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Abstract. The leukocyte adhesion molecule L-selectin 
mediates binding to lymph node high endothelial ven- 
ules (HEV) and contributes to leukocyte rolling on en- 
dothelium at sites of inflammation. Previously, it was 
shown that truncation of the L-selectin cytoplasmic 
tail by 11 amino acids abolished binding to lymph 
node HEV and leukocyte rolling in vivo, but the mo- 
lecular basis for that observation was not determined. 
This study examined potential interactions between 
L-selectin and cytoskeletal proteins. We found that the 
cytoplasmic domain of L-selectin interacts directly 
with the cytoplasmic actin-binding protein ot-actinin 
and forms a complex with vinculin and possibly talin. 
Solid phase binding assays using the full-length 
L-selectin cytoplasmic domain bound to microtiter 
wells demonstrated direct, specific, and saturable 
binding of purified ot-actinin to L-selectin (Kd = 550 
nM), but no direct binding of purified talin or vincu- 
lin. Interestingly, talin potentiated binding of ot-actinin 
to the L-selectin cytoplasmic domain peptide despite 
the fact that direct binding of talin to L-selectin could 
not be measured. Vinculin binding to the L-selectin 
cytoplasmic domain peptide was detectable only in the 

presence of ot-actinin. L-selectin coprecipitated with a 
complex of cytoskeletal proteins including ct-actinin 
and vinculin from cells transfected with L-selectin, 
consistent with the possibility that ot-actinin binds 
directly to L-selectin and that vinculin associates by 
binding to ot-actinin in vivo to link actin filaments to 
the L-selectin cytoplasmic domain. In contrast, a dele- 
tion mutant of L-selectin lacking the COOH-terminal 
11 amino acids of the cytoplasmic domain failed to 
coprecipitate with ot-actinin or vinculin. Surprisingly, 
this mutant L-selectin localized normally to the 
microvillar projections on the cell surface. These data 
suggest that the COOH-terminal 11 amino acids of the 
L-selectin cytoplasmic domain are required for medi- 
ating interactions with the actin cytoskeleton via a 
complex of ct-actinin and vinculin, but that this por- 
tion of the cytoplasmic domain is not necessary for 
proper localization of L-selectin on the cell surface. 
Correct L-selectin receptor positioning is therefore 
insufficient for leukocyte adhesion mediated by 
L-selectin, suggesting that this adhesion may also re- 
quire direct interactions with the cytoskeleton. 

YMPHOCYTE migration through lymphoid organs and 
leukocyte traffic into sites of inflammation are related 
processes that are both regulated principally at the 

level of leukocyte interactions with the lumenal surface of 
postcapillary venules. A number of leukocyte and endo- 
thelial cell surface molecules that participate in this interac- 
tion have been identified, including members of at least three 
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gene families: the integrins, the immunoglobulin (Ig) super- 
family, and the selectins (for reviews see Springer, 1994; 
Butcher, 1991; Arnaout, 1993). Selectins mediate the initial 
phase of leukocyte recognition of endothelium, which usu- 
ally takes the form of rolling along the vessel wall at veloci- 
ties much slower than freely flowing blood elements (Law- 
rence and Springer, 1991; Bevilacqua and Nelson, 1993). In 
contrast, integrins mediate the subsequent firm arrest of the 
leukocytes to the endotheliurn, spreading on the endothelial 
surface, and transendothelial migration into the tissues 
(Smith, 1992). While the integrin and Ig families consists of 
many members and are broadly expressed by numerous cell 
types, there are only three known selectins, each of which 
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exhibits a much narrower range of expression. In particular, 
L-selectin is expressed exclusively on leukocytes (Kansas et 
al., 1985; Tedder et al., 1990), E-selectin is expressed only 
on endothelium activated in vivo or in vitro by inflammatory 
stimuli such as TNF-ct, IL-1, or LPS (Bevilacqua et al., 
1987), and P-selectin is selectively expressed on both plate- 
lets and endothelium which have been activated in vitro by 
thrombin, histamine, or phorbol esters (Berman et al., 1986; 
McEver et al., 1989). This pattern of expression of the selec- 
tins is consistent with their specialized role in regulating the 
interaction of circulating elements of the blood with the vas- 
cular endothelium. 

Although the selectins exhibit considerable homology in 
their extracellular regions, no homology exists between the 
cytoplasmic domains of different selectins, suggesting that 
distinct functions are encoded within these regions. Consis- 
tent with this idea, each of the selectin cytoplasmic tails is 
well conserved between different species (for review see 
Bevilacqua and Nelson, 1993). In addition, direct functional 
evidence supports this view. Sorting of newly synthesized 
P-selectin to Weibel-Palade bodies and t~-granules of plate- 
lets and endothelial cells and to granules of transfected AtT- 
20 cells is mediated by the P-selectin cytoplasmic tail, and 
endocytosis of E-selectin by human endothelial cells may in- 
volve the E-selectin cytoplasmic tail (Disdier et al., 1992; 
Koedam et al., 1992; Eckhardt et al., 1992). 

A precise function for the L-selectin cytoplasmic tail has 
not yet been established. However, truncation of the pre- 
dicted 17-amino acid cytoplasmic domain of L-selectin by 
11 residues abolishes both binding to lymph node high en- 
dothelial venules (HEV) t and leukocyte rolling in vivo 
(Kansas et al., 1993). Because the lectin/ligand recognition 
activity of this mutant was preserved, the molecular basis for 
this phenotype was unclear. At least two possibilities must 
be considered. The observation that cytochalasin B, which 
blocks the function of actin microfilaments, also abolishes 
L-selectin-mediated adhesion without affecting lectin activ- 
ity (Kansas et al., 1993), suggests that interactions between 
one or more cytoskeletal proteins and the L-selectin cyto- 
plasmic tail are necessary for L-selectin function. A second, 
not mutually exclusive possibility is that the cytoplasmic do- 
main of L-selectin mediates the preferential localization of 
this receptor to the microvilli and ruffles on the surface of 
normal leukocytes (Picker et al., 1991; Erlandsen et al., 
1993; Bruce and Doerschuk, 1994), analogous to the sorting 
function of the P-selectin cytoplasmic domain, and that inap- 
propriate subcellular positioning is responsible for the defect 
exhibited by the L-selectin cytoplasmic domain truncation 
mutant. 

We have investigated whether L-selectin binds to cyto- 
skeletal proteins using solid phase binding assays of purified 
cytoskeletal proteins to a peptide corresponding to the 
L-selectin cytoplasmic domain and coimmunoprecipitation 
experiments in vivo using cells transfected with wild-type 
and truncated L-selectin. In addition, the distribution of 
wild-type and truncated L-selectin has been examined by im- 
munoelectronic microscopy. The results indicate that the 
L-selectin cytoplasmic domain interacts with the cytoskele- 

1. Abbreviation used in this paper: HEV, high endothelial venule. 

ton via the actin-binding protein a-actinin, and that this in- 
teraction may also involve two other cytoskeletal proteins, 
vinculin and talin. These interactions, however, are not re- 
quired for localization of L-selectin to the microvillar 
projections. 

Materials and Methods 

Cell Culture 
The mouse pre-B cell line 300.19 was transfected by electroporation with 
either full-length (LAM-1) or truncated human L-selectin cDNA (LAcyto, 
lacking the amino terminal 11 residues of the cytoplasmic domain) in the 
pZIPneoSV(X) vector as previously described (Kansas et al., 1993). Stable 
transfectants and mock-transfected cells (300.19) were maintained in sus- 
pension culture in RPMI-1640 medium containing 0.5 mg/ml G418 (geneti- 
cin, Sigma Immunochemicals, St. Louis, MO) and supplemented with 10% 
FBS and antibiotics at 37°C in a humidified 5% CO2 atmosphere. Cells 
were passaged approximately every 2 d at 1:10 dilution into fresh media. 

Coimmunoprecipitation and Immunoblotting 
300.19, 300.19/LAM-1, and 300.19/LAcyto cells were harvested during log 
phase of growth and washed in I-IBSS. Cells at a concentration of 5 × 
106/ml were extracted with 1 ml of coimmunoprecipitation lysis buffer (1% 
TX-100, 150 mM NaC1, 10 mM Tris-HCl, pH 7.6, 1 mM CaCi2, 1 mM 
MgC12, 0.01% NAN3, 20 mM DNaseI, 1 mM aprotinin, 10 mM benzami- 
dine, and 1 mM PMSF) on ice for 5 rain. Extracts were clarified by centrifu- 
gation at 15,000 g for 10 rain, and the supernatants transferred to a fresh 
tube. Cellular proteins which bind to protein A were precleared by incuba- 
tion with 50 #1 of a 10% wt/vol solution of protein-A positive S. aureus 
cells for 30 rain at 4°C. The S. aureus cells were sedimented, and an excess 
of primary antibody (monoclonal antibody [mAb] LAMI-14 against the ex- 
traceilular domain of L-selectin or antibody against talin, vinculin, ~-acti- 
nin, paxillin, filamin, or tensin) was added to the supernatant, and then in- 
cubated for 1 h at 4°C. 100 #1 of a 10% vol/vol suspension of protein 
A-Scpharose CL4B (or a protein A-Sepharose-rabbit anti-mouse Ig con- 
jugate when the primary antibody was a monoclonal) was subsequently 
added for an additional 1 h. Immunocomplexes were washed 4x  in coim- 
munoprecipitation lysis buffer containing 0.1% TX-100, released from the 
Sepharose beads by addition of SDS-PAGE sample buffer, and boiled for 
5 min. Samples were electrophoresed on 10% polyacrylamide gels and 
transferred to nitrocellulose which was blocked with 2 % gelatin in Tris- 
buffered saline-Tween (TBS-T, 20 mM Tris-HCl, pH 7.6, 137 mM NaCI, 
0.1% Tween-20) for 2 h. Depending upon the experiment, blots were probed 
with LAMI-14 or with antibody against talin, vinculin, ot-actinin, paxillin, 
tensin, or filamin in TBS-T for 1 h, washed in TBS-T, and then incubated 
with either goat anti-mouse Ig or goat anti-rabbit Ig conjugated to horse- 
radish peroxidase for I h. After a final wash in TBS-T, blots were visualized 
by chemiluminescence generated upon addition of LumiGLO TM and ex- 
posure to X-ray film. 

Analysis of L-Selectin Surface Expression 
Expression of the full-length and truncated L-selectin was evaluated by in- 
direct immunofluorescence microscopy. Harvested cells were washed in 
HBSS and suspended in PBS. Cell suspensions were incubated with LAM1- 
14 (5 #g/ml) for 30 rain, washed in PBS, and then incubated in FITC- 
conjugated anti-mouse Ig (Jackson Immunoresearch, West Grove, PA) for 
an additional 30 rain. Ceils were again washed in PBS and analyzed by flow 
cytometry on a FACStar Plus (Becton Dickinson, San Jose, CA). Surface 
expression was also measured by surface iodination using lactoperoxidase 
catalyzed iodination followed by immunoprecipitation with mAb LAMI-14. 
Iodinated full-length or truncated L-selectin was located by SDS-PAGE and 
autoradiography of LAMI-14 immunoprecipitates and quantitaaxi by gamma- 
counting of the excised bands from the gel, 

Protein Purification and Solid Phase Binding Assays 
a-Actinin, talin, and vinculin were purified from chicken gizzard as previ- 
ously described (Feramisco and Burridge, 1980). Proteins were judged to 
be >95 % pure by SDS-PAGE. Purified proteins were iodinated using the 
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Iodogen method (Fraker and Speck, 1978). Iodogen (50/~1 of 1 mg/ml in 
CHCI3; Pierce Chem. Co., Rockford, IL) was dried onto the inside of a 
microfuge tube under a gentle nitrogen stream. Protein, dialyzed into PBS, 
was added to the tube followed by 0.5 mCi of NaJ25I (Amersham) and the 
reaction was carried out at 4"C for 3 min. Saturated tyrosine was added to 
terminate the reaction and labeled protein was separated from free iodine 
and iodo-tyrosine by chromatography on Sephadex G-50 in 50 mM Tris, ~ 
20 mM NaCI, 0.1% NAN3, and 0.1% /~-mereaptoethanol (buffer B) plus 
0.2% gelatin as a carrier. The proteins were labeled to a specific activity 
of 0.5 x 107 cpm/#g for ot-actinin, 1.0 x 107 cpm/#g for vinculin, and 
0.3 X 107 cpm/#g for talin. Proteolytic fragments of c~-actinin were gener- 
ated using thermolysin as previously described (Pavalko and Burridge, 
1991). 

The L-selectin cytoplasmic domain peptide (RRLKKGKKSKRSMND- 
PY) was synthesized by Multiple Peptide Systems, Inc. (San Diego, CA), 
purified by reverse phase HPLC on a C18 column, and subjected to amino 
acid analysis and partial sequence analysis to confirm that it contained the 
correct sequence. The scrambled peptide consisted of the sequence KMY- 
PKRSKDNKRLSKGR. A polyclonal antibody against the L-selectin cyto- 
plasmic domain did not recognize this scrambled peptide in solid phase 
radioimmunoassays (not shown). The O2-cytoplasmic domain peptide cor- 
responded to residues 726-744. We have previously shown that this 02(726- 
744) peptide interacts with c~-actinin (Pavalko and LaRoche, 1993). The 
E-selectin cytoplasmic domain peptide corresponded to the complete 
E-selectin cytoplasmic domain and was shown previously not to interact 
with ot-actinin (Pavalko and LaRoche, 1993). Removable microtiter wells 
(Dynatech Laboratories, Inc., Alexandria, VA) were coated with 50 #1 of 
cytoplasmic domain peptide (1 mg/ml in PBS) for 2 h at 37°C. The wells 
were rinsed briefly with wash buffer (0.1% BSA, 0.1% NAN3, in PBS), 
blocked with 2% BSA for 30 mln at 37°C, and then rinsed again with wash 

buffer. Control wells were coated with 2 % BSA alone. Iodinated protein and 
unlabeled competitor protein were added to the wells and diluted to a final 
volume of 110 #1 with PBS. The wells were incubated for 2 h at 37°C, and 
then washed four times with wash buffer. Individual wells were removed and 
bound radioactivity measured in a Packard-Bell 7-counter. Each data point 
is the average of duplicate or triplicate wells. Background binding to BSA 
was not subtracted from the binding to peptide but is plotted separately for 
each experiment. 

Immunoelectron Microscopy 
Lymphoblasts expressing either the intact or the truncated L-selectin were 
cultured at a low density. The cells were suspended at a concentration of 
107/ml in PBS and incubated with 10 #g/ml anti-L-selectin antibody, 
Leu-8 (Becton Dickinson) or Laml.14 (gift from Dr. T. Tedder), or with 
control mouse IgG for 60 min at room temperature. After centrifugation, 
the cells were suspended in PBS-I% FCS and incubated with goat anti- 
mouse IgG antibody bound to 10 nm colloidal gold (final concentration 
10%, Sigma Chem. Co.) for 30 min at room temperature. After washing, 
the lymphoblasts were fixed in 0.5% glutaraldehyde in PBS for 10 min. The 
cell pellet was embedded in 2% agarose. After sectioning into 1 mm 3 
cubes, the cells were postfixed in osmium tetroxide, embedded in epoxy 
resin, sectioned using an ultrarnicrotome at 90 nm, collected on formvar- 
coated grids, stained with uranyl acetate, and examined using transmission 
electron microscopy. 

Cell profiles were randomly selected, photographed at l l ,500x or 
15,500x magnification, and printed at 20,125 or 27,125 magnification. 
Each gold particle was counted and categorized as on microvillar projec- 
tions or flat intervening regions. The fraction of gold particles that were 
expressed on mlcrovillar projections was calculated. The distribution of in- 
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Figure L Solid phase binding 
assays measuring the binding 
of three purified cytoskeletal- 
membrane linker proteins to 
the L-selectin cytoplasmic do- 
main peptide. Binding of iodi- 
hated ~x-actinin (A), talin (C), 
and vinculin (D) in the pres- 
ence of increasing concentra- 
tion of unlabeled competitor 
protein to microtiter wells 
coated with the Gill-length 
L-selectin cytoplasmic do- 
main peptide (closed circles), 
or to control wells coated with 
BSA (open triangles). (B) 
Scatchard analysis of the bind- 
ing of (x-actinin to the L-selec- 
tin cytoplasmic domain pep- 
tide. Each point represents the 
average of triplicate wells. 

Pavalko et al. L-Selectin-Cytoskeletal Interaction 1157 



tact L-selecdn was compared to that of the truncated form using a Student's 
t test. 

Results 

The L-Selectin Cytoplasmic Domain Interacts 
with the Actin-binding Protein ot-Actinin 
Solid phase binding assays were performed to determine if 
talin, vinculin, and o~-actinin, which have been shown to 
participate in linking the actin cytoskeleton to the cytoplas- 
mic tails of integrins, might also participate in linking the 
cytoskeleton to L-selectin cytoplasmic domains. Talin, vin- 
culin, and ot-actinin were purified from smooth muscle for 
these in vitro studies. The purified proteins were labeled 
with z25I-Na and assayed for their ability to interact with a 
peptide corresponding to the cytoplasmic domain of L-selec- 
tin that was used to coat plastic microtiter wells (Fig. 1). 
~Actinin bound to the L-selectin cytoplasmic domain pep- 
tide, and this binding was inhibited by an excess of unlabeled 
u-actinin (Fig. 1 A). These data were subjected to analysis 
by Scatchard plot, and a dissociation constant (Kd) of 5.5 X 

10 -7 M was calculated (Fig. 1 B). Neither talin (Fig. 1 C) 
nor vinculin (Fig. 1 D) were able to bind dire, cOy to the 
L-selectin cytoplasmic domain peptide. Binding of 12sI- 
o~-actinin to the L-selectin cytoplasmic domain peptide was 
saturable (Fig. 2 A). lZ~I-a-actinin did not bind to a scram- 
bled 17-amino acid peptide with the same amino acid com- 
position as the L-selectin peptide but arranged in a random 
sequence (Fig. 2 A) further suggesting that the u-actinin- 
L-selectin interaction was specific. Furthermore, binding of 
125I-ot-actinin to the L-selectin cytoplasmic domain was 
competed by excess soluble peptide, but was not competed 
by the scrambled peptide (Fig. 2 B). Peptides corresponding 
to either the complete E-selectin cytoplasmic domain or an 
18-amino acid region within the /32 integrin cytoplasmic 
domain that was previously shown to interact with o~-actinin 
(Pavalko and LaRoche, 1993) did not compete for binding 
of ec-actinin to L-selectin (Fig. 2 B). 

To determine the L-selectin-binding region on o~-actinin, 
27-kD and 53-kD proteolytic fragments of o~-actinin were 
generated using the enzyme thermolysin and purified on a 
FPLC Mono Q column. The 27-kD fragment binds to actin 
but not to integrin/3 subunit cytoplasmic domains, whereas 
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Figure 2. Characterization of 
the interaction between u-ac- 
tinin and the L-selectin cyto- 
plasmic domain peptide. (A) 
Binding of purified a-actinin 
to the L-selectin cytoplasmic 
domain (closed triangles) is sa- 
turable. No binding of c~-acti- 
nin to a scrambled 17-amino 
acid version of the L-selectin 
cytoplasmic domain peptide 
(closed diamonds) or to BSA 
(open diamonds) could be 
measured. (B) Addition of 
soluble L-selectin cytoplas- 
mic domain peptide (closed 
circles) inhibits binding of 
c~-actinin to microtiter wells 
coated with the L-selectin cy- 
toplasmic domain peptide. 
Three other soluble peptides: 
the scrambled L-selectin pep- 
tide (open triangles), the/32- 
integrin cytoplasmic domain 
peptide (closed triangles), or 
the E-selectin cytoplasmic do- 
main peptide (open squares) 
failed to inhibit a-actinin 
binding. (C) Binding of a-ac- 
tinin to the L-selectin cytoplas- 
mic domain peptide is com- 
peted by the 53-kD proteolytic 
fragment of a-actinin (open 
triangles), but not by the 27- 
kD c=-actinin fragment (closed 
squares), suggesting that the 
L-selectin binding region lies 
within the 53-kD rod domain 
of a-actinin and not in the 
27-kD globular actin-binding 
region. Each point represents 
the average of triplicate wells. 
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Figure 3. Solid phase assays characterizing the effects of talin and 
vinculin on the interaction between c~-actinin and the L-selectin cy- 
toplasmic domain peptide. (A) Binding of iodinated c~-actinin to the 
L-selectin cytoplasmic domain peptide was significantly enhanced 
in the presence of talin, and talin plus vinculin, compared to buffer 
only controls,(*) p > 0.05. Unlabeled ct-actinin significantly in- 
hibited binding compared to buffer only controls, (**) p > 0.05. 
Vinculin alone did not affect binding of iodinated a-actinin to 
L-selectin. (B) Binding of iodinated vinculin to the L-selectin cyto- 
plasmic domain peptide was significantly higher in the presence of 
excess unlabeled c~-actinin, (*) p > 0.05, compared to buffer only 
controls. The addition of excess unlabeled vinculin, talin, or oval- 
bumin did not elevate vinculin binding to the L-selectin peptide 
suggesting that c~-actinin forms a bridge between vinculin and the 
L-selectin peptide. 

the 53-kD fragment binds to integrin # subunit cytoplasmic 
domains but not to actin (Mimura and Asano, 1987; Otey et 
al., 1990; Pavalko and Burridge, 1991). When the 27- and 
53-kD ot-actinin fragments were used as potential competi- 
tors of intact t2~I-ot-actinin binding to the L-selectin pep- 
tide, only the 53-kD fragment was able to inhibit binding 
(Fig. 2 C), suggesting that the L-seleetin binding site on 
a-actinin is located within the 53-kD domain of ot-actinin, 
and that the 27-kD actin-binding domain does not directly 
bind to L-selectin. 

Because ot-actinin, vinculin, and talin are each found in 
sites of actin-membrane interaction, we examined the effect 
of mixtures of these proteins on binding of c~-actinin to the 
L-selectin cytoplasmic domain. When talin and vinculin 
were both added to L-selectin-coated microtiter wells in the 
presence of '25I-a-actinin, ot-actinin binding to the peptide 
increased "o2.5-fold (Fig. 3 A). Addition of vinculin alone 
to labeled ot-actinin had no effect on ot-actinin binding, while 
addition of talin alone increased ot-actinin binding (Fig. 3 A). 
These results indicated that u-actinin binding to L-seleetin 
was enhanced in the presence of talin, despite the fact that 
talin does not appear to interact directly with L-selectin. 
When '2~I-vinculin was added to L-selectin-coated wells, 
~actinin, but not talin, promoted vinculin binding (Fig. 3 
B). This result was consistent with the possibility that vincu- 
lin may associated indirectly with L-selectin cytoplasmic do- 
mains by binding to o~-actinin; vinculin binding to o~-actinin 
has previously been characterized (Otto, 1983; Wachsstock 
et al., 1987). 

Coimmunoprecipitation of L-Selectin 
with Cytoskeletal Proteins 

The pre-B lymphocyte cell lines, 300.19, transfected with 
wild-type L-selectin cDNA or with cDNA lacking a large 
portion (11 of 17 residues) of the L-selectin cytoplasmic do- 
main were used to assess the ability of L-selectin to interact 
with cytoskeletal proteins in vivo. The wild-type transfectant 
has been shown previously to bind HEV (Kansas et al., 
1993) and roll along endothelium in vivo (Ley et al., 1993). 
Cells transfected with the cytoplasmic domain deletion 
mutant (LAcyto) failed to bind HEV or roll in vivo (Kansas 
et al., 1993). Before making a qualitative evaluation of 
L-selectin- cytoskeletal interactions, the levels of L-selectin 
surface expression on cells transfected with the wild-type 
and truncated L-selectin were assessed using both indirect 
immunofluorescence followed by flow cytometry and surface 
iodination followed by immunoprecipitation. Flow cytome- 
try of the surface labeled transfectants and nontransfeeted 
300.19 cells revealed 2-3-fold higher levels of L-selectin sur- 
face expression on the wild-type transfectants when com- 
pared to the truncated protein (Fig. 4 A). Immunoprecipita- 
tion after surface iodination also indicated approximately 
threefold higher levels of surface expression by the wild-type 
transfectant (Fig. 4 B). Therefore, the number of cells used 
in subsequent coimmunoprecipitation experiments was cor- 
respondingly adjusted. 

Antibodies against the cytoskeletal proteins c~-actinin, 
vinculin, talin, paxillin, tensin, and filamin were used to im- 
munoprecipitate from detergent extracts of 300.19 L-selectin 
transfectants under nondenaturing conditions to investigate 
whether L-selectin interacts with these proteins in vivo. 
Western blots of whole cell extracts confirmed that all of the 
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Figure 4. Quantitation of 
L-selectin surface expression. 
(,4) Flow cytometry demon- 
strated a 2-4-fold greater level 
of surface expression on the 
wild-type L-selectin trans- 
fected cells as opposed to the 
truncated L-selectin trans- 
fected cells. The too panel es- 
tablished the background 
fluorescence observed in the 
300.19 cells transfec~ with 
vector alone and no L-seleetin. 
300.19/LAM-I (m/dd/epanel) 
shows that the relative fluores- 
cence intensity of the cell sur- 
face of the wild-type trans- 
fected cells is "~2-4-fold 
greater than cells transfected 
with the cytoplasmic domain 
truncated L-selectin (bottom 
panel). (B) Surface iodination 
and immunoprecipitation of 
300.19 cells with antibody 
against L-selectin substantiates 
the 2-4-fold increase in surface 
expression of wild-type trans- 
feeted cells over deletion mu- 
tant transfected cells. Lanes 
2--4 are whole cell extracts 
before immunoorecipitation 
with anti-L-selectin antibody. 
Lanes 5-7 demonstrate the 

difference in radioactivity observed when equal numbers of cells are iodinated, and then immunoorecipitated with anti-L-selectin. When 
cell numbers are adjusted so that there are a 3-4 greater number of the LAcyto cells, expression as quantitated by t25I, appears to be com- 
parable (lanes 8-10). 

antibodies used in these studies recognized the correspond- 
ing protein in 300.19 cells (not shown). Coimmunoprecipi- 
tates using these antibodies were subjected to SDS-PAGE, 
transferred to nitrocellulose, and probed for L-selectin that 
had coprecipitated with cytoskeletal complexes. L-selectin 
was easily detected in coimmunoprecipitates with both 
a-actinin and vinculin (Fig. 5 A), but not with any of the 
other cytoskeletal proteins tested including talin, paxillin, 
tensin, and filamin (not shown). In addition, when the ex- 
periment was done in reverse, i.e., by immunoprecipitating 
with L-selectin antibody and immunoblotting for cytoskele- 
tal proteins, both a-actinin and vinculin were detected in 
L-selectin immunoprecipitates (Fig. 5 B) while talin, paxil- 
lin, tensin, and filamin were not detected (not shown). To 
visualize the total protein precipitated with anti-L-selectin 
antibodies, cells were labeled with [35S]methionine (Fig. 5 
C). A band migrating at the appropriate molecular weight 
for L-selectin was the most prominent band that could be de- 
tected. In combination with the in vitro solid phase binding 
assays, these data suggest that L-selectin forms a complex 
with both a-actinin and vinculin in vivo and that the interac- 
tion of L-selectin with vinculin is indirect, probably through 
binding to ot-actinin. 

In contrast to the results obtained with the full-length 
L-selectin transfectant, no L-selectin was detected in coim- 
munoprecipitates of c~-actinin or vinculin from the LAcyto 
transfectant (Fig. 5 A). Similarly, these cytoskeletal proteins 
were not detected in L-selectin coimmunoprecipitates from 

the LAcyto transfectant (Fig. 5 B). These data indicate that 
L-selectin interacts with the cytoskeleton through a direct in- 
teraction between .-actinin and the 11 carboxy terminal 
amino acids of the L-selectin cytoplasmic tail. Despite the 
abundance of talin in 300.19 cells and the ability of talin to 
potentiate ot-actinin binding to the L-selectin peptide in 
vitro, coprecipitation of L-selectin with talin was never de- 
tected from cells transfected with either the full-length or 
truncated L-selectin. 

Cell Surface Localization of Vdld-~pe and Truncated 
L-Selectin by Immunoelectron Microscopy 

The role of the L-selectin cytoplasmic domain on the local- 
ization of L-selectin on the surface of transfected cells was 
examined by immunoelectron microscopy. L-selectin is nor- 
mally localized predominantly to the microvillar projections 
which cover the surface of neutrophils (Picker et al., 1991; 
Erlandsen et al., 1993; Burns and Doerschuk, 1994). Cells 
transfected with wild-type or truncated L-selectin were la- 
beled with an antibody against the extracellular domain of 
L-selectin, followed by a secondary antibody conjugated to 
a gold particle, and processed for immunoelectron micros- 
copy (Fig. 6). Quantitation of gold particles revealed that 
=90% of the label was localized to the microviUar projec- 
tions of cells transfected with wild-type L-selectin (Table I). 
The subcellular localization of L-selectin in these transfected 
300.19 cells was therefore quite similar to that in neutrophils. 
Interestingly, the LAcyto mutant also localized almost exclu- 
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Figure 5. ~-Actinin and vinculin form a complex with L-selectin through the cytoplasmic domain that is detected by coimmunoprecipitation. 
300.19, 300.19/LAM-I, and 300.19/LAcyto cells were lysed with detergent and these extracts were used to determine if specific cytoskeletal 
proteins formed a complex with the cytoplasmic domain of L-selectin. (A) The first three lanes are whole cell detergent extracts before immuno- 
precipitation with cytoskeletal proteins and are immunoblotted for anti-L-selectin. The next lanes, corresponding to the immunoprecipitates 
with anti-ct-actinin and anti-vinculin followed by immunoblotting with anti-L-selectin, demonstrate the in vivo association of the wild-type 
L-selectin (Lam-/), but not the cytoplasmic domain truncation mutant (LAcyto), with the cytoskeletal proteins c~-actinin and vinculin. (B) 
Full-length L-selectin (I.am-1), but not the deletion mutant (LAcyto) coimmunoprecipitates c~-actinin and vinculin. Antibody against L-selectin 
was used to immunoprecipitate from cell extracts and the cytoskeletal proteins that coprecipitated were detected by immunoblotting with 
antibodies against c~-actinin and vinculin. Antibodies against four other cytoskeletal proteins: talin, paxillin, tensin, and filamin, failed to 
detect the corresponding protein coprecipitating with L-selectin (not shown). (C) To visualize the total protein precipitated with L-selectin 
under coimmunoprecipitation conditions, cells were labeled with [35]methionine before lysis. L-selectin (arrow) is the only major band visi- 
ble from LAM-1 and LAcyto cells immunoprecipitated with anti-L-selectin when the total protein is visualized by autoradiography of the 
immunoprecipitates. 
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Figure 6. Immunoelectron 
microscopic localization of 
L-selectin on the surface of 
cells transfected with truncated 
(A) or full-length L-selectin 
cDNA (B). Cells were labeled 
with a monoclonal antibody 
(Leu8) against the extracellu- 
lar domain of L-selectin, fol- 
lowed by 10-rim gold particle 
conjugated goat anti-mouse 
Ig antibody conjugated to 10- 
run gold particles. Labeling is 
limited to the plasma mem- 
brane and occurs predomi- 
nantly on the small microvil- 
lar projections (see also 
Table I). 

sively to the microvilli (Fig. 6; Table I). Lymphoblasts that 
were exposed to control IgG instead of anti-L-selectin 
showed no labeling. These results indicated that an associa- 
tion with the cytoskeleton via ot-actinin involving the COOH- 
terminal 11 residues of the L-selectin cytoplasmic domain 
was not necessary to maintain the selective localization of 
L-selectin to the microvilli of transfected 300.19 cells. 

Discussion 

This study represents the first demonstration of a direct inter- 
action between the cytoskeleton and a member of the selectin 
family of cell adhesion molecules. This interaction is medi- 
ated by a region within the carboxy terminal 11 residues of 

the 17-amino acid cytoplasmic domain and occurs via a di- 
rect interaction with the rod domain of the actin-binding pro- 
tein u-actinin. In contrast to selectins, cytoskeletal interac- 
tions with integrins are better defined (for review see Sastry 
and Horwitz, 1993). Talin was shown to interact with the cy- 
toplasmic domain of integrin heterodimers (Horwitz et al., 
1986), and a-actinin mediates cytoskeletal attachment to the 
cytoplasmic domains of members of at least two other fami- 
lies of cell adhesion molecules: ~ (Otey et al., 1990, 1993; 
Pavalko and Burridge, 1991) and/~2 (Pavalko and LaRoche, 
1993) integrins, and an Ig family member, ICAM-1 (Carpen 
et al., 1992). The interaction between ct-actinin and inte- 
grins occurs through binding of a defined portion of the cyto- 
plasmic domain of integrin 8, (Otey et al., 1990, 1993) and 

Table L Distribution of  L-Selectin on the Plasma Membrane 

Intact L-selectin Truncated L-selectin 

(n = 18 cells) (n = 15 cells) 

Percent gold particles on membrane of: 
Microvillar projections 87 + 2 89 ± 2 
Flat regions 13 + 2 11 + 2 

Data expressed as mean ± SEM 
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f12 (Pavalko and LaRoche, 1993) subunits in vitro to a site 
within the 53-kD rod domain of ot-actinin. Similarly, binding 
of ot-actinin to L-selectin in vitro was also inhibited by the 
53-kD fragment of ot-actinin (Fig. 2 C). ot-Actinin binding 
to L-selectin and to integrins appears to occur through dis- 
tinct regions of the ot-actinin rod domain, however, since the 
f12 cytoplasmic domain peptide failed to inhibit binding of 
a-actinin to the L-selectin peptide. The association of 
ot-actinin with members of the f12 integrin subfamily in vivo 
can be induced upon activation of neutrophils with chemo- 
tactic peptides (Pavalko and LaRoche, 1993) or by activation 
of T cells by cross-linking of the T cell receptor (Pardi et al., 
1993). In contrast, the interaction between t~-actinin and 
L-selectin is constitutive in these transfected cell lines. The 
results of this study indicate that L-selectin can be added to 
the list of cell adhesion molecules that use ct-actinin as a pri- 
mary linker molecule to the actin cytoskeleton. 

Our results also suggest that two additional cytoskeletal 
proteins, vinculin and talin, might also be involved in the in- 
teraction between L-selectin and the cytoskeleton, perhaps 
as part of a multiprotein complex. Although a direct interac- 
tion between either vinculin or talin and the L-selectin cyto- 
plasmic domain peptide could not be detected in the in vitro 
solid phase binding assays, vinculin was detected in im- 
munoprecipitates from L-selectin transfectants but not from 
the LAcyto transfectants. Solid phase binding experiments 
indicated that vinculin bound to wells coated with L-selectin 
cytoplasmic domain peptide only in the presence of ct-actinin. 
Coimmunoprecipitation of vinculin with L-selectin is there- 
fore probably indirect, and is likely to be mediated through 
the high affinity interaction of oe-actinin with vinculin 
(Wachsstock et al., 1987). 

Our results with talin are somewhat more puzzling. The 
ability of talin to potentiate the binding of ct-actinin to the 
L-selectin cytoplasmic domain peptide is difficult to recon- 
cile with a lack of binding of talin to this peptide in vitro and 
the lack of coimmunoprecipitation of L-selectin and talin in 
vivo. Furthermore, no evidence exists that talin can directly 
interact with ot-actinin, although talin does bind to vinculin 
in vitro (Otto, 1983; Burridge and Mangeat, 1984). This 
potentiation effect appears to be specific for talin, inasmuch 
as vinculin does not exhibit any ability to modulate the bind- 
ing of c~-actinin to the L-selectin cytoplasmic domain pep- 
tide. It is possible that talin does not interact with L-selectin 
or ~-actinin with sufficient affinity to be detected in our as- 
says, but that it can nonetheless facilitate interactions be- 
tween L-selectin and a-actinin, perhaps by lowering the free 
energy barrier of the L-selectin/c~-actinin interaction. Ex- 
periments are in progress to determine the mechanism of ac- 
tion by which talin potentiates the binding of L-selectin to 
c~-actinin. 

We found that the eleven carboxy terminal amino acids of 
the L-selectin cytoplasmic tail were not required for local- 
ization of L-selectin to the microvillar projections of the 
plasma membrane. Interaction of L-selectin with ct-actinin 
or vinculin is therefore not required for correct receptor 
positioning. The few remaining amino acids of the L-selectin 
cytoplasmic tail may be sufficient for this function, through 
alternative interactions with other cytoskeletal or cytoplas- 
mic proteins that are not sufficient for L-selectin's adhesive 
function. In this regard, it will be interesting to examine the 
possibility that the membrane proximal region of the L-selec- 

tin cytoplasmic domain interacts with members of the ERM 
(ezrin/radixin/moesin) family of cytoskeletai proteins (Sato 
et al., 1991), which have recently been shown to be required 
for the maintenance of microvilli and ruffles (Takeuchi et ai., 
1994). A less likely explanation for the unique distribution 
of L-selectin inmicrovillar projections may involve a role for 
proteins other than cytoskeletal molecules, such as interac- 
tions with molecules that are located within the plasma 
membrane. In either case, the normal localization of the 
LAcyto mutant argues strongly that L-selectin positioning 
alone is not sufficient to promote L-selectin-mediated adhe- 
sion to endothelium, and hence that the unique association 
between L-selectin and cytoskeletal proteins fulfills a dis- 
tinct requirement for adhesion by L-selectin. 

The results of this study highlight the potential functional 
importance of a link between L-selectin and the actin 
cytoskeleton. The LAcyto mutant exhibits normal carbohy- 
drate ligand recognition (Kansas et al., 1993) and normal 
receptor positioning (this report), and yet it is unable to 
mediate leukocyte rolling or adhesion to HEV (Kansas et al., 
1993). Ongoing studies are aimed at determining the factors 
necessary for normal L-selectin function, in addition to car- 
bohydrate ligand recognition and microvillar localization, 
and the precise role of cytoskeletal interactions with the 
L-selectin cytoplasmic domain in regulating leukocyte roll- 
ing and adhesion to HEV. 
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