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Abstract

OBJECTIVE—We sought to evaluate nitric oxide pathway placental gene expression and the 

epigenome (CpG methylation) among women receiving 17-alpha hydroxyprogesterone caproate 

(17-OHPC) with and without recurrent preterm birth (PTB).

STUDY DESIGN—Case-control study. We prospectively recruited women with ≥ 1 prior 

singleton spontaneous PTB <34 weeks receiving 17-OHPC. DNA and RNA were isolated from 

placentas. RNA abundance (gene expression) and the methylome were analyzed for 84 genes in 

nitric oxide pathways. Women with recurrent PTB <34 weeks (cases) were compared to those 

delivering at term (controls). Statistical analysis included multivariable models with Bonferroni 

corrected p-values.

RESULTS—17 women met inclusion criteria; 7 preterm cases (delivered at 22.6 +/− 2.9 weeks) 

and 10 term controls (delivered at 38.5 +/− 0.8 weeks). Groups had similar PTB history, race/

ethnicity, and socioeconomic risk factors for PTB. Twenty-seven nitric oxide genes displayed 

differential expression (p<0.05 and q<0.10) when comparing placentas from preterm cases and 

term controls; all were down-regulated in preterm cases. 860 corresponding CpG sites were 

differentially methylated between the preterm cases and term controls (Bonferroni p-value <0.05).
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CONCLUSIONS—CpG methylation and gene expression patterns in nitric oxide pathway genes 

differ among placentas from recurrent PTB compared to term birth following 17-OHPC exposure.
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preterm birth

INTRODUCTION

Despite a recent modest decrease in the rate of prematurity in the US from 2006–2014, rates 

of prematurity in the US rose in 2015, and hundreds of thousands of babies are delivered too 

soon every year. A prior spontaneous preterm birth (PTB) is the greatest risk factor for 

recurrence.1 Supplementation with 17-alpha hydroxyprogesterone caproate (17-OHPC) 

reduces the risk of recurrent PTB by one-third, and offering 17-OHPC to women with a 

history of a prior spontaneous PTB is the standard of care in the US.2

Unfortunately, 17-OHPC is only effective for some women, as 18–36% of women 

experience a recurrent spontaneous PTB despite therapy. The reasons for this variation in 

response are poorly understood. Pregnancy outcomes among women administered 17-OHPC 

may be influenced by historical, clinical, pharmacologic, and genetic factors.3–6 We and 

others have recently reported that non-Hispanic black women, as well as those with vaginal 

bleeding or abruption, a history of abruption in the prior pregnancy, or with a family history 

of PTB were less likely to respond to 17-OHPC.3–6 Caritis and colleagues also demonstrated 

that those with the lowest 17-OHPC concentrations have the highest likelihood of recurrent 

spontaneous PTB.7 Pharmacogenetics studies of prematurity indicate that maternal genotype 

may explain some of the variable clinical response to 17-OHPC for recurrent PTB 

prevention; genes in nitric oxide pathways have been implicated in two separate cohorts.6,8

Importantly, no data regarding the influence of placental epigenetics are available to predict 

clinical outcomes among women receiving 17-OHPC. We hypothesized that the placentas of 

women delivering at term following exposure to 17-OHPC for the prevention of recurrent 

spontaneous PTB will have detectable changes in nitric oxide pathway gene expression and 

site-specific CpG methylation (a mediator of gene transcription) during the mid-trimester 

compared to the placentas of women experiencing a recurrent spontaneous PTB.

MATERIALS AND METHODS

This was a case-control epigenetic and gene expression association study. Women with a 

history of one or more singleton non-anomalous spontaneous PTB between 16 and 34 

weeks’ who received 17-OHPC were recruited prospectively at the University of North 

Carolina-Chapel Hill (Chapel Hill, NC) from 2015–2016 into the UNC PTB Biobank. We 

defined spontaneous PTB as delivery following preterm premature rupture of membranes, 

cervical insufficiency (defined as asymptomatic cervical dilation or effacement in the second 

trimester of pregnancy), or idiopathic spontaneous preterm labor (uterine contractions 

leading to cervical dilation). Pregnancies were dated by a combination of last menstrual 

period (if available) and ultrasound using standard ACOG criteria.9 Pregnancy management, 

MANUCK et al. Page 2

Am J Perinatol. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



including decisions regarding whether to prescribe 17-OHPC and the timing of 17-OHPC 

administration, were at the discretion of the primary obstetric provider.

After delivery, three full thickness placental biopsies were obtained from the fetal side, 2cm 

from the placental cord insertion site using a standard 3mm punch biopsy tool, placed in 

AllProtect solution (Qiagen, Valencia, CA), and frozen at −80°C within 24 hours of delivery 

until analysis. Care was taken to avoid biopsy of placental sites with obvious gross 

abnormalities. Labor and delivery course, indication for delivery, and neonatal outcomes 

were collected.

For this study, we selected women with recurrent early PTB <34 weeks’ gestation who were 

enrolled in the UNC PTB Biobank, received 17-OHPC, had placental samples available, and 

were self-identified as non-Hispanic black, non-Hispanic white, or Hispanic race/ethnicity. 

The control group was comprised of women enrolled in the UNC PTB Biobank who also 

had a history of a prior PTB and received 17-OHPC but delivered at term (at or beyond 37 

weeks’ gestation). Controls were selected at random to match the composition of the case 

group with regards to maternal race/ethnicity and history of cervical insufficiency. We 

excluded women carrying fetuses later diagnosed with major congenital anomalies or 

aneuploidy and those with known Mullerian anomalies.

All clinical data were collected using standardized questionnaires, and interviews were 

performed by trained research assistants. Study data were collected and managed using 

REDCap (Research Electronic Data Capture) tools, a secure, web-based application 

designed to support data capture for research studies, hosted at the University of North 

Carolina-Chapel Hill.10 The electronic medical record was also reviewed to supplement and 

verify clinical data provided by participants during interviews. This study was approved by 

the Institutional Review Board at the University of North Carolina-Chapel Hill, and all 

women provided written, informed consent prior to participation.

DNA and RNA were isolated from placental tissue. Placental biopsies were blotted to 

remove residual Allprotect reagent and homogenized in Buffer RLT Plus with B-

mercaptoethanol (Qiagen, Valencia, CA). DNA and RNA sequences greater than 18 

nucleotides in length were extracted from placental tissue using the AllPrep DNA/RNA/

miRNA Universal Kit (Qiagen, Valencia, CA) according to manufacturer’s instructions. 

Isolated DNA was then bisulfite-converted using the EZ DNA methylation kit (Zymo 

Research, Irvine, CA). RNA abundance (gene expression) was analyzed using the Human 

Nitric Oxide Signaling Pathway RT2 Profiler PCR Array, version 4.0 (SABiosciences, 

Qiagen, Valencia, CA) per manufacturer’s instructions.

CpG methylation was assessed by hybridizing bisulfite converted DNA onto the Illumina 

MethylationEPIC BeadChip array (Illumina, Inc., San Diego, CA). This platform assesses 

DNA methylation levels of 850,000 probes at a single nucleotide resolution. Methylation 

levels were calculated and expressed as β-values (β = intensity of the methylated allele (M) / 

(intensity of the unmethylated allele (U) + intensity of the methylated allele (m) +100). 

Probes with poor detection (p<0.01) were removed prior to analysis. Quantile normalization 

was then performed to ensure comparability across samples. Probes representing Single 
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Nucleotide Polymorphisms (SNPs) were removed as variability at these loci arise from 

either allelic composition or altered methylation profiles. Finally, methylation data for the 84 

genes represented on the nitric oxide pathway RNA expression array (detailed above), 

represented by 3672 probes, were selected for further analysis.

Bivariate analyses were conducted to compare recurrent early PTB cases to term controls 

using t-test and Fisher’s exact test as appropriate using STATA statistical software (version 

13.1, College Station, TX). We compared the relative expression of 84 nitric oxide pathway 

genes between placentas from preterm birth cases and term controls. Probes corresponding 

to all genes significant (p<0.05 and q<0.10) in the initial gene expression analysis were then 

evaluated for differences in CpG methylation, in relation to PTB case status using an 

Analysis of Covariance (ANCOVA) model. We controlled for several covariates, selected a 
priori due to known association with PTB, including maternal age, race, prepregnancy body 

mass index, household income, and earliest prior PTB. The ANCOVA analysis was 

conducted with Partek Genomic Suite 6.4 (St Louis Missouri). CpG sites corresponding with 

the significant genes on the nitric oxide signaling pathway gene array were evaluated. To 

determine if CpG methylation was associated with the expression of genes involved in the 

nitric oxide pathway, Pearson correlation coefficients and associated p-values were 

calculated, comparing the placental methylome between early recurrent PTB cases and term 

controls. Statistical significance was set at Bonferroni-corrected p-value threshold of 0.05.

RESULTS

A total of 17 women met the inclusion criteria for the study. There were 7 preterm cases 

(delivered at 23.9 +/− 5.1 weeks, range 17.9–33.4 weeks) and 10 term controls (delivered at 

38.5 +/− 0.8 weeks). The groups were similar with regards to PTB history, race/ethnicity, 

and socioeconomic risk factors for PTB (Table 1). All were self-reported non-smokers 

during pregnancy. Placentas were processed and frozen at similar times post-delivery for 

cases and controls (13.0 +/− 13.7 hours for cases and 24.0 +/− 6.2 hours for controls, 

p=0.23).

The expression of 84 genes in the nitric oxide pathway was compared between preterm and 

term placentas. Twenty-seven nitric oxide genes were differentially expressed (p<0.05 and 

q<0.10) when comparing placentas from preterm cases and term controls; all were down-

regulated in preterm cases (Table 2). The five most significant differentially expressed genes 

in the preterm placentas relative to term placentas were PRDX2 (Peroxiredoxin 2; p=0.0012, 

q=0.024), SIRT2 (Sirtuin 2; p=0.0015, q=0.024), CAT (catalase; p=0.0033, q=0.031), PNKP 
(polynucleotide kinase 3′ phosphatase; p=0.0059, q=0.031), and CCS (coper chaperone for 

superoxide dismutase; p=0.0065; q=0.031). Differentially expressed genes were compared to 

a list of 506 genes published by Winn et al, known to have differential expression in placenta 

between mid-pregnancy and term.11 We found 3 of the 27 differentially expressed genes 

overlapped with those found by Winn et al to be associated with gestational age, including 

PRDX2 (Peroxiredoxin 2), EGFR (epidermal growth factor receptor), and GLRX2 
(glutaredoxin 2).
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The 27 differentially expressed genes in the placenta were subsequently analyzed for 

association with changes in CpG methylation in the placenta. A total of 860 CpG sites 

corresponding to the 27 genes were found to be differentially methylated between the 

preterm cases and term controls (Bonferroni p-value <0.05). A nearly equal proportion of 

differentially methylated sites were hypomethylated (decreased, 47%) as were 

hypermethylated (increased, 53%) in progesterone responders compared to progesterone 

non-responders. The number of differentially methylated sites in each of these 27 genes is 

displayed, by gene, in Table 3. The mean fold change for progesterone responders vs. non-

responders is also shown in Table 3. Finally, the leading CpG methylation results (according 

to the Bonferroni corrected p-value) for each of the 27 genes is shown in Table 4.

COMMENT

We found differences in the methylation and gene expression patterns in nitric oxide 

pathway genes in term vs. preterm placentas following exposure to 17-OHPC. Gene 

expression changes in the placenta at delivery are associated with changes in CpG 

methylation in the placenta at delivery. These data provide further evidence implicating 

nitric oxide pathways in recurrent PTB among women on 17-OHPC. Since all women 

received 17-OHPC, we are unable to compare placentas among those with recurrent PTB 

with and without 17-OHPC exposure. We speculate that the observed differences are not a 

direct effect from 17-OHPC exposure, but may reflect a certain pattern of methylation 

and/or gene expression changes in placentas of those destined to respond or not respond to 

progesterone therapy. However, our methodology does not allow us to directly understand 

the interaction between 17-OHPC exposure, gene expression, CpG methylation, and birth 

outcomes.

Our finding of differential gene expression within the nitric oxide pathway is biologically 

plausible. Specifically, progesterone and nitric oxide are tightly linked, beginning at the 

establishment of pregnancy.12 Progesterone is known to stimulate nitric oxide synthesis via 

transcriptional and non-transcriptional pathways in human endothelial cells.13–16 Nitric 

oxide expression generally increases during pregnancy and decreases before parturition,17 

and nitric oxide is known to regulate vasodilation, smooth muscle relaxation, and the 

inflammatory response during pregnancy. However, myometrial relaxation occurs in a 

cGMP-independent manner.18 In other areas of the body (e.g., blood vessels), changes may 

be activated in a non-genomic manner by estrogen, though there are no specific studies in 

pregnancy or in the myometrium.19,20 The bactericidal, viricidal, and fungicidal activity of 

macrophages is determined by nitric oxide pathways.21 Inflammation and infection are 

established etiologies of PTB, particularly early PTB as examined in the current analysis. 

Though previously thought to be associated only with iatrogenic PTB (e.g., due to pre-

eclampsia), recent evidence implicates abnormal placentation, including malperfusion, in 

spontaneous PTB.22,23 Finally, nitric oxide influences uterine activity by increasing cyclic 

guanosine monophosphate, which in turn relaxes uterine myometrium.24–26

In our previous work evaluating 17-OHPC pharmacogenomics, we found a relationship 

between maternal NOS1 genotype and NO pathway genes and 17-OHPC responder status. 

However, it is difficult to compare genotype results (DNA) with gene expression results 
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(RNA) and epigenetics (CpG methylation), particularly across subjects (maternal vs. fetal 

genetics). In one of the few studies of the contribution of fetal gene expression to PTB, Vora, 

et al found higher fetal gene expression of nitric oxide synthase 1 and d-aspartate oxidase in 

mid-pregnancy amniotic fluid supernatant among pregnancies destined to deliver preterm 

compared to term.27 However, in the Vora study, the focus was not on pharmacogenomics 

and no information is available regarding progesterone supplementation. Further, the NOS3 

gene was not one of the 65 genes evaluated on their custom panel.

Many of the evaluated genes also have biologic plausibility for PTB. Space limitations 

preclude in-depth discussion of all genes of interest. Notably, however, two genes in the 

peroxiredoxin family of genes (PRDX2 and PRDX5) were downregulated in preterm 

placentas compared with term placentas. The family of peroxiredoxin genes has previously 

been implicated in cervical ripening28,29 and the presence of PRDX2 is considered crucial to 

regulation of oxidative stress at the placental level.30,31 We speculate that loss of this 

protective mechanism to counteract oxidative stress in preterm mothers and placentas may 

have contributed to recurrent PTB. However, since Winn, et al. found gestational age 

variation in PRDX2,11 we cannot exclude this as a possible explanation for our result. We 

also found that expression of SIRT2 was downregulated in preterm placentas. In a study of 

women with severe, early onset pre-eclampsia, Hannan and colleagues reported that SIRT2 
localizes to the syncytiotrophoblast, villous leukocytes, and vasculature in preterm placentas, 

and that those with severe pre-eclampsia and fetal growth restriction have reduced SIRT2 
protein expression.32 Further, in a study of the relationship between transcriptomic profiles 

of chorioamniotic membranes of preterm neonates with and without neurologic impairment 

at age 2, SEPP1 (Selenoprotein P, plasma 1)

This study should be interpreted with several limitations in mind. We were limited by the 

overall small size of the cohort. Despite our sample size, however, the results were 

significant even when performing Bonferroni correction for the large number of tests. 

Nonetheless, these findings should be confirmed in larger studies. Further, it is possible that 

our findings were confounded by gestational age. However, this confounding was mitigated 

somewhat by comparing differentially expressed genes to a known database of genes with 

changes in expression associated with gestational age and finding little overlap. 

Additionally, the majority of women in this cohort had a history of one or more pre- or peri-

viable deliveries. It is uncertain whether these results would therefore apply to a more 

generalized PTB population with less severe phenotypes. Due to logistic considerations, 

placentas were processed up to 48 hours post-delivery. Traditionally, immediate processing 

to stabilize RNA has been considered the gold standard, but recent research has shown that 

storage at room temperature (4 degrees C) for up to 48 hours prior to dissection and freezing 

does not alter RNA quality.33 Finally, it is possible that differences in exposure to 

progesterone may have impacted our results. However, though some women received both 

17-OHPC combined with vaginal progesterone, the exposure to vaginal progesterone is 

equal in both groups and therefore not expected to alter results. Women who delivered at 

term most likely received their last 17-OHPC injection 1–3 weeks prior to delivery, whereas 

those who delivered preterm most likely received their last 17-OHPC injection within a 

week of delivery. The half-life of 17P is approximately 10 days,34 so even those women who 

received their last injection at 36 weeks 0 days gestation would still be expected to have 25% 
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of their circulating 17-OHPC at 39 weeks (2 half-lives), and we do not anticipate that gene 

expression and methylation changes occur that rapidly following subsequent “17P 

withdraw.” Further, as described above, we posit that placental methylation and gene 

expression changes may not be in direct ‘response’ to 17P but that a certain pattern of 

methylation and gene expression may be associated with response or non-response.

This study also had several strengths. Our findings provide consistent evidence of a 

relationship between genetic variation in nitric oxide pathways and recurrent PTB among 

women exposed to 17-OHPC, a biologically plausible hypothesis. By linking CpG 

methylation and gene expression in the same samples, we provide a possible mechanism by 

which genes are turned ‘on’ or ‘off,’ given that methylation within promotor regions of 

genes typically represses gene transcription. Our study is strengthened by the exclusion of 

women who delivered between 34–37 weeks’ gestation (“late preterm”), a time period when 

the etiology for PTB is traditionally very heterogenous, and may include non-spontaneous 

indications. Our approach, evaluating placental tissue and then examining both gene 

expression and CpG methylation is integrative, evaluating not only the end result of gene 

expression changes but the likely biologic changes contributing to them.

In conclusion, we found distinct changes in placental nitric-oxide pathway gene expression 

and CpG methylation in women with recurrent PTB on 17-OHPC. In the future, evaluation 

of whether these epigenetic changes are also present in the mid-trimester of women at 

highest risk of PTB may provide the basis for development of diagnostic tests to identify 

women at risk for recurrent PTB despite 17-OHPC prophylaxis. Future studies might also 

investigate whether there are changes at the level of the maternal decidua and/or uterus from 

women delivering by cesarean section. This has the potential to lead to the testing of 

alternative therapies for women who are likely to deliver preterm despite 17-OHPC.
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Table 1

Baseline characteristics of recurrent preterm birth cases and term controls. Data are presented as n(%) unless 

specified.

Characteristic
Recurrent Preterm Birth 

– Cases
N=7

Term delivery – 
Controls

N=10
p-value

Maternal age (mean years, ± SD) 34.9 ± 5.2 32.4 ± 7.1 0.45

Race/ethnicity, n(%)

 Non-Hispanic Black 3 (43) 4 (40) 0.955

 Non-Hispanic White 1 (14) 2 (20)

 Hispanic 3 (43) 4 (40)

Maternal prepregnancy body mass index (median kg/m2, IQR) 28.9 (23.2, 45.6) 32.0 (24.6, 33.1) 0.412

High school education or greater, n(%) 4 (57) 9 (90) 0.25

History of abnormal pap smear, n(%) 4 (57.1) 3 (30.0) 0.350

History of excisional cervical procedure, n(%) 2 (28.6) 1 (10.0) 0.537

Married, n(%) 6 (85.7) 9 (90.0) >0.99

Subject herself was born preterm or has first degree relative with 
history of preterm delivery, n(%)

2 (28.6) 3 (30.0) >0.99

Gestational age of earliest prior preterm birth (median weeks, IQR) 20.0 (17.3, 32.1) 22.1 (19.0, 27.1) 0.843

Diagnosed with sexually transmitted vaginal infection (gonorrhea, 
chlamydia, or trichomonas) this pregnancy, n(%)

1 (14.3) 2 (20.0) >0.99

Used vaginal progesterone >14 weeks gestation, n (%) 3 (33) 1 (10) 0.30

Cerclage this pregnancy 5 (56) 4 (40) 0.656

Cervical length assessed by transvaginal ultrasound this pregnancy, 
n(%)

6 (85.7) 10 (100) 0.412

Shortest measured cervical length (median mm, IQR) 8.5 (3–24) 36 (33–45) 0.106

Gestational age at initiation of 17-alpha hydroxyprogesterone caproate 
(median weeks, IQR)

16.7 (16.4–18.4) 16.9 (16.0–18.0) 0.601
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Table 2

Significant placenta nitric oxide pathway gene expression results

Gene Symbol Gene Name p-value q-value Fold change (preterm vs. term)

PRDX2 Peroxiredoxin 2 0.0012 0.024 −1.043

SIRT2 Sirtuin 2 0.0015 0.024 −1.020

CAT Catalase 0.0033 0.031 −1.066

PNKP Polynucleotide kinase 3′-Phosphatase 0.0059 0.031 −1.064

CCS Copper chaperone for superoxide dismutaase 0.0065 0.031 −1.003

NUDT1 Nudix hydrolase 1 0.0067 0.031 −1.002

GPX1 Glutathione peroxidase 1 0.0069 0.031 −1.391

SEPP1 Selenoprotein P, plasma 1 0.010 0.039 −1.003

AKT1 AKT serine / threonine kinase 1 0.015 0.045 −1.198

EGFR Epidermal growth factor receptor 0.018 0.045 −3.289

DYNLL1 Dynein light chain LC8-Type 1 0.018 0.045 −1.417

MTL5 Tesmin 0.019 0.045 −1.002

NOS3 Nitric oxide synthase 3 0.021 0.045 −1.138

RNF7 Ring finger protein 7 0.021 0.045 −1.115

PRDX5 Peroxiredoxin 5 0.022 0.045 −1.368

HSP90AB1 Heat shock protein 90 alpha family class B member 1 0.023 0.045 −1.418

GLRX2 Glutoaredoxin 2 0.024 0.045 −1.042

DUSP1 Dual specificity phosphatase 1 0.032 0.053 −1.628

GPX5 Glutathione peroxidase 5 0.034 0.053 −1.001

SGK2 Serine / Threonine kinase 2 0.035 0.053 −1.002

GPX4 Glutathione peroxidase 4 0.035 0.053 −1.193

GPX2 Glutathione peroxidase 2 0.039 0.056 −1.002

ALOX12 Arachidonate 12-lipoxygenase, 12S type 0.042 0.056 −1.003

MBL2 Mannose binding lectin 2 0.047 0.056 −1.001

KRT1 Keratin 1 0.047 0.056 −1.001

DUOX1 Dual oxidase 1 0.048 0.056 −1.010

OXR1 Oxidation resistance 1 0.048 0.056 −1.034
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Table 3

Significant placenta nitric oxide pathway methylation results corresponding to top 27 differentially expressed 

nitric oxide pathway genes.

Gene Symbol

Number of differentially methylated CpG 
sites (progesterone responder vs. non-

responder)

Mean fold change, progesterone responder vs. non-responder (range)

Down Up Down Up

PRDX2 12 7 −1.47 (−5.69 to −1.002) 1.20 (1.003 to 1.51)

SIRT2 17 15 −1.16 (−2.12 to −1.0006) 1.16 (1.002 to 2.003)

CAT 15 17 −1.21 (−2.44 to −1.10) 1.28 (1.01 to 2.58)

PNKP 10 6 −1.14 (−1.48 to −1.01) 1.13 (1.02 to 1.46)

CCS 5 3 −1.23 (−1.79 to −1.01) 1.14 (1.014 to 1.300)

NUDT1 13 10 −1.59 (−6.69 to −1.0004) 1.82 (1.008 to 7.99)

GPX1 10 11 −1.05 (−1.10 to −1.002) 1.19 (1.004 to 1.89)

SEPP1 3 5 −1.23 (−1.47 to −1.04) 1.17 (1.00 to 1.50)

AKT1 26 34 −1.33 (−6.16 to −1.0001) 1.24 (1.008 to 2.28)

EGFR 56 53 −1.19 (−3.16 to −1.0009) 1.19 (1.002 to 3.08)

DYNLL1 13 21 −1.21 (−2.93 to −1.0003) 1.24 (1.008 to 2.40)

MTL5 15 16 −1.15 (−1.88 to −1.007) 1.63 (1.03 to 6.92)

NOS3 17 20 −1.12 (−1.58 to −1.004) 1.20 (1.004 to 1.60)

RNF7 10 8 −1.08 (−1.22 to −1.005) 1.07 (1.003 to 1.30)

PRDX5 13 9 −1.14 (−1.45 to −1.009) 1.23 (1.005 to 2.63)

HSP90AB1 15 12 −1.20 (−1.53 to −1.02) 1.19 (1.04 to 1.60)

GLRX2 10 11 −1.23 (−1.51 to −1.02) 1.12 (1.001 to 1.34)

DUSP1 18 15 −1.07 (−1.36 to −1.001) 1.23 (1.001 to 1.72)

GPX5 18 18 −1.13 (−1.66 to −1.002) 1.17 (1.002 to 1.98)

SGK2 18 18 −1.31 (−2.92 to −1.006) 1.16 (1.004 to 2.17)

GPX4 9 14 −1.20 (−1.47 to −1.03) 1.25 (1.0003 to 1.80)

GPX2 6 6 −1.32 (−2.54 to −1.03) 1.23 (1.01 to 1.63)

ALOX12 12 24 −1.35 (−3.00 to −1.02) 1.34 (1.003 to 2.82)

MBL2 5 5 −1.42 (−2.50 to −1.03) 1.14 (1.05 to 1.22)

KRT1 6 11 −1.19 (−1.55 to −1.02) 1.26 (1.01 to 1.86)

DUOX1 25 27 −1.21 (−2.057 to −1.010) 1.24 (1.005 to 4.44)

OXR1 35 52 −1.15 (−2.34 to −1.0003) 1.43 (1.001 to 4.94)
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Table 4

Leading CpG methylation results (by Bonferroni corrected p-value) for each of the 27 genes significant in the 

gene expression analysis.

Gene Symbol CpG marker Fold change (progesterone responder vs. non-responder) p-value (Bonferroni corrected)

PRDX2 cg18074016 −5.69 3.05 x 10−3

SIRT2 cg16738915 1.05 2.48 x 10−4

CAT cg20234170 1.79 2.97 x 10−5

PNKP cg25136622 1.46 1.63 x 10−5

CCS cg15255291 1.10 2.42 x 10−4

NUDT1 cg05061208 −1.85 4.64 x 10−4

GPX1 cg11597332 −1.03 6.29 x 10−3

SEPP1 cg00886598 −1.48 2.76 x 10−3

AKT1 cg05726935 −1.21 8.4 x 10−5

EGFR cg10002850 −1.03 2.11 x 10−4

DYNLL1 cg02699780 −2.93 8.22 x 10−4

MTL5 cg06699275 1.62 9.07 x 10−4

NOS3 cg24032393 1.58 1.11 x 10−4

RNF7 cg27296459 −1.22 2.44 x 10−3

PRDX5 cg23615572 −1.45 2.71 x 10−3

HSP90AB1 cg16242498 −1.27 8.18 x 10−5

GLRX2 cg11800710 −1.32 2.35 x 10−5

DUSP1 cg26095194 1.72 1.69 x 10−4

GPX5 cg02803996 1.20 2.02 x 10−4

SGK2 cg03337502 −1.79 3.91 x 10−4

GPX4 cg10732871 1.14 3.38 x 10−4

GPX2 cg14947787 1.20 1.57 x 10−3

ALOX12 cg13647527 −1.151 5.61 x 10−5

MBL2 cg27418851 −2.50 3.88 x 10−4

KRT1 cg03348792 1.76 1.37 x 10−4

DUOX1 cg11230298 −2.06 2.65 x 10−4

OXR1 cg06438976 −1.22 6.36 x 10−6
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