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Summary

Interference occurs when the treatment (or exposure) of one individual affects the outcomes of 

others. In some settings it may be reasonable to assume individuals can be partitioned into clusters 

such that there is no interference between individuals in different clusters, i.e., there is partial 

interference. In observational studies with partial interference, inverse probability weighted (IPW) 

estimators have been proposed of different possible treatment effects. However, the validity of 

IPW estimators depends on the propensity score being known or correctly modeled. Alternatively, 

one can estimate the treatment effect using an outcome regression model. In this paper, we 

propose doubly robust (DR) estimators which utilize both models and are consistent and 

asymptotically normal if either model, but not necessarily both, is correctly specified. Empirical 

results are presented to demonstrate the DR property of the proposed estimators, as well as the 

efficiency gain of DR over IPW estimators when both models are correctly specified. The different 

estimators are illustrated using data from a study examining the effects of cholera vaccination in 

Bangladesh.
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1 INTRODUCTION

Typically in causal inference it is assumed an individual’s potential outcomes do not depend 

on the treatment (or exposure) of other individuals, i.e., there is no interference (Cox 1958). 

However, this assumption may not hold in various settings. For example, in a vaccine trial, 

the infection status of one individual may depend on whether other individuals are 

vaccinated. Interference may occurs in other areas, such as econometrics (Manski 2013; 
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Sobel 2006), education (Basse & Feller 2018; Hong & Raudenbush 2006), and political 

science (Bowers, Fredrickson, & Panagopoulos 2013; Sinclair, McConnell, & Green 2012).

Recently, inference methods have been proposed for settings where individuals can be 

partitioned into clusters and possible interference exists only among individuals in the same 

cluster. This is sometimes called partial interference (Sobel 2006) and can be viewed as a 

special case of the constant treatment response assumption (Manski 2013). Hudgens and 

Halloran (2008) proposed estimators of direct, indirect (or spillover), total, and overall 

causal effects of a treatment for two-stage randomized experiments in the presence of partial 

interference, and Liu and Hudgens (2014) derived the asymptotic distributions of these 

estimators. Tchetgen Tchetgen and VanderWeele (2012) proposed inverse probability 

weighted (IPW) estimators of these causal effects for observational studies with partial 

interference. However, the validity of these IPW estimators only holds when the propensity 

score is known or correctly modeled. Moreover, IPW estimators are known to have large 

variances and be unstable, especially when some propensity scores are close to 0 or 1, which 

may be common when there is partial interference.

In the absence of interference, doubly robust (DR) estimators are known to have certain 

advantages over IPW estimators. DR estimators are constructed by utilizing two models: a 

model for the dependence of treatment on covariates (i.e., propensity score model), and a 

model for the dependence of the outcome on covariates and treatment. DR estimators are 

consistent when either, but not necessarily both, of the two models is correct. Thus DR 

estimators provide some protection against model mis-specification. However, existing DR 

estimators assume no interference and hence are not applicable in settings such as infectious 

diseases where interference may be present.

In this paper, several DR estimators are proposed for use in observational studies where 

there may be partial interference. The outline of the remainder of the paper is as follows. In 

Section 2, notation, assumptions, and the causal effects of interest are introduced. IPW and 

regression estimators are defined in Section 3 and various DR estimators are proposed in 

Section 4. Results from a simulation study are presented in Section 5. The proposed DR 

estimators are used to analyze data from a cholera vaccine study in Section 6. Finally, 

Section 7 concludes with a discussion.

2 NOTATION, ASSUMPTIONS AND ESTIMANDS

Consider an observational study where data is observed for individuals who can be 

partitioned into groups (e.g., students in different schools). Suppose there are k groups of 

individuals in the study with Ni > 1 individuals in group i. For individual j in group i we 

observe (Xij, Aij, Yij) for j = 1, …, Ni, i = 1, …, k, where Xij denotes a vector of pre-

treatment covariates, Aij denotes a treatment indicator (Aij = 1 if individual receives 

treatment and Aij = 0 otherwise), and Yij is a univariate outcome of interest, which can be 

continuous or categorical. Let Xi = Xi1, …, XiNi
, Ai = Ai1, …, AiNi

 and Yi = Yi1, …, YiNi
. 

Assume the k groups are a random sample from an infinite super-population of groups such 

that Oi = (Xi, Ai, Yi) are independent and identically distributed for i = 1, …, k. Define 
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Ai(−j) = Ai\Aij, i.e., the vector of treatment indicators for all individuals in group i except 

individual j. Let aij, ai(−j) and ai denote possible realizations of Aij, Ai(−j) and Ai. Define f(ai|

xi) = Pr(Ai = ai|Xi = xi) to be the probability of treatment vector ai given covariates xi and 

similarly define f(aij|xi) = Pr(Aij = aij|Xi = xi). Assume f(ai|xi) > 0 for all xi in the support of 

Xi; this is sometimes referred to as the positivity assumption.

Assume there is no interference between individuals in different groups, i.e., partial 

interference. This assumption may be reasonable in settings where groups are sufficiently 

separated geographically or in time. Note that no assumption is made about the nature of 

interference within groups. Indeed one of the primary inferential goals is to assess to what 

extent there is interference within groups. Assuming partial interference, the potential 

outcome of one individual may be expressed as a function of their own treatment as well as 

the treatment of others in the same group. Therefore, the potential outcome for individual j 

in group i is denoted Yij(ai) = Yij(aij, ai(−j)) for treatment vector ai. Additionally, we make 

the causal consistency assumption that the observed outcome Yij is the same as the potential 

outcome Yij(ai) if treatment Ai = ai, i.e.,Yij = ai
1 Ai = ai Yij ai . Assume Yi() ╨ Ai|Xi, 

where Yi() denotes all of the potential outcomes for group i and ╨ indicates independence; 

this assumption is sometimes referred to as conditional exchangeability or ignorability.

Causal effects of treatment are defined by average outcomes under different counterfactual 

scenarios corresponding to different distributions of treatment in the population. Following 

Tchetgen Tchetgen and VanderWeele (2012), consider the treatment allocation strategy (or 

policy) where individuals receive treatment independently with probability α. Under an α 
allocation strategy, the probability of treatment Ai = ai for group i is 

π ai; α = Prα Ai = ai =
j
α

aij 1 − α
1 − aij

. The α subscript of Prα indicates probability in the 

counterfactual scenario corresponding to policy α. Similarly, let 

π ai(−j);   α   = Prα Ai −j   = ai −j =
k≠j

α
aik 1 − α

1 − aik denote the probability of 

treatment Ai(−j) = ai(−j) for all individuals in group i other than individual j. Define the 

average potential outcome in group i when an individual receives treatment a under policy α 

by Yi a, α = Ni
−1

j = 1

Ni

ai −j
Yij a,ai −j π ai −j ; α , and let μaα = E Yi a, α  where E{·} 

denotes the expected value in the super-population of groups. Similarly, define μα = E Yi α

where Yi α = Ni
−1

j = 1

Ni

ai
Yij ai π ai; α  denotes the average outcome in group i under 

policy α

Following Halloran and Struchiner (1995) and Hudgens and Halloran (2008), define the 

direct effect of treatment under policy α to be DE α = μ1α − μ0α. For policies α0 and α1, 

define the indirect effect IE α1, α0 = μ0α1
− μ0α0

, the total effect TE α1, α0 = μ1α1
− μ0α0

, and 
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the overall effect OE α1, α0 = μα1
− μα0

. In words, the direct effect is the difference between 

the average potential outcome when group i receives policy α and an individual in that group 

receives treatment compared to when an individual in that group receives control. The 

indirect (or spillover) effect compares the average potential outcome when an individual 

receives control under different policies α1 and α0. The total effect equals the sum of the 

direct and indirect effects, and the overall effect provides a single summary measure of the 

effect of policies α1 versus α0. See Tchetgen Tchetgen and VanderWeele (2012) for further 

discussion about these estimands.

3 IPW AND REGRESSION ESTIMATORS

Inverse probability weighting is a common approach to adjusting for observed confounding 

in observational studies. Heuristically, inverse probability weighting creates a pseudo-

population in which there is no confounding such that the average outcome in the pseudo-

population approximates the average outcome that would have been observed if treatment 

has been randomly assigned. Tchetgen Tchetgen and VanderWeele (2012) proposed IPW 

estimators for µaα and µα defind by Yipw a;α = i=1
k Yi

ipw a;α /k and 

Yipw α = i=1
k Yi

ipw α /k, where

Yi
ipw a, α = Ni

−1
j = 1

Ni
1 Aij = a Yij Ai π Ai −j ; α /f Ai Xi; γ ,

Yi
ipw α = Ni

−1
j = 1

Ni
Yij Ai π Ai; α0 /f Ai Xi; γ ,

and f(Ai|Xi; γ) denotes a propensity score model with finite-dimensional vector of 

parameters γ and γ  is an estimator of γ. IPW estimators of the direct, indirect, total and 

overall effect are then defined as DEipw α = Yipw 1, α − Yipw 0, α , 

IEipw α1, α0 = Yipw 0, α1 − Yipw 0, α0 , TEipw α1, α0 = Yipw 1, α1 − Yipw 0, α0  and 

OEipw α1, α0 = Yipw α1 − Yipw α0 , respectively. Assuming a correctly specified mixed 

effects logistic regression model for the propensity score f(Ai|Xi; γ) and γ  equal to the 

maximum likelihood estimator of γ, Perez-Heydrich et al. (2014) proved the IPW estimators 

are consistent and asymptotically normal by showing the estimators solve a vector of 

unbiased estimating equations.

Alternatively, one can adjust for confounding by controlling for observed covariates in an 

outcome regression model. By the exchangeability assumption,

E Yij ai Xi = E Yij ai Ai = ai, Xi = E Yij Ai = ai, Xi ,
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with the last conditional expectation identifiable from the observable random variables Oi. 

This motivates constructing estimators by first positing a regression model such as E(Yij|

Ai=ai,Xi)=mij(Ai,Xi;β) where mij Ai, Xi; β = β1 + βAij
Aij + βAi −j

T Ai −j + βXi
T Xi Then let 

Y i
reg a, α =

j = 1

Ni

ai −j
mij a, ai −j , Xi; β π ai −j ; α /Ni and 

Yi
reg α =

j = 1

Ni

ai
mij ai, Xi; β π ai; α /Ni, where β is the maximum likelihood estimator for 

β, and define the regression estimators of µaα and µα to be Yreg a, α = i = 1
k Yi

reg a, α /k and 

Yreg α = i = 1
k Yi

reg α /k with the corresponding regression causal effect estimators defined 

analogously to the IPW causal effect estimators defined above. Similar to the IPW 

estimators, it is straightforward to show that if the outcome regression model is correctly 

specified, then Yreg a, α  and Yreg α  are consistent and asymptotically normal estimators of 

µaα and µα using standard estimating equation theory.

Thus, the various causal effects defined above can be consistently estimated by the IPW 

estimator if the propensity score model is correctly specified. These effects can also be 

consistently estimated by the outcome regression estimator if the regression model is 

correctly specified. In the next section, several DR estimators are proposed which utilize 

both the propensity score and regression models, and are consistent if either model (but not 

necessarily both) is correctly specified.

4 DOUBLY ROBUST ESTIMATORS

4.1 Regression estimation with residual bias correction

Define YDR·BC a, α = i = 1
k Yi

DR·BC a, α /k and YDR·BC α = i = 1
k Yi

DR·BC α /k to be the 

residual bias correction DR estimators for µaα and µα where

Yi
DR·BC a, α = Ni

−1
j = 1

Ni

ai −j
mij a, ai −j , Xi; β π ai −j ; α

+
1 Aij = a

f Ai Xi; γ
Yij Ai − mij Ai, Xi; β π Ai −j ; α ,

Yi
DR·BC α = Ni

−1
j = 1

Ni

ai
mij a, ai, Xi; β π ai; α +

Yij Ai − mij Ai, Xi; β

f Ai Xi; γ
π Ai; α .

The bias correction DR estimators are motivated by the DR estimators proposed by 

Scharfstein, Rotnitzky, and Robins (1999) for the setting where there is no interference. The 

bias correction DR estimators are composed of two parts. The first part is the regression 
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estimator and the second part entails inverse weighted residuals of the regression estimator. 

Informally, the DR property of these estimators follows by noting: (i) when the regression 

estimator is correctly specified, the first part is consistent for the parameter of interest and 

the second part converges to 0; (ii) when the regression estimator is misspecified but the 

propensity score model is correctly specified, the first part is biased but the second part 

consistently estimates the bias of the first term such that the summation is still consistent for 

the target parameter.

The bias correction DR causal effect estimators are defined similarly to the IPW and 

regression causal effect estimators in Section 3. For example, the bias correction DR direct 

effect estimator is DEDR·BC α = YDR·BC 1, α − YDR·BC 0, α . To derive the asymptotic 

distribution of the bias correction direct effect estimator, let 

Gaα
DR·BC Oi; μ, β, γ = Yi

DR·BC a, α − μ and let Gβ(Oi;β) and Gγ(Oi;γ) denote the estimating 

functions corresponding to β and γ , such that θDR·BC = YDR·BC 0, α − YDR·BC 1, α , β, γ  is 

the solution to the vector equation i = 1
k Gα

D, DR · BC Oi; θ = 0 where θ = (µ0α, µ1α, β, γ) and 

Gα
D, DR · BC O;θ = G0α

DR·BC O; μ0α, β, γ , G1α
DR·BC O; μ1α, β, γ , Gβ O; β , Gγ O;γ T

. The 

following proposition shows the DR property and the asymptotic normality of the bias 

correction DR estimator for the direct effect; the proof, including regularity conditions, is in 

the Appendix. The DR property and asymptotic normality for the other bias correction DR 

causal effect estimators can be derived similarly.

Proposition 1. If either f(Ai|Xi; γ) or mij (Ai, Xi; β) is correctly specified, then 

k1/2 DEDR·BC α − DE α  converges in distribution to N 0, ∑0
D  as k → ∞ where 

∑D = τU−1VU−TτT, U = − E ∂Gα
D, DR · BC Oi; θ / ∂θ , V = E Gα

D, DR · BC Oi; θ ⊗ 2 , τ = (1, 

−1, 0, …, 0) and A ⊗ 2 = A ⊗ AT denotes the Kronecker product of A and AT.

A consistent estimator of the asymptotic variance of DEDR·BC α  can be constructed by 

replacing expectations in U and V with their empirical counterparts. Consistent variance 

estimators of other bias correction DR causal effect estimators can be constructed similarly.

In practice, the summation terms of the form ai
mij ai, Xi; β π ai; α  in the bias correction DR 

estimators may be computationally challenging to calculate since the summation is over all 

possible value of ai. However, a Monte Carlo approximation can be employed by: (i) 

independently sampling Aij from a Bernoulli distribution with mean α for j = 1, …, Ni; (ii) 

calculating mij Ai1, …, AiNi
, Xi; β ; (iii) repeating steps (i) and (ii) MC times; and (iv) 

averaging the MC values of mij Ai1, …, AiNi
, Xi; β . This will provide an unbiased estimate 

of ai
mij ai, Xi; β π ai; α , with larger values of MC resulting in smaller variability of the 

approximation.
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4.2 Regression estimation with inverse-propensity weighted coefficients

In this section we consider a second DR estimator which can be viewed as a generalization 

of the weighted least squares estimator in Kang and Schafer (2007) to the partial 

interference setting. Let Lij = (1, Ai(−j), Xi) denote the row vector of all regressors including 

the intercept in an outcome regression model conditional on Aij = a, which for simplicity, we 

write as mij(a, Ai(−j), Xi; β) = mij(a, Lij; β). Let βa denote the solution to the equation 

Ga
reg o; β dF o = 0 where F is the distribution function of O,

Ga
reg Oi; β = Li

T Λi Ai, Xi, ωi Yi − mi a, Li; β T,

Li = Li1
T , …, LiNi

T T
, mi = mi1, …, miNi

, and 

Λi Ai, Xi, ωi = diag 1 Ai1 = a ωi1 Li , …, 1 AiNi
= a ωiNi

Li  for any user specified vector-

valued function ωi = ωi1, …, ωiNi
 where in general diag(x1, …, xn) denotes an n × n 

diagonal matrix with entries x1, …, xn along the diagonal. The choice ωij = 1 corresponds to 

the normal equations of the standard least squares estimator. To achieve the DR property, we 

use

ωi
WLS =

π Ai −1 ; α

f a, Ai −1 Xi; γ
, …,

π Ai −Ni
; α

f a, Ai −Ni
Xi; γ

,

and let

Gaα
reg·WLS Oi; β, γ = Li

T Λi Ai, Xi, ωi
WLS; α, γ Yi − mi a, Li; β T .

As shown below, this construction yields another DR estimator. Define the weighted 

coefficients DR estimator by YDR·WLS a, α = i = 1
k Yi

DR·WLS a, α /k where

Yi
DR·WLS a, α = Ni

−1
j = 1

Ni

ai −j
mij a, ai −j , Xi; βa, α

WLS π ai −j ; α ,

and βa, α
WLS is obtained by solving

i = 1

k
Gaα

reg·WLS Oi; β, γ = 0. (1)
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Define YDR·WLS α  and the causal effect estimators accordingly.

To show the DR property of the weighted coefficients DR estimators, notice (1) implies

i = 1

k
Ni

−1
j = 1

Ni 1 Aij = a

f Ai Xi; γ
Yij Ai − mij Ai, Xi; βa, α

WLS π Ai −j ; α = 0.

Thus, the weighted coefficients DR estimator can be written as

YDR·WLS a, α = k−1
i = 1

k
Ni

−1
j = 1

Ni

ai −j
mij a, ai −j , Xi; βa, α

WLS π ai −j ; α

+
1 Aij = a

f Ai Xi; γ
Yij Ai − mij Ai, Xi; βa, α

WLS π Ai −j ; α ,

which has the same form as the bias correction DR estimator and the DR property can be 

shown in a similar fashion. In particular, let 

θDR·WLS = YDR·WLS 0, α , YDR·WLS 1, α , β0, α
WLS, β1, α

WLS, γ , which is the solution to the 

estimating equation i = 1
k Gα

D, DR · WLS Oi; θ = 0, where 

Gα
D, DR · WLS O;θ

= G0α
DR·WLS O; μ0α, β, γ , G1α

DR·WLS O; μ1α, β, γ , G0α
reg·WLS O; β, γ , G1α

reg·WLS O; β, γ , Gγ O;γ T

and Gaα
DR·WLS Oi; μa, α, β, γ = Yi

DR·WLS a, α − μa, α. The DR property and asymptotic 

normality of the weighted direct effect estimator are formally stated in the following 

proposition.

Proposition 2. If either f(Ai|Xi;γ) or mij(Ai,Xi;β) is correctly specified, then 

k1/2 DEDR·WLS α − DE α  converges in distribution to N 0, ∑0
D  as k → ∞ where 

∑D = τU−1VU−TτT, U = − E ∂Gα
D, DR · WLS Oi; θ / ∂θ , V = E Gα

D, DR · WLS Oi; θ ⊗ 2  and τ 

= (1, −1, 0, …, 0).

4.3 Regression estimation with propensity based covariates

In this section, a third DR estimator is considered which is constructed by including the 

inverse of the estimated propensity score in the regression model. Specifically, define the 

propensity based covariate DR estimator by YDR · πcov a, α = i = 1
k Yi

DR · πcov a, α /k where

Yi
DR · πcov a, α = Ni

−1
j = 1

Ni

ai −j
mij a, ai −j , Xi; βaα

πcov π ai −j ; α ,
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βaα
πcov is obtained by solving i = 1

k Gaα
reg · πcov Oi; β, γ = 0,

Gaα
reg · πcov Oi; β, γ = Li

TΛi Ai, Xi, 1 Yi − mi a, Li; β, γ ,

Lij = 1, Ai −j , Xi, π Ai −j ; α /f a, Ai −j Xi; γ , Li = Li1
T , …, LiNi

T T
 and 

Λi Ai, Xi, 1 = diag 1 Ai1 = a , …, 1 AiNi
= a . That is, an addiional covariate 

π Ai −j ; α /f a, Ai −j Xi; γ  is included in the outcome regression model for Yij.Define 

YDR · πcov α  accordingly. To gain some intuition for this type of DR estimator, note it is 

straightforward to show that conditional exchangeability implies Ai ╨ Yij ai f ai Xi , and 

therefore it is sufficient to model E Yij Aij = a, Ai −j = ai −j , f a, ai −j Xi . The DR 

property of this estimator can be shown as in Section 4.2 by noting YDR · πcov a, α  can also 

be written in the same form as the bias correction DR estimator. This DR estimator can be 

viewed as a generalization of the DR estimator proposed by Scharfstein et al. (1999) to the 

interference setting.

Propensity based covariate DR estimators can be constructed for the various causal effects, 

and these estimators are DR and asymptotically normal. This result for the direct effect 

estimator is stated formally by the following proposition. Let 

θDR · πcov = YDR · πcov 0, α , YDR · πcov 1, α , β0α
πcov, β1α

πcov, γ , which is the the solution to the 

estimating equation i = 1
k Gα

D, DR · πcov Oi; θ = 0, where 

Gα
D, DR · πcov O;θ

= G0α
DR · πcov O; μ0α, β, γ , G1α

DR · πcov O; μ1α, β, γ , G0α
reg · πcov O; β, γ , G1α

reg · πcov O; β, γ , Gγ O;γ T

and Gaα
DR · πcov Oi; μ, β, γ = Yi

DR · πcov a, α − μ.

Proposition 3. If either f(Ai|Xi;γ) or mij(Ai,Xi;β) is correctly specified, then 

k1/2 DEDR · πcov α − DE α  converges in distribution to N 0, ∑0
D  as k → ∞ where 

∑D = τU−1VU−TτT, U = − E ∂Gα
D, DR · πcov Oi; θ / ∂θ , V = E Gα

D, DR · πcov Oi; θ ⊗ 2 , and τ 

= (1, −1, 0, …, 0).

5 SIMULATIONS

Simulations were conducted to assess the finite sample bias of the IPW, regression and DR 

estimators given in Sections 3 and 4 as well as to compare their efficiency and robustness 

when the models are either correct or mis-specified. Simulations were conducted under four 

scenarios: (i) both the propensity model and the outcome model were correct, (ii) the 

propensity model was wrong but the outcome model was correct, (iii) the propensity model 

was correct but the outcome model was wrong, and (iv) neither the propensity model or the 
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outcome model was correct. For scenario (i), the simulation study was conducted in the 

following steps:

Step 1: We first generated a population with k = 100 groups and Ni = 30 individuals 

in each group. The vector Xij of pre-treatment covariates for individual j in group i 

was generated by letting Xij = (X1ij, X2ij) where X1ij and X2ij were independently 

sampled from a standard normal distribution and a Bernoulli distribution with 

expectation 0.5, respectively.

Step 2: The treatment Aij was generated from the mixed effect logistic regression 

model logit{Pr(Aij = 1|Xij, bi)} = 0.1 + 0.2|X1ij| + 0.2|X1ij|X2ij + bi where bi were 

independently and identically sampled from the normal distribution N(0, 0.3).

Step 3: The outcome Yij was generated from Yij = 2 +2Aij +p(Ai)− 1.5|X1ij| +2X2ij 

− 3|X1ij|X2ij +εij where εij independently and identically follow N(0, 1) and p(Ai) 

was the proportion of subjects in group i who received treatment.

Step 4: A correct outcome model E{Yij|Xij, Ai} = β0 +β1Aij +β2p(Ai)+β3|X1ij|

+β4X2ij +β5|X1ij|X2ij was fit and mij ai, Xi; β  was calculated.

Step 5: A correct propensity model logit{Pr(Aij = 1|Xij, bi)} = γ0 + γ1|X1ij| + γ2|

X1ij|X2ij + bi was fit to calculate the MLE γ  and propensity score estimate f Ai Xi; γ

Step 6: The IPW, regression and DR estimators were calculated according to 

Sections 3 and 4 with α = 0.5.

Scenario (ii) was carried out similar to scenario (i) except Step 5 was replaced with

Step 5∗: A mis-specified propensity model logit{Pr(Aij = 1|Xij, bi)} = γ0 + γ1X1ij 

+ bi was fit to calculate the MLE γ  and propensity score estimate f Ai Xi; γ .

Scenarios (iii) was carried out similar to scenario (i) except Step 4 was replaced with

Step 4∗: A mis-specified outcome model E{Yij|Xij, Ai} = β0 + β1Aij + β2p(Ai) + 

β3X1ij + β4X2ij was fit and mij ai, Xi; β  was calculated.

Scenario (iv) was carried out similar to scenario (i) with Steps 4 and 5 replaced with Steps 

4∗ and 5∗, respectively. The simulations were carried out 1400 times for the scenario with 

both component models correctly specified in order to accurately estimate confidence 

interval coverage to the second decimal. For the other scenarios where one or both of the 

component models was misspecified, the simulations were carried out 700 times. For each 

scenario, two simulated data sets caused computational issues and were excluded from the 

results presented below. The propensity based covariate DR estimators were excluded from 

the simulations due to the computational burden of evaluating these estimators.

Simulation results for the target parameter µ1,0.5 are presented in Figure 1. When the 

treatment model (i.e., propensity score) is correct, the IPW and the DR estimators have small 

bias while when the outcome model is correct, the regression and DR estimators have small 

bias. For example, for scenario (i) the bias of IPW, regression, residual bias correction DR 

and the weighted coefficients DR estimators are 0.001, −0.02, −0.02 and −0.02, respectively. 
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The residual bias correction DR and weighted coefficients DR estimators have smaller 

empirical variances (average estimated standard error (ASE) = 0.053 and 0.055) than that of 

the IPW estimators (ASE = 0.21) when both the treatment and the outcome regression model 

model is correct. When the regression model is correctly specified, the regression estimator 

has the smallest variance. These comparisons of variances align with the results without the 

interference as reported in Kang and Schafer (2007). In our simulations, when both models 

are mis-specified, the DR estimators have substantial bias (−0.18 for both) as do the IPW 

and regression estimators (−0.15 and −0.18).

Wald-type 95% confidence intervals (CIs) were also constructed using empirical sandwich 

variance estimates as described in Section 4. Empirical coverages of the CIs are shown at the 

bottom of the Figure 1. As expected, when the corresponding models are correctly specified 

for the IPW and regression estimators, the Wald CIs have coverage approximately equal to 

the 0.95. When either model is correctly specified for the DR estimators, the coverages are 

also approximately 0.95. When the models are mis-specified for the IPW and regression 

estimators or when neither of the models is correct for the DR estimators, the coverages are 

well below the nominal level. For example, when both models are wrong, the coverages are 

0.75, 0.27, 0.38, and 0.46 for IPW, regression, residual bias correction DR and the weighted 

coefficients DR estimators, respectively.

6 APPLICATION

A cholera vaccine trial was carried out in Matlab, Bangladesh (Clemens et al. 1988). All 

children (2–15 yrs old) and women (>15 yrs old) were randomized with equal probability to 

one of three treatments: one of two types of cholera vaccine or a placebo. Following Perez-

Heydrich et al. (2014), in the analysis presented here no distinction is made between the two 

cholera vaccines. Although the treatments were randomized, not all the eligible individuals 

participated. Those who did not participate in the randomized trial were followed for the 

primary outcome and included in the analysis; hence there is an observational aspect to these 

data.

Among the 121,982 eligible individuals, 49,300 individuals received at least two doses of 

vaccines. Previous analyses of these data suggest the risk of cholera among unvaccinated 

individuals was associated with the vaccine coverage in neighboring households or in their 

social network (Ali et al. 2005; Root, Giebultowicz, Ali, Yunus, & Emch 2011). Perez-

Heydrich et al. (2014) utilized the inverse probability weighted (IPW) estimators proposed 

by Tchetgen Tchetgen and VanderWeele (2012) to assess the direct, indirect, total and 

overall causal effect of cholera vaccines. Here, we demonstrate the proposed DR estimators 

and compare to the IPW estimator and the outcome regression estimator.

Perez-Heydrich et al. (2014) used a spatial clustering algorithm to group individuals into 700 

groups. Large groups cause significant computational burden for the outcome regression 

estimator. Since our primary purpose is a comparison of estimators, groups with more than 

100 individuals were excluded from the analysis. This resulted in 14,589 individuals in 425 

groups. Age in decades and distance to the nearest river were included as covariates in both 

the treatment and outcome models.
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Figures 2 and 3 compare the four estimators of the direct effect DE α , indirect effect 

IE 0.1, α , total effect TE 0.4, α  and overall effect OE 0.4, α . The estimates and confidence 

intervals using the IPW, regression, and DR estimators are similar to Perez-Heydrich et al. 

(2014). While the point estimates using the weighted coefficients DR estimator are generally 

similar, the confidence intervals using this estimator are as much as 11 times wider than 

other methods. This could be due to numerical approximations in estimating the covariance 

matrix. The estimating functions for this estimator correspond to 20 total target and nuisance 

parameters, compared to 8, 9, and 13 parameters for the IPW, regression, and residual bias 

DR estimators respectively.

As vaccine coverage α increases, the point estimate of the direct effect decreases among all 

estimators. For instance, when α = 0.3, the point estimate of the four estimators are 

approximately 3.4, 3.8, 3.4, and 5.0 for IPW, regression, biased correction DR and weighted 

coefficients DR estimators, respectively. This implies when the vaccine coverage is 30%, we 

would expect to see about 3 or 4 fewer cases of cholera per 1000 person-years among the 

vaccinated individuals compared to unvaccinated ones. In comparison, when the vaccine 

coverage is around 60%, the point estimates are approximately 1.1, 2.0, 0.6, and 3.0 for 

IPW, regression, biased correction DR and weighted coefficients DR estimators, 

respectively, indicating smaller change in the cases of cholera per 1000 person-years among 

the vaccinated individuals compared to unvaccinated ones.

Unlike the direct effect, the indirect, total, and overall effect estimates incorporate 

interference, if present. The indirect effect estimate is negative when α < 0.4 and positive 

when α > 0.4, suggesting it is less likely for an unvaccinated individual to be infected when 

the vaccine coverage in their group is higher. The estimates of the total effect TE 0.4, α , 

which incorporate both the direct and indirect effects, are relatively constant as α increases, 

reflecting decreasing direct effect estimates offsetting increasing the indirect effect 

estimates. The overall effect is in general higher for higher coverage groups as compared 

with lower coverage groups. For example, when the vaccine coverage is 30% compared to 

40%, the overall effect is estimated to be −0.51, 0.65, 0.18, and −0.38 for IPW, regression, 

biased correction DR and weighted coefficients DR estimators, respectively, while when the 

vaccine coverage is 60%, those are 1.8, 1.8, 1.9 and 2.3. Point estimates and 95% Wald-type 

confidence intervals of the IPW, regression and DR estimators for various effects are given 

in Table 1.

7 DISCUSSION

In this paper several DR estimators are proposed for causal effects in the presence of partial 

interference. The estimators are shown to be consistent and asymptotically normal if either 

the propensity model or the outcome regression model, but not necessarily both, is correctly 

specified. Empirical results demonstrate the DR property of the proposed estimators and 

possible efficiency gains over a previously proposed IPW estimator when both models are 

correctly specified.

Application of the proposed methods to the cholera vaccine study provides robust evidence 

corroborating previous analyses that population- level vaccination affords a protective 
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indirect effect to unvaccinated individuals. As in Perez-Heydrich et al. (2014), the analysis 

presented here demonstrates how considering only the direct effect of a vaccine may fail to 

capture the totality of effects afforded by vaccination at the population level. Note the 

formulation in this paper considers the direct effect to be a function of vaccine coverage. 

That is, there is not a single direct effect, but rather a direct effect curve which describes the 

individual effect of vaccination for a given level of vaccine coverage in the population. 

Traditionally the direct effect of a vaccine refers to the direct protection for a vaccinated 

individual owing only to vaccine-induced immunity in that individual (Clemens, Shin, & Ali 

2011); in the current formulation, this would correspond to the direct effect when the level of 

vaccine coverage is 0%. In settings where interference is present, the direct effect curve may 

vary with vaccine coverage, in which case simple analyses about the direct effect from 

studies with high levels of vaccine coverage may mislead about the standard interpretation 

of the direct effect of a vaccine. On the other hand, the methods developed in this paper 

permit robust inference of the direct effect curve, providing public health officials and policy 

makers with a more complete picture of how the individual effect of vaccination changes 

with vaccine coverage.

There are several areas of possible future research related to the methods developed here. 

For instance, whether any of the DR estimators proposed are semiparametric efficient 

remains to be investigated. In the absence of interference, DR estimators have the appealing 

property of achieving parametric rates of convergence (i.e., n1/2) even if the working 

outcome and propensity models are non-parametric provided the estimators of the working 

model parameters (i.e., nuisance parameters) converge at rate greater than n1/4 (Naimi & 

Kennedy 2017), allowing data-adaptive methods for fitting the working models. Whether the 

DR estimators proposed in this paper also have this property remains to be determined. 

When no interference is assumed, DR estimators have been proposed which have certain 

efficiency properties even if the outcome model is mis-specified (Rotnitzky, Lei, Sued, & 

Robins 2012; Tan 2010); extensions of these DR estimators to the partial interference setting 

could be considered. Future research could also entail developing DR estimators in the 

setting where there is general interference, similar to the IPW estimator for general 

interference proposed by Liu, Hudgens, and Becker-Dreps (2016).
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APPENDIX

Proof of Proposition 1

To prove double robustness of the bias correction DR estimators, let γ0 and β0 denote the 

true values of the parameters in the propensity score and outcome regression models. Define 

β∗ to be such that E{Gβ (Oi; β∗)} = 0; note here and below the expectation is taken with 

respect to the true parameters. Likewise, define γ∗ to be such that E{Gγ (Oi; γ∗)} = 0. If the 

propensity score (or outcome regression model) is correctly specified, then γ∗ = γ0 (or β∗ = 

β0).
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If γ∗ = γ0, then f(Ai|Xi; γ∗) = f(Ai|Xi; γ0) and following Tchetgen Tchetgen and 

VanderWeele (2012)

E Ni
−1

j = 1

Ni 1 Aij = a Yij Ai
f Ai Xi; γ*

π Ai −j ; α = E Ni
−1

j = 1

Ni

ai

1 aij = a Yij ai
f ai Xi; γ*

π ai −j ; α Pr Ai = ai Xi

= μaα .

By similar reasoning

E Ni
−1

j = 1

Ni

ai −j
mij a, ai −j , Xi; β* π ai −j ; α −

1 Aij = a mij Ai, Xi; β*

f Ai Xi; γ*
π Ai −j ; α = 0

which implies E Gaα
DR·BC Oi; μaα, β*, γ* = 0 On the other hand, if β*=β0, then

E Ni
−1

j = 1

Ni

ai −j
mij a, ai −j , Xi; β* π ai −j ; α = E Ni

−1
j = 1

Ni

ai −j
E Yij a, ai −j Xi π ai −j ; α

= μaα,

and

E Ni
−1

j = 1

Ni 1 Aij = a Yij Ai − mij Ai, Xi; β*

f Ai Xi; γ*
π Ai −j ; α = 0,

implying E Gaα
DR·BC Oi; μaα, β*, γ* = 0. Thus, E Gaα

DR·BC Oi; μaα, β*, γ* = 0 when either the 

propensity score model or the outcome regression model is correctly specified.

Let θ0 = μ0α, μ1α, β*, γ*  and Ġα
D, DR · BC O; θ0 = ∂Gα

D, DR · BC O; θ0 / ∂θ0. Assume: 

E Ġα
D, DR · BC O; θ0  exists and is non-singular; Gα

D, DR · BC o; θ  is twice continuously 

differentiable with regard to θ for every o; ∂2Gα
D, DR · BC o; θ / ∂θi∂θ j ≤ ψ o  for some 

integrable measurable function ψ; E Gα
D, DR · BC O; θ0

2 < ∞ where v
2

= v1
2+ ⋅ ⋅ ⋅ + vp

2 for 

any vector v of length p; and i = 1
k Gα

D, DR · BC Oi; θ = 0 has a unique solution for any k. 

Then by standard estimating equation theory (Stefanski and Boos, 2002; van der Vaart, A. 

1998 Ch. 5) it follows that k1/2 θDR·BC − θ0  converges in distribution to N(0, Σ) as k → ∞ 
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where Σ = U−1VU−T U = − Ε ∂Gα
D, DR ⋅ BC Oi; θ / ∂θ  and V = E Gα

D, DR · BC Oi; θ ⊗ 2 .

Asymptotic normality DEDR·BC α  follows from the delta method

Proof of Proposition 2

As in the proof of Proposition 1, let γ0 and βa0 for a = 0,1 denote the true values of the 

parameters in the propensity score and outcome regression models. Define βaα*  and γ*to be 

such that E Gaα
reg·WLS Oi; βaα* , γ* = 0 and E Gγ Oi; γ* = 0 Note E Gaα

reg·WLS Oi; βaα* , γ* = 0

implies

E Ni
−1

j = 1

Ni 1 Aij = a Yij Ai − mij Ai, Xi; βaα*

f Ai Xi; γ*
π Ai −j ; α = 0.

Therefore showing E Gaα
DR·WLS Oi; μaα, β*, γ* = 0 is equivalent to showing

E Ni
−1

j = 1

Ni

ai −j
mij a, ai −j , Xi; βaα* π ai −j ; α +

1 Aij = a Yij Ai − mij Ai, Xi; βaα*

f Ai Xi; γ*
π Ai −j ; α

= μaα,

which, by the proof of Proposition 1, will be true if γ*=γ0 or βaα* = βa0. Thus, when either 

the propensity score model or the outcome regression model is correctly specified, 

E Gaα
DR·WLS Oi; μaα, β∗, γ∗ = 0. Asymptotic normality of DEDR·WLS α  follows along the 

same lines as the proof of Proposition 1.

Proof of Proposition 3

The proof of the DR property of DEDR · πcov α  follows from the proof of Proposition 2 by 

replacing Gaα
reg·WLS, Gaα

DR·WLS, and DEDR·WLS α  with Gaα
reg · πcov, Gaα

DR · πcov, and 

DEDR · πcov α , respectively.
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FIGURE 1. 
Absolute bias and confidence interval coverage for the IPW, regression (REG), residual bias 

correction DR (DR (BC)) and weighted coefficients DR (DR (WLS)) estimators of µ1,0.5
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FIGURE 2. 
Estimates of the direct DE α  and indirect IE 0.4, α  for the IPW, regression (REG), bias 

correction DR (DR (BC)) and weighted coefficient DR (DR (WLS)) estimators.

Liu et al. Page 18

Stat (Int Stat Inst). Author manuscript; available in PMC 2020 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 3. 
Estimates of the total TE 0.4, α  and overall effects OE 0.4, α  for the IPW, regression 

(REG), bias correction DR (DR (BC)) and weighted coefficient DR (DR (WLS)) estimators.
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TABLE 1

Estimates and 95% Wald-type confidence intervals of the direct DE α , indirect IE 0.4, α , total TE 0.4, α

and overall effects OE 0.4, α  for the IPW, regression (REG), bias correction DR (DR (BC)) and weighted 

coefficient DR (DR (WLS)) estimators

IPW REG DR (BC) DR (WLS)

DE α

α = 0.30 3.4 (0.0, 6.9) 3.8 (1.0, 6.7) 3.4 (–0.2, 7.0) 5.0 (–1.2, 11.2)

α = 0.44 2.3 (–1.1, 5.7) 2.8 (0.8, 4.8) 1.9 (–1.5, 5.3) 2.6 (–2.1, 7.3)

α = 0.60 1.1 (–1.8, 3.9) 2.0 (0.5, 3.5) 0.6 (–2.3, 3.5) 3.0 (–1.3, 7.3)

IE 0.4, α

α = 0.30 0.0 (–1.9, 1.8) –1.3 (–2.4, –0.1) –0.8 (–2.5, 0.9) –0.8 (–6.0, 4.3)

α = 0.44 0.5 (–0.2, 1.2) 0.4 (0.1, 0.8) 0.7 (0.1, 1.3) 0.5 (–2.7, 3.8)

α = 0.60 2.2 (–0.2, 4.6) 1.9 (0.5, 3.2) 2.5 (0.2, 4.8) 1.6 (–5.8, 0.0)

TE 0.4, α

α = 0.30 3.4 (0.0, 6.8) 2.6 (0.1, 5.0) 2.6 (–1.0, 6.2) 4.2 (–2.4, 10.7)

α = 0.44 2.8 (–0.7, 6.3) 3.3 (1.1, 5.4) 2.6 (–0.9, 6.1) 3.1 (–3.4, 9.7)

α = 0.60 3.3 (–0.1, 6.6) 3.9 (1.8, 5.9) 3.1 (–0.2, 6.4) 4.6 (–1.7, 10.9)

OE 0.4, α

α = 0.30 –0.5 (–1.8, 0.8) 0.7 (–0.2, 1.5) 0.2 (–1.0, 1.4) –0.4 (–3.9, 3.1)

α = 0.44 0.4 (–0.1, 0.9) 0.4 (0.2, 0.7) 0.5 (0.1, 1.0) 0.6 (–1.4, 2.7)

α = 0.60 1.8 (0.1, 3.4) 1.8 (0.8, 2.8) 1.9 (0.3, 3.5) 2.3 (–2.0, 6.7)
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