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Abstract
Much has been written about real-world evidence (RWE), a concept that offers an understanding of the effects of healthcare 
interventions using routine clinical data. The reflection of diverse real-world practices is a double-edged sword that makes RWE 
attractive but also opens doors to several biases that need to be minimised both in the design and analytical phases of non-
experimental studies. Additionally, it is critical to ensure that researchers who conduct these studies possess adequate method-
ological expertise and ability to accurately implement these methods. Critical design elements to be considered should include a 
clearly defined research question using a causal inference framework, choice of a fit-for-purpose data source, inclusion of new 
users of a treatment with comparators that are as similar as possible to that group, accurately classifying person-time and deciding 
censoring approaches. Having taken measures to minimise bias ‘by design’, the next step is to implement appropriate analytical 
techniques (for example propensity scores) to minimise the remnant potential biases. A clear protocol should be provided at the 
beginning of the study and a report of the results after, including caveats to consider. We also point the readers to readings on 
some novel analytical methods as well as newer areas of application of RWE. While there is no one-size-fits-all solution to 
evaluating RWE studies, we have focused our discussion on key methods and issues commonly encountered in comparative 
observational cohort studies with the hope that readers are better equipped to evaluate non-experimental studies that they 
encounter in the future.
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DPP-4 Dipeptidyl peptidase-4
RWD Real-world data
RWE Real-world evidence
SGLT2 Sodium–glucose cotransporter-2

Introduction

Real-world evidence (RWE) remains one of the most enticing
concepts in medicine, surrounded by much buzz. Recent
developments, including the first-ever regulatory approval of
label expansion of IBRANCE (palbociclib) for male breast
cancer based on RWE, have brought in a new era in the appli-
cability of RWE in healthcare [1]. RWE is defined as ‘clinical
evidence about the usage and potential benefits or risks of a
medical product derived from analysing real-world data
(RWD)’ [2]. RWD are data relating to patient health status
and/or the delivery of healthcare routinely collected from
different sources and find application in many areas including
therapeutic development to comparative effectiveness/safety,
reimbursement, regulatory decision-making and clinical
guideline development [2, 3].

The reflection of ‘diverse real-world practices’ enhances
the appeal of RWD making it more relatable than data from
RCTs. However, this very element that makes RWD attractive
also makes it challenging to work with. Additionally, inaccu-
rate application of methods and shortage of adequate
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methodological know-how potentially threaten the validity of
RWD studies [4]. In this paper we discuss commonly encoun-
tered issues and recommend key methodological consider-
ations and potential solutions in the design, implementation
and evaluation of real-world pharmacoepidemiological stud-
ies. This paper provides a general overview of a broad topic
and because a detailed discussion on each subtopic is beyond
the scope of this review, we have cited several references in
relevant sections for interested readers to explore further.

Defining the research question using a causal
inference framework

It is a misconception that the entire purpose of RWD is to
reduce the cost or complexity of trials (although this is feasible
and done in some settings) or simply to get evidence ‘without
randomisation’. RWE when done correctly is an important
stand-alone source of evidence that complements RCTs and
laboratory and other studies, which together inform decision-
making. Understanding the research question is crucial to
ensure that the right tools to generate robust RWE are
employed.

Researchers should accurately describe the goals of real-
world studies using a causal inference framework, like they
would for an RCT, including any nuances (e.g. are we
comparing initiation of treatment A vs treatment B or are we
comparing patients switching from treatment A to treatment B
vs patients staying on treatment A?) [5]. While RWE is inher-
ently relevant to clinical practice, it examines a different
pattern of care (i.e. RWE and RCTs ask different questions).
However, imagining an RWE study as a hypothetical trial
forces a more stringent thought process about the intervention,
comparators, timelines, outcomes and confounders [6, 7]. In
estimating a causal effect, we ideally want to examine all
potential outcomes in the same patients during the same time
period, under contrasting treatments [8]. However, this is
impossible, as for each patient the outcome can be observed
only under one treatment.We therefore compare the outcomes
of two groups: treatment A vs an ‘exchangeable’ substitute
treatment B [9, 10]. The validity of effect estimates depends
on how valid the substitution is [10]. While there are no guar-
antees that an effect estimate can be causally interpreted,
setting a causal goal for the study lays the foundation for
robust design and analytical decisions [5–8].

Data sources

Table 1 describes several data sources and provides examples
of their application in diabetes research. RWD sources include
administrative claims data [11–13], electronic health records
[14, 15] and disease or treatment registries [16, 17].

Additionally, patient-generated data from surveys, question-
naires, smartphone apps and social media are increasingly
being considered for the purposes of pharmacovigilance,
patient characterisation and disease understanding [11, 18,
19]. However, these need careful evaluation as not all health
apps are thoroughly validated and their pace of growth is fast
outpacing the vetting process [20]. Data linkages with appro-
priate safeguards offer opportunities to combine useful
features from two or more data sources to conduct real-
world studies [21].

Study design

Several classification schemes exist for real-world study
designs [22] but, broadly, cohort studies, case–control studies
and self-controlled case series are the three basic types [23].
Cohort studies follow patients from the treatment to the
outcome. Case–control studies select disease cases and
controls from the source population and compare treatment
histories in the two groups, thereby introducing several
avenues for biases. Cohort design is a direct analogue of an
experiment and has generally become the standard design for
observational studies unless an alternate design is dictated by
the research question. Self-controlled methods compare treat-
ments and outcomes within the same individual rather than
across groups of individuals by looking at different treatment
times within the same person. They are a good fit in settings
with acute recurrent or non-recurrent events and intermittent
exposures and transient effects, assuming availability of
precise timings [24]. Choice of a study design depends on
several factors including the research question of interest, rari-
ty of the exposure/outcome and avenues for biases. We direct
interested readers to publications by Rothman et al [23] and
Hallas and Pottegård [25] for further reading on this subject.
As cohort studies are most intuitive when assessing incidence,
natural history or comparative effectiveness/safety, we will
focus much of our further discussion with this design in mind.
Recently, clear design diagrams have been proposed to intui-
tively visualise studies conducted using healthcare databases/
electronic medical records (Fig. 1) [26].

Potential biases

The biggest criticism of real-world studies is their potential for
systematic error (biases). These are broadly classified as
confounding (due to lack of randomisation), selection bias
(due to procedures used to select study population) and infor-
mation bias (measurement error) [23].

Confounding Confounding is the distortion of the treatment–
outcome association when the groups being compared differ
with respect to variables that influence the outcome. In



Table 1 Examples of RWD sources and applications to diabetes research

RWD source Merits Caveats Potential areas for application in
diabetes research

Administrative claims data:
Insurance claims for pharmacy

prescriptions and medical
inpatient and outpatient visits
submitted for billing purposes by
government or commercial
payers

Include cost information, date/place
of service and patient
demographics, all linked by a
common patient identifier

Longitudinally follow patients as
they navigate through the
healthcare system

Reliable for studying important
medical encounters, diagnoses
and treatment using variables that
are captured for reimbursement
purposes

Provide information on large
samples of patients and their
families, considered to be
representative of the target
population (commercially
insured/populations under public
health insurance programmes)

Demographically and
geographically diverse, relatively
low cost and time-efficient vs
RCTs

Primary purpose for data collection
is administrative rather than for
research

Key clinical variables (e.g. severity),
medications for which patients
pay out-of-pocket,
patient-reported outcomes,
lifestyle variables and laboratory
results are typically not captured

Loss of follow-up, particularly in
commercial claims data when
patients switch employers/health
plans (known censoring date due
to availability of enrolment file)

Identification of disease/treatment
depends on accuracy of billing
codes used and data require
validation prior to use particularly
for hard-to-diagnose rare
conditions

Can be used in real-world studies to
compare the effectiveness and
safety of glucose-lowering
therapies using active comparator
new-user design [42, 59], patient
characterisation, treatment
utilisation [91] and health
policy/cost [92] research, as well
as burden of illness [93] studies

Can be used to estimate basic
prevalence or incidence measures
of conditions within diabetes
populations given large sample
sizes and representativeness

EHR data:
Data from patients’ electronic

medical records
Data typically include information

on medical diagnoses,
procedures, medications, free text
with physician notes, vital signs
at each visit, laboratory results,
clinical variables

Data collected to capture clinical
care and contain rich data on
clinical variables or other
important confounders

May provide rationale for treatment
decisions depending on the
quality of free text

Variability in the quality of data as
clinical variables are often
missing and may be recorded
differently by different physicians

Follow-up only available as long as
patients remain in the healthcare
system and seek care (unknown
censoring date since no enrolment
file)

Typically, data from only one place
of service are available and
capture of information from other
types of practices are often
unreliable (e.g. in a general
practice system, specialist data
may not be accurately captured
for all patients; hospitalisations
for acute problems outside the
system may not be captured)

Assessing comparative effectiveness
or safety, treatment patterns and
patient characterisation

Typically less useful for cost
assessments or
prevalence/incidence estimation

Analyses of EHR data have been
shown to improve glycaemic
control, reduce emergency
department visits and
non-elective hospitalisations [94,
95]

Patient-generated data:
Data from surveys, questionnaires,

smartphone apps and social
media that allow continuous data
capture

Information is provided mainly by
patients, rather than by providers

Questionnaire/survey data sources
provide data on quality-of-life
measures, which are hard to find
in other data sources

Can be used as external validation
datasets

May find particular relevance in
pharmacovigilance, particularly
rare adverse events associated
with treatments, and factors
predicting patients’ adherence,
behaviours and attitudes

Some data include real-time
monitoring to allow tracking of
selected measures and symptoms

Use of these sources implies reliance
on self-reported variables, leading
to recall bias, selective reporting
and missing data on important
patient characteristics and
medical variables

Limited generalisability and internal
validity, as the clinical outcomes
reported are often not validated
and authenticity is often
unverifiable

Utility only in specific settings after
careful evaluation and vetting

The FDA-approved WellDoc
BlueStar System is a healthcare
app that provides secure capture
of blood glucose data and aids in
diabetes self-management [96]

Patient registries:
Repositories of rich information on

specific disease or treatment

Include data on patients’
characteristics and medical
variables, including rich clinical
information on disease or
treatments of interest

Allow long patient follow-up

Validity greatly depends on what
type of patients are selected into
the registry (voluntary vs
mandatory enrolment)

Expensive to maintain
May not contain information on

other comorbidities or concurrent

The diabetes collaborative registry,
organised by the leading societies
in diabetes research, provides
RWD on diabetes patient care and
treatment [17]



Index date/cohort entry date

(first prescription of the drug of interest or comparator)

Predefined window to assess 

inclusion/exclusion criteria

(intermittent medical and drug coverage
a
)

Washout period

(no prescription of drug of interest or comparator)

Exclusion of patients with prevalent outcome or

contraindications, if applicable

(depending on data availability this can be assessed

any time in history, before the index date)

Covariate assessment window

(demographics, baseline medications, comorbidities,

healthcare-use measures
b
)

Follow-up window:
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c
)

Day –365
d Day 0 Time

Fig. 1 Framework for a cohort
study using an administrative
claims or electronic medical
record database, with
methodology from Schneeweiss
et al [26], and using templates
from www.repeatinitiative.org/
projects.html, which are licensed
under a Creative Commons
Attribution 3.0 Unported License.
aTypically, a gap of up to 45 days
in medical or pharmacy
enrolment is allowed; bcovariates
are measured in the 6 month
period before entry into the
cohort, and demographics are
measured on day zero; cearliest of
outcome of interest, switching or
discontinuation of study drugs,
death, disenrolment, or end of the
study period; d365 days pre-index
are shown for illustrative
purposes; this could be any
predefined time before the index
date deemed appropriate, and
tailored to the study question at
hand. This figure is available as
part of a downloadable slideset

Table 1 (continued)

RWD source Merits Caveats Potential areas for application in
diabetes research

Useful in areas where richness of
information related to a specific
disease/treatment is desirable (e.g.
rare tumours) and in unique
populations (e.g. pregnancy
registries)

treatment; more potential for
missing data

Data linkages:
Data from two or more sources are

linked to bring together the
information needed, assuming
appropriate safeguards are
applied

Bring together data from disparate
sources allowing capture of
comprehensive information
needed in a particular research
setting (e.g. linking
administrative claims with EHRs
would enable combination of
longitudinal follow-up, cost
information that may be lacking
in EHRs, with clinical variables
that are incomplete in claims)

Help minimise missing data on key
variables, reducing
misclassification

Validity of results depends on the
quality of linkage

Expensive to link and maintain
linked data sources

Challenges in linking data due to
different purposes of data
collection, discrepancies in data
recording, legal/confidentiality
issues

Several studies using linked data are
being conducted in diabetes
patients, predicting hospital
admissions [97], cancer outcomes
[98] and weight gain with
diabetes treatments [99]

EHR, electronic health record

http://www.repeatinitiative.org/projects.html
http://www.repeatinitiative.org/projects.html
https://static-content.springer.com/esm/art%3A10.1007%2Fs00125-020-05217-1/MediaObjects/125_2020_5217_MOESM1_ESM.pptx


comparing drug treatments, confounding by indication is a
common issue that occurs because patients have an ‘indication’
for a particular drug [27]. As an example, comparing patients
prescribed insulin vs oral glucose-lowering agents leads to
confounding by indication as the two populations are imbalanced
on the ‘indication’ (severe vs milder diabetes). When a treatment
is known to be associated with an adverse event, confounding by
contraindication is possible. In comparing thiazolidinediones
with dipeptidyl peptidase-4 (DPP-4) inhibitors to assess the risk
for heart failure, for example, patients with existing heart condi-
tions are likely to be channelled away from thiazolidinediones.
Restricting the study population to those without prevalent heart
failure will therefore minimise intractable confounding by
contraindication [28].

In real-world studies confounding by frailty is possible. This
is a particular problem in older adults, as frail, close-to-death
patients are less likely to be treated with preventive treatments.
Thus, when comparing users vs non-users of a particular drug
to assess outcomes associated with frailty (e.g. mortality risk),
the non-user group is likely to have higher mortality risk and
make the drug look better than it really is [29, 30].

Selection bias This bias occurs when the selected population is
not representative of the target population to which inference is
to be drawn (due to selective survival rate, differential losses to
follow-up, non-response, etc.) [31]. Selection bias is sometimes
intertwined with confounding depending on the setting in
which it occurs (e.g. epidemiologists sometimes use the term
selection bias to mean ‘confounding by indication’, others use
the term selection bias when confounders are unmeasured) [32].

Information bias This arises due to inaccurate measurement or
misclassification of treatments, outcome or confounders [23].
Its effect on results depends on whether misclassification is
differential or non-differential across the treatments being
compared. In a cohort study, non-differential exposure misclas-
sification occurs when treatment status is equally misclassified
among patients who develop or do not develop the outcome.
As an illustration, if 10% of patients in both treatment A and
treatment B groups received free drug samples (and therefore
no prescription record in claims data), an equal proportion of
patients in each group will be misclassified as ‘unexposed’.
Non-differential outcome misclassification in a cohort study
occurs when patients who develop the outcome are equally
misclassified in treatment A and treatment B groups (e.g.
15% of healthy patients receiving treatment A or treatment B
are misclassified as having lung cancer). Differential misclas-
sification occurs when misclassification of treatment status is
uneven between individuals that have or do not have the
outcome, or when misclassification of the outcome is not the
same between treatment A and treatment B. While non-
differential misclassification of treatments and outcomes will
generally bias estimates towards the null, differential

misclassification can lead to spurious associations or can mask
true effects. The effect of misclassification on results also
depends on whether the results are reported as absolute or rela-
tive [23]. Absolute measures present difference in risk of the
outcome in treatment A vs treatment B, while relative measures
present the ratio of risk of outcome for treatment A vs treatment
B. When misclassification is non-differential, studies reporting
absolute measures should have outcome definitions with high
sensitivity and specificity as low values for either can lead to
bias. In studies reporting relative measures, near-perfect speci-
ficity, even at the cost of low sensitivity, is desired [33].

Another common criticism of RWD concerns ‘missing
data’. The commonly used strategy of excluding records with
missing data can severely bias results. Multiple imputation
methods for mitigating the effect of missing data have been
shown to decrease bias and improve precision in a variety of
disease areas including diabetes [34, 35]. Methods for
addressing missing data should be based on a careful consid-
eration of reasons for missingness and availability of valida-
tion datasets needed for imputation methods [36].

Time-related biases These are biases that misclassify person-
time attributed to the treatment. Immortal time bias is one such
bias arising from misclassification of the time before the treat-
ment during which a patient, by design, could not have expe-
rienced the outcome and the patients have to be event-free
until treatment starts [37]. Misclassifying this time or exclud-
ing it from the analysis altogether leads to immortal time bias
[37, 38]. This is exacerbated in studies comparing treatment
users vs non-users (Fig. 2) but can occur when comparing
active treatments without careful consideration of person-
time. Consider an example comparing a sulfonylurea vs
metformin, where metformin users consisted of patients with
or without prior sulfonylurea use. For the metformin patients
with prior sulfonylurea use, their time on sulfonylureas before
metformin was misclassified as ‘metformin-exposed’ which
led to immortal time bias and spuriously suggested the protec-
tive effect of metformin on mortality risk, since they had to
survive to switch to metformin [39, 40].

In studies assessing cancer outcomes, events occurring
shortly after initiation may not be meaningfully attributed to
the exposed period, particularly since carcinogenic exposures
typically have long induction periods [41]. Not counting
person-time and events during a predefined time-lag after drug
initiation accounts for both these periods (Fig. 3). Similarly, it
is unlikely that patients stop being ‘at risk’ on the day after
drug discontinuation and a period of latency should also be
considered to provide an opportunity to capture the outcome
that was potentially present subclinically before treatment
discontinuation [41]. As an example, a recent study exploring
the incidence of breast cancer with insulin glargine vs
intermediate-acting insulin used induction and lag periods to
account for cancer latency [42].



Prevalent-user biases Prevalent users are patients already on
treatment before follow-up starts and therefore more tolerant
of the drug. Methodological problems due to inclusion of
prevalent users are illustrated by inconsistent results from
studies examining cancer incidence with insulin glargine,
depending on the study design used [43, 44]. However, the
most striking and frequently cited example illustrating these
issues is a series of studies highlighting the discrepancies in
the estimated effects of hormone therapy on cardiovascular
outcomes between new users and prevalent users in the same
data [45–48]. The Nurses’ Health cohort study reported a
decreased risk of major CHD in prevalent users of oestrogen
and progestin compared with non-users, in contrast to results
from the RCT which showed an increased risk in the
oestrogen + progestin arm relative to placebo [49, 50]. A re-
analysis of the Nurses’ Health study cohort comparing new
users of hormone therapy vs non-initiators demonstrated
results in line with the RCT, highlighting the issues due to
inclusion of prevalent users [51]. As the prevalent users have
‘survived’ treatment, any patients who experienced early

events (susceptible patients) will be automatically excluded
in prevalent-user studies, introducing substantial bias if the
hazard for the outcome varies depending on time spent on
treatment [48, 52]. In studies with a mix of prevalent and
incident users, the differential proportion of prevalent users
across two groups being compared leads to selection bias
and also obscures early events if the prevalent users contribute
more person-time. Moreover, since confounders are affected
by prior treatment, they are mediators in a causal pathway
between the treatment and outcome, and any analytical adjust-
ment would worsen the bias [48].

Methods for minimising bias by study design
and analysis

Active comparator new-user design

To avoid prevalent-user biases, new-user design has been
recommended as almost a default strategy, except in settings
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Fig. 2 Depiction of problems
encountered when comparing
treated vs untreated (not using
active comparator) patients; drug
A could, as an example, be a
DPP-4 inhibitor. (a) Different
times of follow-up (starting at the
initiation date for the treated
patients or time of healthcare
encounter T1 for the untreated
patients) will lead to selection bias
if immortal person-time is
excluded from the analysis.
Confounding by indication may
arise from the imbalance between
the two groups on ‘indication’.
(b) Even if the follow-up for both
groups starts from time T1, the
time between T1 and drug
initiation would be misclassified
as ‘time on drug A’ when in
reality the patient was not on drug
A before the first prescription.
Red horizontal lines represent
study timeline. Rx, prescription.
This figure is available as part of a
downloadable slideset
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where inclusion of prevalent users is preferable (e.g. describ-
ing burden of illness) [53]. This design includes initiators of a
drug, after a washout period without that drug (treatment-
naivety not necessary) and provides an intuitive timeline to
start follow-up [48]. Because new-user designs restrict the
population to drug initiators, concerns have been expressed
about reduced generalisability and precision at the cost of high
internal validity. Modifications of the new-user design, such
as the prevalent new-user designs, have recently been
proposed to address this (e.g. while comparing new-to-
market vs older drugs) [54]. Such designs propose including
patients switching from older to newer drugs to increase preci-
sion. However, precision gain needs to be carefully weighed
against the mixing of research questions (initiation vs
switching) and the potential for biases introduced by compar-
ing switchers with patients who remain on treatment [55].

The merits of a new-user design are further amplified by
comparing drugs in clinical equipoise [56]. Comparing treated
and untreated patients opens the door to a host of biases (Fig.
2), which can be overcome by the active comparator new-user
design comparing new users of therapeutically equivalent
drugs (active comparators; Fig. 3). This design makes the
two cohorts ‘exchangeable’ with respect to baseline disease
severity and outcome risk and the follow-up can start from an

intuitive, synchronised time point [57, 58]. The demonstrated
balance of measured characteristics may also increase the
probability of balance of unmeasured covariates, although this
cannot be empirically demonstrated [28, 59]. Often there may
be situations in diabetes research where an active comparator
is not available (e.g. an RWE study emulating a placebo-
controlled trial). In such cases, synchronising cohorts based
on any healthcare encounters that make the two cohorts as
substitutable as possible is still preferred over comparing with
non-users [57]. In a recent example illustrating this principle,
the risk of cardiovascular outcomes with the sodium–glucose
cotransporter-2 (SGLT2) inhibitor canagliflozin was assessed
relative to non-SGLT2-inhibitors rather than to non-users of
canagliflozin (which could have led to inclusion of diabetes
patients not on pharmacological therapy and therefore caused
imbalance of patient characteristics) [60].

The active comparator new-user design is analogous to a
head-to-head RCT comparing two drugs in equipoise. It
allows following patients by ignoring treatment changes over
time, analogous to the ‘intent-to-treat’ analyses in RCTs. This
may introduce treatment misclassification bias towards the
null and should be avoided, particularly in studies assessing
harm, to avoid masking actual treatment-associated harm.
Another option is the ‘as-treated’ approach where follow-up
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Fig. 3 Schematic diagram of the active comparator new-user design
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itor) and a therapeutically equivalent drug B (e.g. pioglitazone), respec-
tively. Both groups of patients spend a variable amount of time in the
database before ‘new use’ is defined. To define the new-use period for
both groups, we need a predefined period equal to ‘expected days’ supply
plus the grace period’ without a prescription being filled for treatment A
or treatment B (indicated by solid purple lines) prior to the start of the
washout period (solid orange lines). The washout period should also be
free of any prescriptions for A or B and covariates are measured during
this time. The index date indicates the date of the first prescription (Rx)

and is followed by induction and latent periods during which person-time
and outcomes are not counted. Solid red lines represent this time after the
first prescription. Follow-up, indicated by the dashed red lines, starts at
the end of the latent period and ends at censoring. Note that patients’
timelines for start of follow-up are intuitively synchronised by the active
comparator new-user design, even though the patients can have variable
start points of enrolment in the database or variable time points for end of
follow-up/study end. aIf censoring is due to drug discontinuation, a
predefined lag period should be considered before stopping to count
outcomes and person-time. This figure is available as part of a
downloadable slideset
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is censored at treatment discontinuation, switching or
augmentation. A caveat with the ‘as-treated’ approach is
potential selection bias introduced because of informative
censoring (i.e. patients censored because they made treatment
changes are not representative of patients who remain on treat-
ment). This needs to be addressed in the analysis using inverse
probability of censoring weights [32].

Recent applications of these designs in diabetes research
include new-user studies on SGLT2 inhibitors demonstrating
no increased risk of amputations relative to non-SGLT2 inhib-
itors, but increased risk relative to the most appropriate DPP-4
inhibitor comparator using restrictive study criteria and robust
analytic techniques [60, 61].

Analysis

An example that naturally fits with the active comparator new-
user study is the use of propensity scores, a powerful tool for
controlling measured confounding [62–66]. A propensity
score is a summary score estimating the probability of treat-
ment A vs treatment B based on patients’ baseline character-
istics. Once estimated, propensity scores can be implemented
by matching, weighting and stratification on the score [62, 63,
67, 68], all of which allow empirical demonstration of covar-
iate balance before and after implementation. Propensity
scores can also be included in an outcome model, although
this takes away the ability to empirically ‘see’ the adjustment
and has other disadvantages so is therefore discouraged [67].
The choice of method used to implement propensity scores
(matching, stratification, different types of weighting)
depends on the target population to which inference needs to
be drawn and the extent of unmeasured residual confounding
[62, 69–74].

Other methods such as disease risk scores (summary scores
based on baseline outcome risk) can have advantages in
specific settings [75, 76]. When substantial unmeasured
confounding is expected, instrumental variable methodsmight
be used to obtain unbiased effect estimates [77, 78].
Instrumental variables are variables that affect treatment
choice but not the outcome of interest other than through
treatment. Examples include physicians’ preference and any
rapid change in treatments (e.g. due to market access, guide-
line changes, warnings about serious side effects). All of these
methods, however, are based on a number of assumptions that
should be evaluated when conducting and interpreting real-
world studies. Further, more than one method can be consid-
ered as supplementary sensitivity analyses after clearly spec-
ifying the reasons a priori. Given the dynamic treatment
patterns in routine clinical practice (discontinuation, re-initia-
tion, switching treatment, etc.), analyses often need to account
for time-varying treatments and confounders depending on
the research question of interest.

Recently, the utility of machine learning in causal inference
has been explored [79, 80]. Machine learning algorithms have
been shown to perform well in estimating propensity scores in
certain settings by reducing model mis-specification [81, 82]
but can amplify bias in certain settings (e.g. if use of instru-
mental variables in propensity score estimation is encouraged)
[83]. A concern with these methods is the lack of easy inter-
pretability and the risk of being data-driven rather than being
informed by substantive knowledge and therefore need careful
consideration before being used.

Newer avenues for applicability of RWE

RWD are increasingly being used to predict outcomes from
clinical trials, which supports efficient resource management,
faster drug approval times and making medicines available
sooner for patients. A recent example is a study comparing
linagliptin vs glimepiride using RWD from Medicare and
commercial data [84]. While this study demonstrated
linagliptin’s ‘non-inferiority’ in line with the findings of the
CAROLINA trial, the magnitude was smaller than that
observed in the trial. This was likely due to differences in
the nature of treatments being compared rather than a lack of
robust methodology. Despite the difference in magnitude of
results, this supports the value that RWD brings. Another
application is the use of an RWD-based comparator for
single-arm trials when using a randomised control arm is not
feasible, as was done with BLINCYTO (blinatumomab) indi-
cated for leukaemia treatment [2]. We use blinatumomab as a
powerful example of use of RWD in regulatory decision-
making. It is not inconceivable that RWD may find applica-
tions in the future in areas where randomised trials may be
deemed unethical, such as treatment of heart failure without
background SGLT2 inhibitor therapy, or for the prevention of
rare events where sample sizes could become prohibitive. The
main challenge to address here is the differences between trial
participants vs patients in routine practice, including the
potential for differential recording of characteristics,
warranting deeper design and analytical considerations
depending on the nature and extent of differences. Efforts
are also ongoing to map the potential effects of RCT data to
real-world populations, although we are not aware of exam-
ples of this in diabetes research. Pragmatic trials (that measure
effectiveness of the treatment/intervention in routine clinical
practice) including RWD are also increasingly being explored
in a number of disease areas [85, 86]. Finally, wemay be at the
verge of a paradigm shift with respect to classification of
validity and hierarchy of study designs. The approach of
prioritising internal validity (getting unbiased estimates) at
the cost of external validity (generalisability or transportability
of results), and our current thinking of internal validity as a
prerequisite for external validity can negatively affect the



value that RWE brings. Westreich et al recently proposed a
joint measure of the validity of effect estimates (target valid-
ity) and defined target bias as any deviation of the estimated
treatment effect from the true treatment effect in a target popu-
lation rather than the current distinction between internal and
external validity [87].

Conclusion

The value of RWE lies in going beyond the constraints of
RCTs to understand the effects in real-world populations.
However, the hopes of ‘quick wins’ with RWE need to be
balanced with a knowledge of robust methodology. We have
focused our discussion on key concepts, methods and recom-
mendations in the hope that readers are better informed of the
utility and limitations of a particular RWE study that they
encounter. The following key points should be looked for
when evaluating an RWE study: a clearly articulated research
question; a fit-for-purpose data source; a state-of-the-art
design including appropriate comparators; covariate balance;
analysis methods including sensitivity analyses; and the like-
lihood of being able to reasonably replicate the study in anoth-
er similar setting. Several guidelines have come into existence
to assist investigators with proper conduct, interpretation and
reporting of real-world studies [88–90]. As the field continues
to grow, it is important for scientific journals and regulatory
agencies to use peer reviewers with adequate methodological
know-how to ensure dissemination of high-quality RWE and
maximise its utility in decision-making.
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