167]. They also designed and fabricated hollow
metal MN arrays for transdermal insulin delivery [168]. Themechanical
study showed that these MNs were strong enough to pierce the entire
skin without breaking. In addition, silicon hollow MNs have also been
explored for insulin delivery [169,170].

Nordquist, Roxhed, and coworkers developed a “controlled release”-
designed MN patch integrated with an active dispensing functionality
capable of controlled release of insulin in the microliter range at low
flow-rates [171,172]. The electrically controlled dispenser consisted of
a heater layer, an expandable composite, and a liquid reservoir. When
current passed through the heater, the composite was heated up and
then acted as the liquid reservoir, which could consequently eject the
insulin solution through the hollow silicone MNs. In a diabetic rat
model, this systemwas associated with a 5-times higher plasma insulin
concentration compared to passive diffusionwith a significant decrease
in BGLs.

The delivery efficacy of hollow MNs has also been investigated in
human studies. Gupta et al. first examined the transdermal delivery of
insulin by hollowmetal MNs on two type 1 diabetic adults [173]. An in-
sulin pumpwas connected to theMNs and then applied on the abdom-
inal skin to control the insulin infusion rate. Results demonstrated rapid
insulin absorption and decline in BGLswith the insertion ofMN in depth
of 1 mm within the skin. Further clinical trials have also been
conducting to evaluate the safety and efficiency of hollowMNs for insu-
lin delivery in humans [174].
5.3. Dissolving microneedles

In addition to insolublemetal and siliconMNs, recent studies on bio-
compatible polymeric MNs have attracted significant attention, such as
dissolvingMNs [175]. DissolvingMNs are prepared by the soluble poly-
mers to encapsulate the drug in the matrix, and upon inserted into the
skin, can fully dissolve to release the drug. The therapeutic duration is
dependent on the dissolution rate of the polymer material, which can
be adjusted from minutes to hours to meet the goals of treatment
[176]. Furthermore, the use of the biocompatible polymers could
avoid any production of sharp biohazardous waste. [177,178].

To date, various dissolving MNs made of sugar glass polymers have
been reported, such as maltose [179–182], trehalose [183–186] and su-
crose [187,188]. Sugar glass MNs typically dissolve quickly in human
skin after insertion [189,190]. However, the fabrication of theseMNs re-
quires a high temperature that over 100 °C to induce rubber to glass
transitions of sugar glasses, which may damage the bioactivity of bio-
molecules including insulin [191]. New fabrication techniques have
been developed to address the thermal challenges ofmelting fabrication
process. For example, Martin et al. used a low-temperature processing
method to fabricate dissolving MNs [187].



Another strategy could be using other polymers with high solubility
to form MNs, such as hyaluronic acid (HA) [192–196], carboxymethyl-
cellulose (CMC) [183,197], chitosan [198,199], alginate [200,201], poly-
vinylpyrrolidone (PVP) [202–205], and polyvinyl alcohol (PVA)
[206–208]. The associated fabrication process can avoid high-
temperatures, thereby enhancing the storage ability of drug-
containingMNs. Liu et al. fabricated HAMNs viamicromolding technol-
ogy and characterized their application in the transdermal delivery of
insulin [209]. N90% of the loaded insulin retained bioactivity, even
after one month-storage at different temperatures (−40, 4, 20 and 40
°C). Moreover, the HA MNs exhibited higher resistance to deformation
against humidity than sugar glass MNs. In vivo studies in diabetic rats
demonstrated a dose-dependent hypoglycemic effect after administra-
tion with insulin-loaded HA MNs. Furthermore, the transient
microchannel caused by the insertion of MNs disappeared within 24 h.

Chen and coworkers developed a dissolving MN patch composed of
starch and gelatin for transdermal insulin delivery [210]. Here, gelation
was blended with starch to produce tough and strong composited MNs
that was suitable for skin penetration due to its film-forming ability. In
vitro and in vivo penetration tests verified the sufficient mechanical
strength of MNs to be inserted into porcine or rat skin with a depth of
approximately 200 μm. Themild solvent casting process forMN fabrica-
tion preserved the activity of encapsulated insulin whichwas able to in-
duce a significant decline in BGLs of diabetic rats upon insertion.
Fig. 8. Transdermal delivery of insulin using a fully insertableMN system. A) Schematic of MNs
vitro release profile of insulin from MNs (n = 5). C) Fluorescence images of skin puncture sites
treated with unloaded (control) and insulin-loaded MNs and subcutaneous injection of insulin
Furthermore, the relative availability and bioactivity of insulin were
still higher than 90% after one-month storage at 25 or 37 °C, suggesting
that these dissolving starch/gelatinMNs could be a promising device for
delivery of biomolecules.

Althoughmany formulations of dissolving MNs have been shown to
successfully delivery insulin and reduce BGLs in vivo, incomplete inser-
tion of polymeric MNs due to skin elasticity limits their delivery effi-
ciency and also causes wastage of valuable medication [211]. To this
end, researchers designed fully insertable MNs with a supporting struc-
ture that provided an extended length for counteracting skin compres-
sive deformation during administration [212]. In this study, insulin was
first loaded on tips of 600 μm-high MNs made of poly-γ-glutamic acid,
while the second layer of PVA/PVP was filled in the MN molds to form
the 600 μm-high supporting structures (Fig. 8). When inserted into
the skin, both the MNs and supporting layer dissolved within 4 min to
fully release the drug load. A comparable hypoglycemic effect was de-
tected in diabetic mice treated the same dose of insulin (0.2 IU) via
MN patches versus subcutaneous injection, indicating the feasibility
and accuracy of using this proposed MN design for insulin delivery.

Based on a similar mechanism, Liu and coworkers developed multi-
layered dissolving MN patches composed of stiff silk fibroin MN tips
supported on flexible PVA pedestals [213]. The tips had a robust me-
chanical strength and were able to penetrate the skin and rapidly dis-
solve to release encapsulated insulin. In vivo tests in an obese mouse
composed of poly-γ-glutamic acid (γ-PGA)MNs and PVA/PVP supporting structures. B) In
. D) Plasma insulin concentrations (left) and plasma glucose levels (right) of diabetic rats
(insulin SC) (n = 4). Adapted with permission from Ref [212].



Fig. 9. Transdermal MN based on droplet-born air blowing (DAB) technique. A) Schematic of MN fabrication. B) Rapid implantation of MN in the skin including insertion, separation,
implantation steps. Adapted with permission from Ref [217].
model indicated rapid insulin absorption through the skin into the sys-
temic circulation, where maximum serum insulin concentrations were
reached 2 h-postMN administration. TheMNpatch could also be stored
at room temperature for 20 days, with N99.4% of insulin remained in the
Fig. 10. SwellableMN for transdermal insulin delivery. A) Schematic of awater-swellableMN for
deswelling behavior of theMN in gel and air respectively. Scale bar: 500 μm. C) Blood glucose le
MN), (▲) 10 U insulin-coated MN patches (coated MN), and (●) non-insulin-loaded swellable
(*P b 0.01). Adapted with permission from Ref [222].
MNs. In this MN design, the multilayered fabrication process may con-
dense therapeutics to reduce wastage, as well as satisfy different me-
chanical performance requirements for tips and pedestals. Following
this rationale, two-layered MNs made from diverse materials with
mechanical interlockingwith skin and drug release through passive diffusion. B) Swelling/
vels of normalmice treatedwith (▼) 10 U insulin-loaded swellableMNpatches (swellable
MN (vehicle control) (n= 3). Normal untreatedmice (■) were used as a negative control



different ratios have been assessed for optimized insulin delivery effi-
ciency [214,215]. Lee et al. analyzed the penetration ability of MNs
consisting of several ratios of PVP with two molecular weights
(PVP10/PVP360) and found the ratio of 1:3was the best for in vivo insu-
lin delivery [214]. The backing layer prepared from PVP360/CMC was
selected for better flexibility for skin fitting other than pure PVP360
supporting. To further strengthen the mechanical property of MNs, Liu
et al. fabricated composite MNs integrating PVP matrix with insulin-
loaded CaCO3 microparticles [216]. The prepared MNs exhibited en-
hanced stiffness and slower solubility compared to pure PVP MNs.

Traditionally, dissolving MNs are mostly fabricated using micro-size
molds through a stepwise castingmethod. Kim et al. developed an alter-
native fabrication technique by applying droplet-born air blowing
Fig. 11. A representative transcutaneousMN patch loaded with glucose-responsive nanoformu
patch for in vivo fast insulin delivery triggered by a high blood glucose level. B) Fabrication pro
patch in STZ-induced type 1 diabetic mice: Photograph showing penetration of mouse skin
diabetic mice after treatment with blank MNs containing only cross-linked HA, MNs loaded w
2E + I), or MNs loaded with GRV(I). *P b 0.05 for administration with GRV(E + I)-loaded M
permission from Ref [234].
(DAB) to directly shape the polymer droplets to solidified the MNs,
thereby providing benign (4–25 °C) and fast (≤10 min) fabrication con-
ditions without drug loss [218]. In this method, biopolymer droplets
were first dispensed on the flat surface for MN base fabrication, and a
second layer of drug-containing droplets was additionally dispensed
for MN tip fabrication. Thereafter, an upper plate was used to elongate
the droplets by drawing. Throughout this process, the MNs were solid-
ified using air blowing, where the size of the MNs and the amount of
loaded insulin could be tailored by the pressure and time of droplet dis-
penser. A decrease in BGLs in diabetic mice and quantitative bioavail-
ability (96.6 ± 2.4%) data confirmed the efficacy of insulin delivery
associated with this fabrication method. This technology may also pro-
vide multiple options with regards to the materials for fabrication of
lations. A) Schematic showing the formation andmechanism of GRV-containingMN-array
cess (left) and SEM image (right) of the MN patch. C) In vivo administration of MN-array
by MNs Scale bar: 500 μm (Left); BGLs (middle) and plasma insulin levels (right) of
ith human recombinant insulin, MNs loaded with GRV(E + I), MNs loaded with GRV(1/
Ns compared with GRV(1/2E + I)-loaded MNs or GRV(I)-loaded MNs. Adapted with



dissolving MNs, including HA, CMC, and PVP, while the layered struc-
ture enabled minimized wastage of therapeutics. To further over-
come incomplete drug delivery, Yang et al. recently reported an
electrospun pillar array-assisted MN delivery which allowed rapid
implantation of MNs into the skin [217]. The pillar array was first
coated with an electrospun fibrous PLGA sheet, after which dissolving
HA droplets were dispensed on each pillar to shape MNs via DAB
(Fig. 9). The resulting MNs on the electrospun pillar array was
quickly separated from the porous fibrous substrate within 10 s
once completely inserted into the porcine skin due to the tensile
breakage of the fibrous sheet during the compression. The
Fig. 12. Glucose-responsive matrix-loaded MN for controllable insulin delivery. A) Schematic
B) Fluorescence images of rhodamine B-labeled insulin-loaded MN arrays with FITC-labeled
FITC-labeled insulin core (right). Scale bar: 300 μm. D) In vitro release profile of insulin from
diabetic mice treated with different kinds of MN array patches, n = 5 (middle); Blood gluco
MN-CAT is indicated by blue arrows. MNs were removed as indicated by red arrows, n = 5 (ri
hypoglycemic effect of insulin-loaded MN device was demonstrated
in vivo using a healthy mouse model.

Besides employingmultilayeredMNs to enhance delivery efficiency,
Garland et al. investigated the incorporation of polymericMNswith ion-
tophoresis to improve the bioavailability of insulin and showed that a
synergistic enhancement of insulin release was achieved when ionto-
phoresis was applied in combination of the soluble poly(methyl vinyl
ether-co-maleic acid) (PMVE/MA) MN arrays [219]. Furthermore, their
results revealed that the incorporation of electric current could facilitate
the permeation of protein within the entire MN patch rather than the
MN alone, thus increasing the delivery efficiency.
of the glucose-responsive insulin delivery system using H2O2 responsive PVA-TSPBA gel.
HA base (left) and a cross-section of MN containing rhodamine B-labeled CAT shell and
gels in PBS 7.4 in the presence of GOx (0.2 mg/mL). n = 3 (left); Blood glucose levels of
se levels of diabetic mice treated with multiple MN array patches. The administration of
ght). Adapted with permission from Ref [243].



5.4. Degradable microneedles

The release dynamics of payloads from dissolving MNs is closely as-
sociated with the dissolution rate of polymers, which is usually fast. For
protein drugs that require continuous delivery to maintain a constant
therapeutic dose, MNs with a longer degradation period are preferred
as the delivery device [177]. Polymers with a higher molecular weight
and crosslinking density have been shown to provide extended release
of insulin as well as mechanical properties of MNs [175,220]. Drug is
gradually released from biodegradable MNs through passive diffusion
during the degradation process,while swelling ofMNsmay also acceler-
ating drug diffusion. For instance, calcium ion cross-linked alginate/
maltose compositeMNswere explored for insulin delivery, wheremalt-
ose was included to improve the mechanical strength of the MN [221].
The resultant biodegradable MNs exhibited a mechanical strength
around 0.41 N/needle and rapidly swelled in 5minwith eventual disso-
lution in 40min. The insulin-loadedMNs revealed a sustained decline in
BGLs of diabetic rats andmaintained the pharmacological activity of in-
sulin with a longer period compared to the group subcutaneously
injected the same dose of insulin. Yang and coworkers designed a
swellableMNpatch that could self-adhered in the skin for prolonged re-
lease of insulin (Fig. 10) [222]. The double-layered MN patch consisted
of swellable PS-PAA MN tips that could swell by absorbing body fluids
after insertion into skin and a non-swellable PS layer. The in vitro insulin
released from the MNs presented a more sustained manner over 12 h
without burst release. In contrast, N90% of the insulin was released
from the coated MNs. Consistent with the release behavior, this
swellable MN platform provided an extended hypoglycemic effect in
normal mice that lasted up to 8 h. The Jin group developed a phase-
transition MN patch from PVA for transdermal insulin delivery [223].
The microcrystalline crosslinking allowed the MN to swell, but not dis-
solve, upon insertion into the skin, thus leading to a sustained insulin re-
lease from the patch. In vivo studies in a diabetic pig model
demonstrated transdermal bioavailability that exceeded 20%. Mean-
while, the glycated hemoglobin of pigs treated with the patches contin-
uously for 2 months was lower than those treated with the insulin pen,
indicating the insulin patches provided a better blood glucose
Table 1
Representative transdermal strategies for insulin delivery.

Strategies Approaches

Chemical Enhancers Disrupt the skin structure to increase permeability and
improve drug solubility to provide the drug
concentration-gradient driving force

Iontophoresis/Electroporation Alter permeation of cell walls

Ultrasound Generate hyperthermia or cavitation effect to increase
permeability of cell membrane

Jet injection Deliver solution of insulin into skin powered by
high-pressure gas

Microneedle Insert into skin to enhance skin permeability or directly
deliver drug by micro-scaled needles
regulation capability. In another recent study, Di et al. integrated a
stretchable MN patch for tensile strain-triggered transdermal delivery
of insulin [224]. The elastomer patch embedded insulin-loadedmicrogel
depots inside deformed under mechanical stretch to promote the re-
lease of payloads, which further diffused into the cross-linked HA
microneedle for transdermal delivery. In vivo studies demonstrated ef-
fective reduction of BGLs in diabetic mice administered with this
stretchable device.

Lately, bioceramics have attracted increasing interest in the field of
transdermal drug delivery due to their attractive biocompatibility and
strongmechanical properties. For example, theflexible porous structure
of bioceramics and the electrostatic interaction between the ceramic
surface and the biotherapeutics suggest promise for bioceramics to
transporting biomolecules. Yu et al. prepared organic-inorganic
bioceramic composite microneedles MNs made from gelatin and hy-
droxyapatite for extended transdermal insulin delivery [225]. Hydroxy-
apatite, which has a similar chemical composition as human hard
tissues, is considered as a biodegradable ceramic that has been widely
used in the biomedical application. The MNs composed of cross-linked
gelatin and incorporated with hydroxyapatite provided sufficient me-
chanical strength to penetrate human skin and exhibited an effective
hypoglycemic effect and extended plasma insulin release compared
with that of subcutaneous injection in diabetic rats. The researchers
also characterized calcium sulfate and gelatin composite MNs, which
also presented similar behaviors in transdermal delivery of insulin
[226].

5.5. Bioresponsive microneedles

Recently, extensive efforts have been devoted to achieving glucose-
responsive smart insulin delivery [15,17,18,227–230]. Bioresponsive
MNs that can respond to the physiological signals have been spotlighted
as a promising approach for glucose-regulated insulin delivery
[231–233]. This platform generally integrates glucose-responsive com-
ponents with polymeric MN matrix.

In 2015, Yu et al. reported a glucose-responsiveMN patch composed
of cross-linked HA matrix and hypoxia-responsive vesicles (GRVs) as a
Advantages Limitations

• Increased skin permeability and insulin
absorption

• Improved patient satisfaction over injection

• Limited transdermal delivery
efficiency of macromolecule
drug-insulin

• Potential skin irradiation
• Lack of robust controlled drug
dosage

• Enhanced insulin penetration over passive
transport

• Improved patient satisfaction over injection
• Allowing strict control of delivery period

• Iontophoresis could be time--
consuming to administer

• Potential cell damage or rup-
ture after membrane discharge
by electroporation

• Lack of robust controlled drug
dosage

• Enhanced insulin penetration over passive
transport

• Allowing strict control of delivery period
• Reduced immunization reaction
• Improved patient satisfaction over injection

• Requirement of sophisticated
devices

• Potential physical damage to
skin tissue

• Lack of robust controlled drug
dosage

• Improved insulin absorption over injection
as jet injection dispenses insulin over a
larger area of skin tissue

• Reduced immunization reaction

• Potential bruising, bleeding,
and pain due to high-pressure
spray

• Relative higher transport efficiency than
other strategies by directly carrying insulin
into the dermis layer

• Home friendly administration method
• Improved patient satisfaction over injection
• Controllable drug release rates

• Potential breakage of needle
• Toxicity concern of needle
materials

• Potential skin irradiation or/and
infection



Table 2
Representative clinical trials of transdermal insulin delivery.

Formulation Study Subjects Primary Outcome Measures Status Phase Related
publication

Microporation Transdermal Basal Insulin Patch Study in
Type 1 Diabetes

• (NCT00519623)

• T1D N10 years
• Age 18–65 years
• BMI 18.5–32 kg/m2

• HbA1c ≤9.0%
• C-peptide negative

PK and PD of the PassPort(R)
Transdermal Insulin Delivery System in
Type 1 Diabetes Patients

Completed Phase
1/2

[250]

A stable
anhydrous
insulin
solution

Transdermally Delivered Human Insulin
Product

• (NCT03544996)

• 1 male, brittle T1D patient with
poor insulin sensitivity requir-
ing N3000 IUs on insulin a day

• Age 60–61

Measurement of down modulation of
serum glucose not otherwise attributable
to injected insulin

Completed

Jet injection Insulin by Jet-injection for Hyperglycemia
in Diabetes

• (NCT01947556)

• T1D or T2D
• Age 18–75 years
• BMI 25–40 kg/m2

• HbA1c 6.5–10%

The time in minutes until plasma glucose
concentration has dropped with ≥10
mmol/L

Completed [142]

Reliability of Insulin by Jet Injection

• (NCT02272296)

30 participants

• Age 18–50 years
• BMI 18–32 kg/m2

• Blood pressure
b 160/90 mmHg

The variability in time until maximal
glucose lowering effect to maintain
normoglycemia, after insulin injection;
Time to maximal exogenous glucose
infusion rate (GIR, in mL/min) required
to maintain euglycaemia.

Completed Phase 4 [251]

Pharmacology of Insulin Injected With
Jet-Injection

• (NCT00983775)

48 participants

• T1D N1 year
• Age 18–50 years
• BMI 18–28 kg/m2

• HbA1c 6.5–9.0%
• Blood pressure
b 160/90 mmHg

Maximal glucose infusion rate: 0–8 h
after insulin injection

Completed [252]

Pharmacokinetic and Pharmacodynamic
Profile of Insulin Lispro Using Needle-Free
Jet Injection Technology

• (NCT02443714)

18 participants

• Age 18–40 years
• Height 170 ± 10 cm.
• Weight ± 10%kg
• Liver and renal function should
be normal

• Health subjects with no
chronic diseases or
medications

Early insulin exposure: AUC 0\of insulin
from 0 to 30 min

Completed Phase 4 [141]

Pharmacology of Insulin Injected With
Jet-injection in Diabetes

• (NCT01438632)

24 participants

• Duration of diabetes N1 year
• Age 18–70 years
• BMI 18–32 kg/m2

• HbA1c 6.0–9.0%
• Insulin use at least once daily
or with subcutaneous pump

• Blood pressure
b 160/90 mmHg

AUC from time 0 to 2 h after insulin
injection and meal ingestion

Completed Phase 4 [140]

Microneedle A Pilot Study to Assess the Safety, PK and
PD of Insulin Injected Via MicronJet or
Conventional Needle (MicronJet)

• (NCT00602914)

23 males
Healthy:

• Age 18–40 years
• BMI b30 kg/m2

T2D:

• Age 30–70 years
• BMI b35 kg/m2
• HA1c 6.5–10%

Blood samples for PK and PD Completed Early
Phase 1

[174]

Pharmacokinetics/Dynamics of Basal
(Continuous) Insulin Infusion
Administered Either Intradermally or
Subcutaneously

• (NCT01061216)

• 20 T1D males
• Age 18–55 years
• BMI ≤32 kg/m2

Insulin measurements will be used to
compute PK model parameters

Completed Phase
1/2

Multi-day (3) In-patient Evaluation of
Intradermal Versus Subcutaneous Basal and
Bolus Insulin Infusion

• (NCT01557907)

23 participants

• T1D for at least 1 year
• Ages 18–55 years
• BMI ≤ 32 kg/m2

• HbA1c ≤ 8.0%

tmax of insulin delivered intradermally as
compared to subcutaneously after a meal
bolus.

Completed Phase
1/2



Table 2 (continued)

Formulation Study Subjects Primary Outcome Measures Status Phase Related
publication

Study 20 participants

• T1D N 1 year
• Age ≥ 18 years

Aggregate mean difference in tmax Completed Phase
1/2

Transdermal Basal Insulin Patch Study in
Type 1 Diabetes

• (NCT00519623)

30 males

• T1D 1–15 year
• Ages 18–55 years
• BMI b 32 kg/m2

• HbA1c ≤ 9.0%

AUC of the blood glucose profile after the
meal

Completed Phase 2 [253]

Transdermally Delivered Human Insulin
Product

• (NCT03544996)

16 participants

• T1D N 2 year
• Age 8–18 years
• BMI ≤ 85% for age
• HbA1c ≤ 8.5%

Average tmax Completed Phase
2/3

[254]

T1D: type 1 diabetes; T2D: type 2 diabetes; BMI: body mass index; HbA1c: hemoglobin A1c; PK: pharmacokinetic; PD: pharmacodynamic; AUC: area under curve; tmax: time to peak in-
sulin concentration.
Data obtained from https://clinicaltrials.gov/.
“smart insulin patch”, representing a painless and self-regulatedmodal-
ity (Fig. 11) [234]. The GRVs were self-assembled by the hypoxia-
sensitive hyaluronic acid derivative (HS-HA), which contained a
hypoxia-sensitive group, 2-nitroimidazole (NI). Under reductive condi-
tions, the hydrophobic NI on HS-HA is reduced to hydrophilic 2-
aminoimidazole, inducing the disassembly of the nanovesicles. The
GRVs encapsulating insulin and glucose oxidase (GOx) were then de-
posited in the MNs to sense the elevated blood glucose level in the der-
mis. GOx, an enzyme that can convert glucose to gluconic acid, has been
widely applied as a glucose-sensing element [227,235].

Glucoseþ O2 þ H2O →
GOx

Gluconic AcidþH2O2

During the GOx-catalyzed oxidation of glucose, oxygen in the body
fluid was consumed, leading a localized hypoxic environment [236].
The enzyme-induced hypoxic microenvironment further actuated the
dissociation of GRVs as a result of bioreduction of HS-HA and led to sub-
sequent insulin release. The hypoxia-responsive GRVs were able to rap-
idly release insulin in the presence of glucose and quickly reduced the
BGLs of type 1 diabetic mice to around 200 mg/dL within 0.5 h with
maintenance in a normal range for up to 4 h. Moreover, the administra-
tion of an additional patch was able to prolong the treatment period,
while avoiding the risk of hypoglycemia.

In addition to an enzymatically-generated hypoxic or the acid envi-
ronment, the generation of H2O2 during the reaction can also act as a
trigger to promote insulin release from MNs [237]. Hu et al. reported
bioresponsive MNs incorporated with polymeric vesicles (PVs) [238].
The PVswereprepared by self-assembly of a block copolymer composed
of polyethylene glycol (PEG) and phenylboronic ester (PBE)-conjugated
polyserineand further loaded intoMNpatch. In thepresence of highglu-
cose levels, the enzymatically-producedH2O2 oxidized the PBE pendant,
leading to the disassociation of PVs and delivery of insulin through poly-
meric MNmatrix. In this system, the release profiles responding to glu-
cose could be modulated by adjusting the amount of GOx. The
integration of H2O2-responsive PVs with MNs displayed the capability
of self-regulating BGLs in a type 1 diabetic mouse model. In another ex-
ample, Tong et al. synthesized glucose- and H2O2-responsive PVs by en-
gineering phenylboronic acid (glucose-sensitive) and 4-(4,4,5,5-
tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl acrylate (H2O2-sensitive)
functional groups in the triblock copolymer [239]. The resultant PVs-
loaded MNs presented an effective hypoglycemic effect in a diabetic
rat model compared to that of subcutaneous injection or only insulin-
loaded MNs. Xu et al. built H2O2-responsive mesoporous silica
nanoparticles (MSNs), which were then loaded with insulin and
entrapped into MNs for transdermal delivery [240]. The porous MSNs
acted as the reservoir of insulin together with GOx for H2O2 generation
in hyperglycemic states. Here, the MSNs were modified with 4-
(imidazoyl carbamate)phenylboronic acid pinacol ester to form host-
guest complexationwithα-cyclodextrin, therebykeeping insulinwithin
the MSNs. Upon exposure to H2O2, the phenylboronic ester on the sur-
face of the MSNs was oxidized, resulting in the destruction of the host-
guest complexation and subsequent release of thepreloaded insulin. Re-
cently,mesoporous bioactive glasseswasemployedas the insulin carrier
and integrated with MN device for glucose-responsive insulin delivery
[241]. In this design, the porous bioactive glasses loaded with insulin
and two enzymes (GOx/CAT)were cappedwith pH-sensitive ZnOquan-
tum dots as “gatekeepers”. These ZnO quantum dots dissolved in the
enzyme-mediated acid environment under hyperglycemic conditions,
opening the pores on the bioactive glasses and releasing the encapsu-
lated insulin.

However, the undesirable byproductH2O2 produced during the enzy-
matic oxidation of glucose could reduce the activity of GOx thus hamper
the response rate. The generation of H2O2 may also lead to free radical-
induced damage to skin tissue during the long-term usage. Therefore, to
further enhance theglucose-responsive capacity, Yuet al. designedahyp-
oxia and H2O2 dual-sensitive system based on polymersome-
incorporated MNs for optimized insulin delivery [242]. An amphiphilic
diblock copolymer consisting of PEG and polyserine was utilized to pre-
pare the dual-sensitive polymersomes (d-GRPs), on which hypoxia-
sensitive NI group was modified via H2O2-responsive thioether moiety.
Rapid oxygen consumption and H2O2 generation by enzymatic reactions
under high glucose levels contributed to the increasedwater-solubility of
the copolymer, triggering the dissociation and release of the insulin from
the d-GRPs. In vivo results in diabetic mice showed that this patch effec-
tively regulated BGLs for 10 h after administration with minimal skin in-
flammation. In anotherdesign,Wanget al. prepared core-shell structured
MNs directly from H2O2-degradable polymeric gel (Fig. 12) [243]. The
core of MNs consisted of PVA network cross-linked by a H2O2-cleavable
linker (TSPBA), with insulin chemically anchored on PVA via a H2O2-
sensitive linkage. GOx was encapsulated into the acrylated nanogel
(GOx-NG) to form a large size for covalent immobilization on PVA,
restricting the leakage of GOx while maintaining the ease of insulin re-
lease. Under hyperglycemic conditions, H2O2 was locally generated by
GOx, resulting in oxidation and hydrolyzation of both the PVA
crosslinkers and insulin conjugates, facilitating the rapid release of free
insulin from the MNs. Researchers demonstrated that this H2O2-

https://clinicaltrials.gov


responsive insulin patch presented rapid glucose-responsiveness and,
with a consecutive administration of MNs, was able to control BGLs for
40-hwithout severe hypoglycemia. Of note, theMNswere further coated
with a thin-layer of nanogel embedding H2O2-scavenging enzymes (cat-
alase), thus facilitate elimination of H2O2 to mitigate its injury toward
normal tissues by oxidative stress. In vivo performance of this core-shell
gelated MN patch effectively improved inflammation in skin tissue
treated with coated MNs compared to non-coated MNs in vivo. More re-
cently, the same research group developed an H2O2 and pH cascade-
triggered insulin delivery system based on sheath-structured MNs
[244]. Insulin was entrapped by H2O2-sensitive and positively charged
diblock copolymers to formnano-size complexmicelles.Upon incubation
in hyperglycemic conditions, this highly positively charged polymer can
be oxidized by H2O2 and subsequently hydrolyzed to be weakly
positive-charged materials. The reduction in pH during the oxidation of
glucose also reduced thedensity of negative charges on insulin toweaken
the interaction between insulin and polymers, further promoting its re-
lease. The triggermechanismbasedonbothpHandH2O2ensured that in-
sulin was only released in both the oxidative and acidic environment
created by oxidation of glucose in the presence of GOx. By embedding
catalase-nanogels in the sheath covering the insulin complex micelles-
loaded MN core, this patch could regulate the glucose levels in diabetic
mice within the normal range with effective mitigation of H2O2.

Outside of synthetic insulin carriers, Ye et al. described an innovative
transdermal insulin delivery strategy incorporating insulin-secreted
pancreatic β-cells with MN array patch for diabetes treatment [245].
Transplantation of insulin-secreting cells has been intensively investi-
gated in type 1 diabetes treatment. However, this methodmay be ham-
pered by the host immune response and issues with biocompatibility of
cell grafts. In this approach, the insulin secretion from exogenousβ-cells
are not implanted and instead are modulated by BGLs through MNs
containing glucose-signal amplifiers (GSAs). The GSAs were glucose-
sensitive polymeric nanovesicles entrapping GOx, α-amylase (AM)
and glucoamylase (GA). GOx was selected to induce the dissociation
of nanovesicles in hyperglycemic conditions. The released AM hydro-
lyzedα-amylose embedded in theMNs to give disaccharides and trisac-
charides, which were further converted to glucose by GA. The
“amplified” local-concentrated glucose effectively diffused into the ex-
ternally positioned β-cell capsules, where it promoting secretion and
diffusion of insulin through MNs into the skin. This design showed ex-
tended therapeutic efficacy compared to the MNs without GSAs,
where one such MN patch was shown to rapidly reduce BGLs of type 1
diabetic mice and maintain the reduction in glucose levels for over 6 h.

As microneedles do not only penetrate stratum corneum to increase
skin permeability, but also directly carry insulin into the dermis layer,
the microneedle-based technique demonstrated a relatively higher
transport efficiency compared to other strategies. Due to the conve-
nient, easy, and painless administration, it is considered to be suitable
for people with diabetes to utilize by themselves at home. With the
glucose-responsive moieties, it further shows great promising for con-
tinuous effective regulation of blood glucose. However, the potential
breakage, irritation, and infection should be thoroughly investigated be-
fore clinical usage.

6. Conclusion and outlook

In this review, we have surveyed the technological advances in the
development of transdermal insulin delivery systems for blood glucose
regulation. Compared to passive transport through the skin, the use of
chemical enhancers, external instruments, and microneedle devices
have exhibited great potential to enhance the permeation of insulin by
disrupting the skin barrier (Table 1). Unlike the traditional hypodermic
injection, the transdermal insulin delivery demonstrates a more
patient-friendly andminimally invasivemethod for daily diabetesman-
agement (Table 2). In addition, researchers also took the advantages of
laser and another microdermabrasion device to facilitate insulin
transport through the skin [246–248]. Besides, transdermal strategies
such as power jet, heat or magnetophoresis-assisted administration
routes could also be investigated for needless delivery of insulin
[137,249].

Despite great successes in transdermal insulin delivery, there are
several limitations associated with long-term use, delivery efficiency,
and reliability that warrant further research. Further experiments
should be performed to evaluate the short- and long-term side effects
associated with chemical enhancers and different microneedle mate-
rials. The potential risk of irradiation and inflammation must also be
assessed in clinical studies. In addition, correct dosage relies on an un-
derstanding of how to guarantee consistent insulin delivery in different
patients or in different skin sites within the same patient. To this end,
pharmacokinetics should also be characterized to determine the trans-
port efficiency. More extensive investigation on transdermal insulin de-
livery with a closed-loop control is required to prevent the risk of
hypoglycemia, which represents a severe complication of any insulin
therapy method. For approaches that rely on electrical instruments, a
reusable and low-cost handheld device would be beneficial for self-
administration at home. Finally, innovative technologies to improve
the stability, enhance bioavailability, and maintain bioactivity of insulin
are critical to enable the ultimate development of effective, low-cost,
and convenient transdermal insulin delivery systems.
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