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Preterm birth (PTB) remains a major public health problem
worldwide,1and is the leadingcauseofneonatalmorbidityand
mortality of nonanomalous infants in the United States.2,3

Approximately two-thirdsof PTBare spontaneous, and though
there appears to be a genetic component to spontaneous PTB
susceptibility, genetic association studies have traditionally
yielded inconsistent results and have been difficult to repli-
cate. Spontaneous PTB is known to vary by population, and
significant differences are seen in PTB rates across the world.

Though sociodemographic factors can account for some of the
differences in spontaneous PTB rates, it cannot account for all
differences. Variations in rates of prematurity by population
are also seen within countries, including the United States,
wheredisparities arepronounced.Non-Hispanicblackwomen
have a rate of spontaneous PTB that is 49% higher than non-
Hispanic white women.3,4 Hispanic women also have an
elevatedrateof spontaneousPTBcomparedwithnon-Hispanic
white women.
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Abstract Objective The objective of this study was to apply evolutionary triangulation, a novel
technique exploiting evolutionary differentiation among three populations with variable
disease prevalence, to spontaneous preterm birth (PTB) genetic association studies.
Study Design Single nucleotide polymorphism (SNP) allele frequency data were
obtained from HapMap for CEU, GIH/MEX, and YRI/ASW populations. Evolutionary
triangulation SNPs, then genes, were selected according to the overlaps of genetic
population differences (CEU ¼ outlier). Evolutionary triangulation genes were then
compared with three PTB gene lists: (1) top maternal and fetal genes from a large
genome-wide association study of PTB, (2) 640 genes from the database for PTB, and
(3) 118 genes from a recent systematic review. Empirical p-values were calculated to
determine whether evolutionary triangulation enriched for putative PTB associating
genes compared with randomly selected sample genes.
Results Evolutionary triangulation identified 5/17 maternal genes and 8/16 fetal genes
from PTB gene list 1. From list 2, 79/640 were identified by CEU_GIH_YRI evolutionary
triangulation, and 57/640 were identified by CEU_ASW_MEX evolutionary triangulation.
Finally, 20/118 genes were identified by evolutionary triangulation from gene list 3. For all
analyses, p < 0.001 except CEU_ASW_MEX analysis of list 3 where p ¼ 0.002.
Conclusion Genes identified in prior PTB association studies confirmed by evolu-
tionary triangulation should be prioritized for further genetic prematurity research.
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Genetic variation (e.g., allele frequencies at specific single
nucleotide polymorphisms [SNPs]) is known to be popula-
tion specific. All populations have unique genetic variation
inherent to each group. For example, in general, non-Hispa-
nic black populations are known to have more variation and
many more low-frequency variation compared with other
populations. Across the genome, though some regions are
highly conserved with minimal variations between indivi-
dual and between populations, at other sites, minor allele
frequencies have the potential to vary between individuals
and between populations.

Evolutionary triangulation is a novel genetic filtering and
prioritization method that capitalizes on the differences in
allele frequencies between populations to refine results from
genetic association studies.5 The technique identifies alleles
that differ among populations with different disease pre-
valence, such as spontaneous PTB. It has previously success-
fully identified genes implicated in lactose intolerance,
Smith–Lemli–Opitz, and albinism.5

We hypothesized that genes identified by evolutionary
triangulation could refine results fromprevious spontaneous
PTB gene association studies.

Materials and Methods

First, we generated our evolutionary triangulation gene lists.
Weobtainedbaseline SNPallele frequency data for populations
selected to represent non-Hispanic black, non-Hispanic white,
and Hispanic women using data from the International Haplo-
type Map Project HapMap6,7 (►Table 1). Each population was
chosenbasedonpopulationdifferences inratesofPTB.HapMap
is an international consortium with publically available SNP
frequencies, genotypes, and haplotypes by population, and can
be applied to estimate genetic ancestry.7–9 Next, to assess
population differences, we calculated Wright’s fixation index
(FST),10,11 a metric assessing population genetic differences by
pairwise allele comparisons between groups, according to the
Cockerham and Weir’s formula.12 We first compared alleles
between the first two populations, and then compared the
allelic differences between populations 1 and 3. Finally, we
compared differences between populations 2 and 3. A list of
evolutionary triangulation SNPs was then generated according
to the overlaps of low FST between the populations with
similarly high rates of spontaneous PTB (YRI, GIH, MEX, and
ASW) and high FST with CEU as the outlier population with
lower rates of spontaneous PTB.We used several thresholds of

high and low FST, that is, several degrees ofdifferentiation. Each
evolutionary triangulation SNP was then used to identify
nearby genes as evolutionary triangulation genes, as recent
literature suggests that variants in the regulatory regions or
near transcription start sites of genesmay impact function and
possiblydisease. For that reason,genes locatedwithin100 kbof
each evolutionary triangulation SNP were compiled to com-
prise the final evolutionary triangulation gene list. This meth-
odology is summarized in►Fig. 1. We generated two separate
evolutionary triangulation SNP lists, each containing a repre-
sentative non-Hispanic white, Hispanic, and non-Hispanic
black populations: (1) CEU_GIH_YRI and (2) CEU_MEX_ASW.

Next, we compared the evolutionary triangulation gene
lists generated earlier to three separate gene lists. Sponta-
neous PTB gene list 1 comprised the top 20maternal and fetal
SNPs from a multicenter genome-wide association study of
1,025 spontaneous PTB cases delivering less than 34 weeks’
gestation and 1,015 matched term controls with sponta-
neous labor; these top 20 SNPs were located in 32 different
genes.13 Spontaneous PTB gene list 2 consisted of 640 genes
on the online database for PTB “dbPTB” Web site (www.
ptbdb.cs.brown.edu).14,15 This Web site, hosted by Brown
University, provides a web-based aggregation site of pub-
lished genes previously associated with spontaneous PTB in
one ormore studies.14,15Our third spontaneous PTB gene list
comprised the 118 candidate genes identified from a recent
systematic review of 92 genetic studies of spontaneous PTB
published from 2007 to 2015.16

Finally, we applied principles of evolutionary triangula-
tion to each gene list. Genes found in both our evolutionary
triangulation gene list and the spontaneous PTB gene lists
were considered top candidate genes, andwere examined for
evidence of expression in the myometrium or placenta. We
also analyzed genes identified by evolutionary triangulation
using the STRING database (http://string-db.org)17 to assess
functional relationships, interactions between genes, and to
classify genes into ontology groups as applicable.

Permutation testing was performed to determine
whether evolutionary triangulation significantly enriched
in the lists of genes associated with spontaneous PTB.
Specifically, this was performed by calculating empirical
p-values, comparing the ability of evolutionary triangulation
to detect putative spontaneous PTB-associated genes from a
list of randomly sample genes. We first generated a null
(random) list of genes by sampling from the list of genes in
the entire genome 10,000 times. For each resample, we

Table 1 Selected populations used to generate evolutionary triangulation gene lists

Population Source from HapMap Representative population

CEU Utah residents with European ancestry Non-Hispanic white

GIH Gujarati Indians (Houston, TX) Hispanic

MEX Mexican ancestry (Los Angeles, CA) Hispanic

YRI Yoruba (Ibadan, Nigeria) Non-Hispanic black

ASW African ancestry in southwestern United States Non-Hispanic black
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randomly selected the number of genes corresponding to
each of the three gene lists (32, 640, and 118, respectively).
We then counted the number of genes from each resampling
that appeared in each of the three lists. From these counts, we
generated three null distribution lists of spontaneous PTB
genes. Empirical p-values were calculated by dividing the
number of counts that exceed evolutionary triangulation
detected PTB genes in CEU_GIH_YRI and CEU_MEX_ASW
separately and CEU_GIH_YRI and CEU_MEX_ASWcombined.

Results

We examined both maternal and fetal SNPs distributed in 32
different genes from the large genome-wide association study
of early spontaneous PTB (PTB gene list 1). Multiple top genes
in the genome-wide association study were confirmed by
evolutionary triangulation filtering methods, using both evo-
lutionary triangulationpopulation gene lists. In total, 13 of the
32geneswere identifiedusing evolutionary triangulation. The
enrichment for spontaneous PTB genes from list 1 was
significant (empiric p < 0.0001 for CEU_GIH_YRI;
p < 0.0001 for CEU_MEX_ASW; p < 0.0001 for combined
CEU_GIH_YRI and CEU_MEX_ASW). These results included
threematernal genes expressed in themyometrium [myopal-
ladin [MYPN], ethanolamine kinase 1 [ETNK1], contactin 5
[CNTN5]) as well as six fetal genes expressed in the placenta
(ribonuclease T2 [RNASET2], SMAD familymember9 [SMAD9],
ras responsive element-binding protein 1 [RREB1], sortilin-
related receptor 1 [SORL1], potassium voltage-gated channel
subfamily H member 7 [KCNH7], and nucleolar protein 10
[NOL10]), ►Table 2. These nine significant genes were not
overrepresented in any gene ontology (GO) groups and no
functional enrichment was appreciated.

We then evaluated PTB gene list 2, the 640 genes listed in
the online dbPTB. In total, evolutionary triangulation identi-
fied123uniquegenes from theonline dbPTB; 19%overall. This
number represented significant enrichment as comparedwith
random sampling of the genome (empiric p < 0.0001 for

CEU_GIH_YRI; p < 0.0001 for CEU_MEX_ASW; p < 0.0001
for combined CEU_GIH_YRI and CEU_MEX_ASW). Overall,
the CEU_GIH_YRI evolutionary triangulation gene list identi-
fied a higher proportion of genes from the online dbPTB (77/
640, 12.0%) compared with the CEU_ASW_MEX list (55/640,
8.6%). These 123 genes were analyzed by STRING for evidence
of biologic pathway enrichment. Notably, 44 genes were
implicated in response to stress pathways (GO:0006950), 25
genes in immune response (GO:006955), 20 in innate immu-
nity (GO:0045087), and 17 in positive regulation of the
immune system process pathways (GO:0002684). Eleven
genes from the online dbPTB were identified by both the
CEU_GIH_YRI and the CEU_ASW_MEX list; their names and
previous associations with PTB and other pregnancy compli-
cations are shown in ►Table 3. From these top 11 genes
identified in both evolutionary triangulation lists, functional
enrichments were found within receptor signaling protein
(GO:0005057; kinase insert domain receptor [KDR], anaplastic
lymphoma receptor tyrosine kinase [ALK], interleukin 1
receptor-associated kinase 1 [IRAK1]) and nuclear factor-κB–
inducing kinase activity (GO:0004704; ALK, IRAK1) pathways.

Finally, we found 20/118 candidate genes from sponta-
neous PTB gene list 3 by evolutionary triangulation
(►Table 4). These associations for spontaneous PTB list 3
were also significant (empiric p < 0.001 for CEU_GIH_YRI;
p ¼ 0.002 for CEU_MEX_ASW; p < 0.001 for combined
CEU_GIH_YRI and CEU_MEX_ASW). Of these, 10 (interleukin
1 receptor type 2 [IL1R2], nitric oxide synthase 2 [NOS2],
FMS-related tyrosine kinase 1 [FLT1], interleukin-6 [IL6],
KDR, colony-stimulating factor 2 [CSF2], Sp3 transcription
factor [SP3], IRAK1, toll-like receptor 10 [TLR10], protein
kinase c α (PRKCA]) are genes previously implicated in innate
immunity (GO:0002376) or the immune response
(GO:0006955). In addition, eight genes (angiotensinogen
[AGT], FLT1, nitric oxide synthase 3 [NOS3], PRKCA, IL6,
KDR, collagen type IV α 3 chain [COL4A3], and collagen
type IV α 2 chain [COL4A2]) are involved in the regulation
of angiogenesis (GO:00045765).

Fig. 1 Summary of evolutionary triangulation methodology. SNP, single nucleotide polymorphism.
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Table 3 Genes from PTB list 2 (dbPTB) identified by both CEU_GIH_YRI and CEU_ASW_MEX evolutionary triangulation lists

Gene Chr. Gene description Prior association(s) with PTB and other adverse
pregnancy outcomes

ALK 2 Anaplastic lymphoma receptor tyrosine kinase Peripheral blood gene expression in early pregnancy
associated with PTB25

CNTLN 9 Centlein, centrosomal protein Peripheral blood gene expression in early pregnancy
associated with PTB25

IRAK1 X Interleukin 1 receptor-associated kinase 1 Increased in response to intrauterine inflammation26

KCNK2 1 Potassium channel, subfamily K, member 2 Maintenance of uterine quiescence27

KDR 4 Kinase insert domain receptor Some genotypes associated with higher PTB risk among
overweight or obese Caucasian women28; reduced
expression in gestational hypertension, small for
gestational age, and PTB29

KLHL2 4 Kelch-like 2 Not applicable

NAA10 X N(α)-acetyltransferase 10, NatA catalytic subunit Not applicable

STMN3 20 Stathmin-like 3 Decidualization in murine uterus in early pregnancy30;
peripheral blood gene expression in early pregnancy
associated with PTB25

TMEFF2 2 Transmembrane protein with EGF-like and two
follistatin-like domains 2

Expression in uterine leiomyomas31

WDR90 16 WD repeat domain 90 Peripheral blood gene expression in early pregnancy
associated with PTB25

XPNPEP1 10 X-prolyl aminopeptidase
(aminopeptidase P) 1, soluble

Peripheral blood gene expression in early pregnancy
associated with PTB25

Abbreviations: Chr, chromosome; dbPTB, database for PTB; EGF, epidermal growth factor; PTB, preterm birth.

Table 2 Genes from PTB gene list 1 confirmed by evolutionary triangulation

Gene Chr. Gene description Originally published
findings

Evolutionary triangulation list

Location p-Value CEU, GIH, YRI CEU, ASW, MEX

SHROOM3 4 Shroom family member 3 Maternal 5.6e�6 Yes No

LOC100128865 4 Methyltransferase like 5 Maternal 2.7e�5 Yes Yes

MYPN 10 Myopalladin Maternal 3.3e�5 Yes No

ETNK1 12 Ethanolamine kinase 1 Maternal 3.7e�5 Yes No

CNTN5 11 Contactin 5 Maternal 4.1e�5 Yes No

LOC100128365 6 Interferon-stimulated exonuclease Fetal 2.7e�12 Yes No

RNASET2 6 Ribonuclease T2 Fetal 1.4e�10 No Yes

L3MBTL3 6 Lethal(3) malignant brain
tumor-like protein 3

Fetal 8.3e�7 Yes No

SMAD9 13 SMAD family member 9 Fetal 1.1e�6 No Yes

RREB1 6 Ras responsive element-binding
protein 1

Fetal 2.3e�6 Yes No

SORL1 11 Sortilin-related receptor 1 Fetal 2.8e�6 Yes No

KCNH7 2 Potassium voltage gated channel
subfamily H member 7

Fetal 6.2e�6 No Yes

NOL10 2 Nucleolar protein 10 Fetal 6.4e�6 Yes No

Abbreviations: Chr, chromosome; PTB, preterm birth.
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Comment

We found that applying evolutionary triangulation analysis
to spontaneous PTB provided independent support for
multiple genes previously associated with disease in sepa-
rate genome-wide association and candidate gene studies.
Therefore, evolutionary triangulation presents an alternative
filtering metric for genetic analyses based on evolutionary
history. Multiple identified genes have biologic plausibility
for spontaneous PTB and have been previously associated
with spontaneous PTB in at least one study, as shown
in ►Tables 3 and 4. These genes fall into a variety of broad
functional categories and classifications theorized to con-
tribute to a predisposition to spontaneous PTB.

Though multiple genes and pathways were identified, it is
notable that both spontaneous PTB gene lists 2 and 3 contained
multiple genes within key immune response regulatory path-
ways. Specifically, the immune response gene ontology frame-
work (GO:0006955) was represented by significant results in

both lists 2 and 3. Exposure to (andmaternal and fetal response
to) inflammation and infection have long been implicated in the
pathogenesis of spontaneous PTB.18 IL6 andother cytokine gene
genotypes,19,20 antimicrobial immunity,21 and the composition
of the vaginal microbiome22 are known to vary by race and
ethnicity23; thesefactorsarehypothesized tocontributetosome
of the racial disparity in spontaneous PTB. These data provide
additional support, at the evolutionary level, for the theory that
inflammatory pathways contribute to spontaneous PTB.

Other researchers have used evolutionary approaches to
examine the genetic contribution to spontaneousPTB. In2011,
Plunkett et al used a phylogenetic approach to identify candi-
date genesalong thehumanandhuman–chimpanzeeancestor
lineages.24 Eight out of the top 10 SNP differences were found
within the follicle-stimulating hormone receptor (FSHR)
gene.24Notably, theFSHRgenewason list 3 andwasconfirmed
by our evolutionary triangulation methodology. The FSHR
gene was not in the dbPTB and therefore not evaluated as a
part of list 2.

Table 4 Genes from preterm birth list 3 identified by either CEU_GIH_YRI or CEU_ASW_MEX evolutionary triangulation lists

Gene Chr. Gene description Other prior association(s) with preterm birth and adverse
pregnancy outcomes

AGT 1 Angiotensinogen Polymorphisms associated with placental hemorrhage32

COL4A2 13 Collagen type IV Increased expression at decidual interface associated with
preeclampsia33

COL4A3 2 Collagen type IV Neonatal respiratory distress syndrome34

COL4A4 2 Collagen type IV Not applicable

CSF2 5 Colony-stimulating factor 2 Not applicable

CYP1A1 15 Cytochrome P4501A1 Genotype associated with preterm birth amongwomen exposed
to passive cigarette smoke35

NOS3 7 Endothelial nitric oxide synthases Not applicable

FLT1 13 FMS-like tyrosine kinase 1 Genotype associated with spontaneous preterm birth < 34 wk
in African American women36

FSHR 2 Follicle-stimulating hormone receptor Multiple haplotypes, polymorphisms associated with preterm
birth24,37

GSTM1 1 Glutathione S-transferase mu 1 Genotype associated with preterm birth38 particularly in the
setting of high air pollution39

NOS2 17 Inducible nitric oxide synthases Fetal genotype associated with prematurity40

IL1R2 2 Interleukin 1 receptor 2 Genotypes modify risk for preterm birth41

IL6 7 Interleukin 6 Cytokine levels,42 genotype43 associated with preterm birth,
and cervical insufficiency in multiple studies

IRAK1 X Interleukin 1 receptor-associated kinase 1 Increases in response to uterine inflammation26,44

KDR 4 Kinase insert domain receptor Differential methylation and expression in preeclampsia45

PTGDR 14 Prostanoid DP receptor Genotype associated with postcoital associated preterm birth46

PRKCA 17 Protein kinase C α Genotype associated with preterm birth in African American
women36

KCNN3 1 Small conductance calcium-activated
potassium channel 3

Maternal47 and fetal48 genotype associated with preterm birth

SP3 2 Specificity protein 3 Overexpressed in maternal blood in early pregnancy among
women destined to deliver preterm25

TLR10 4 Toll-like receptor 10 Fetal membrane response to inflammation49

Abbreviation: Chr, chromosome.
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Our study should be interpretedwith several limitations in
mind. Evolutionary triangulationand this analysis is limitedby
the unknown degree of similarity between the selected
populations and the non-Hispanic white, Hispanic, and non-
Hispanic black populations used to generate the spontaneous
PTB gene lists we examined. HapMap populations, by design,
are generally less diverse in comparison to a random sampling
ofpregnantwomenat risk forPTB in theUnitedStates. Because
of the uncertainty regarding which HapMap populations
might best represent the admixed Hispanic and non-Hispanic
black populations within the United States, we generated two
separate evolutionary triangulation gene lists (CEU_GIH_YRI
and CEU_ASW_MEX). It is possible that other combinations of
HapMap populations may more appropriately estimate the
populations studied. Thesmall numberofgenes analyzed from
list 1 likely limited our ability to find statistically significant
functional enrichment within this list. However, our focus on
gene lists derived from large, multicenter studies or aggre-
gated genetic data minimizes the likelihood that isolated
differences local ancestry would limit our results or general-
izability. In addition, the literature curation is current for the
dbPTB Web site only through July 2013. Recent findings
publishedover thepast 4 years could thereforenot be included
in a systematicmanner as they are unavailable online.14,15 For
that reason, we incorporated the spontaneous PTB gene list by
Sheikh et al,16 to provide more a contemporaneous gene list.

This study also had several strengths. Application of a
novel genetic filtering technique provides additional “ver-
ification” of genes or single nucleotide polymorphisms that
were marginally significant in previous prematurity studies,
and provide a much-needed focus for future investigations
given the complex nature of this phenotype. Further, these
results present additional proof of concept and suggest that
the filtering methodology of evolutionary triangulation may
be applied to other disorders of pregnancy that dispropor-
tionately affect different populations of women (e.g., pre-
eclampsia or gestational diabetes).

In conclusion, the application of evolutionary triangulation
analysis—a novel filtering metric based on evolutionary his-
tory—to spontaneous PTB provided independent support for
multiple genes previously associatedwith disease in genome-
wide association and candidate gene studies. Identification of
genes from prior spontaneous PTB genetic association studies
through evolutionary triangulationfiltering highlights a prior-
itized list of genes for future investigations of prematurity.

Condensation
Evolutionary triangulation, a novel bioinformatics approach,
provides independent support formultiple genes previously
associated with PTB and presents an alternate filtering
metric for genetic analyses using evolutionary history.

Note
This studywas presented inpart at the Society forMaternal
FetalMedicine’s 37thAnnualMeeting2017 (LasVegas, NV),
as an oral concurrent presentation (1/26/17), final abstract
ID #11.
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