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Schick SF, Blount BC, Jacob P 3rd, Saliba NA, Bernert JT, El
Hellani A, Jatlow P, Pappas RS, Wang L, Foulds J, Ghosh A,
Hecht SS, Gomez JC, Martin JR, Mesaros C, Srivastava S, St.
Helen G, Tarran R, Lorkiewicz PK, Blair IA, Kimmel HL,
Doerschuk CM, Benowitz NL, Bhatnagar A. Biomarkers of expo-
sure to new and emerging tobacco delivery products. Am J Physiol
Lung Cell Mol Physiol 313: L425–L452, 2017. First published May
18, 2017; doi:10.1152/ajplung.00343.2016.—Accurate and reliable
measurements of exposure to tobacco products are essential for
identifying and confirming patterns of tobacco product use and for
assessing their potential biological effects in both human populations
and experimental systems. Due to the introduction of new tobacco-
derived products and the development of novel ways to modify and
use conventional tobacco products, precise and specific assessments
of exposure to tobacco are now more important than ever. Biomarkers
that were developed and validated to measure exposure to cigarettes
are being evaluated to assess their use for measuring exposure to these
new products. Here, we review current methods for measuring expo-
sure to new and emerging tobacco products, such as electronic
cigarettes, little cigars, water pipes, and cigarillos. Rigorously vali-
dated biomarkers specific to these new products have not yet been
identified. Here, we discuss the strengths and limitations of current
approaches, including whether they provide reliable exposure esti-
mates for new and emerging products. We provide specific guidance
for choosing practical and economical biomarkers for different study
designs and experimental conditions. Our goal is to help both new and
experienced investigators measure exposure to tobacco products ac-
curately and avoid common experimental errors. With the identifica-
tion of the capacity gaps in biomarker research on new and emerging
tobacco products, we hope to provide researchers, policymakers, and

funding agencies with a clear action plan for conducting and promot-
ing research on the patterns of use and health effects of these products.
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WE DEFINE NEW and emerging tobacco and nicotine delivery
products as products that have been introduced to the United
States market in the past 15 years, products that have become
significantly more popular in the past 15 years, or products that
are being modified and used in new ways. We limit our focus
to products currently used by �1% of the U.S. population,
based on nationally representative survey data. The products
that currently meet these criteria are electronic cigarettes
(e-cigarettes), little cigars, water pipes, and cigarillos.

NEW AND EMERGING PRODUCTS

For researchers who are new to tobacco and nicotine deliv-
ery product exposure biomarkers or new to the use of biomark-
ers to study e-cigarettes, water pipe, cigars, little cigars, and
cigarillos, this paper offers guidance on choosing biomarkers
that support specific study goals and are financially and prac-
tically feasible. For physiologists, this paper describes the
challenges presented by new and emerging tobacco and nico-
tine delivery products and potential solutions to these prob-
lems. For pulmonary physiologists, this paper offers a discus-
sion of biomarkers in samples collected in the respiratory tract.
For agencies and policymakers who fund research on tobacco
and nicotine delivery products, this paper outlines an action
plan for promoting research on the use and health effects of
these products.
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The use of tobacco products results in the uptake of nicotine
and a wide range of other chemicals. These chemicals and their
metabolites, measured in bodily fluids and tissues, constitute
biomarkers of exposure. Biomarkers of exposure to tobacco
and nicotine delivery products are limited to the chemicals
taken up during product use or during exposure to product
emissions. Thousands of chemicals are present in tobacco
smoke, and hundreds have been identified in e-cigarette aero-
sols and liquids. Although some biomarkers of exposure to
tobacco and nicotine delivery products are metabolites of
known toxicants or carcinogens, e.g., 4-(methylnitrosamino)-
1-(3-pyridyl)-1-butanol (NNAL), in this paper we focus on
biomarkers of exposure, not on biomarkers of potential health
effects.

No Validated Biomarkers Specific for E-Cigarettes and
Other New Products

The lack of validated biomarkers for e-cigarettes is an urgent
public health problem. The market for e-cigarettes has ex-
panded rapidly since they came to market in 2007. In 2015,
estimated U.S. sales totaled $3.5 billion (179, 267). To mea-
sure the health effects of e-cigarettes, researchers need bio-
markers for exposure to both e-cigarettes that contain nicotine
and those that do not. However, no validated biomarkers
specific to nicotine-containing or nicotine-free e-cigarettes are
currently available. At present, a biological specimen that tests
positive for nicotine metabolites and negative for metabolites
of combustion products and tobacco-specific nitrosamine
(TSNA) metabolites suggests either the use of e-cigarettes with
nicotine or of a nicotine replacement therapy (NRT) product,
such as nicotine gum. Questionnaire data can be used to
provide more accurate answers (67), but the known biomarkers

of tobacco and nicotine exposure cannot. A second gap is the
current lack of validated biomarkers that differentiate among
the use of various combustible products (e.g., cigars, little
cigars, cigarillos, water pipes, and cigarettes), as shown in Fig.
1. To support research on new products, it is essential to
identify product-specific biomarkers and to develop sensitive,
accurate, and affordable assays. Currently, few laboratories
perform assays that can differentiate cigarette use from the use
of other nicotine-containing products, and the existing assays
are expensive.

BIOMARKERS OF EXPOSURE TO TOBACCO AND NICOTINE

Overview

There were three major categories of tobacco products on
the market in 2016: combustion, heat delivery, and smokeless
products (Table 1). Combustion products, which generate
smoke enriched with nicotine and other chemicals (248), in-
clude cigarettes, cigars, little cigars, cigarillos, and water pipes.
Many of the chemicals present in tobacco products and/or
generated by combustion are taken up by the body in appre-
ciable quantities. Therefore, exposure can be assessed by
measuring these chemicals or their metabolites in biological
specimens (261a) from various compartments of the body.

Heat delivery products, such as e-cigarettes, heat a solution
of humectants, flavors, and tobacco extract to generate a
nicotine-containing aerosol (45). Although the chemical com-
position of e-cigarette aerosols is simpler than that generated
by combustible tobacco systems (58), they often contain a
large number of flavorings and other additives. Furthermore,
specific biomarkers of exposure to e-cigarettes and their con-
stituents have not been identified.

Smokeless tobacco products—chewing tobacco, snuff and
snus, and NRT products, such as gums, patches, lozenges, and
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sprays—do not require combustion or heating to deliver nic-
otine. To date, only nicotine, nicotine metabolites, and TSNAs
have been used to assess exposure to smokeless tobacco
products (44, 106, 115, 152, 187, 241, 243, 261). Nicotine and
nicotine metabolites are also the only known exposure bio-
markers for nicotine replacement products. In this paper, we
discuss biomarkers of exposure to tobacco and nicotine in the
three defined categories and highlight the limitations in iden-
tifying selective markers of exposure to specific tobacco prod-
ucts.

What Makes a Good Biomarker?

Exposure to a chemical or group of chemicals can be
quantified by measuring the chemical or its metabolites in the
body or excreta. A good biomarker has four key traits: 1) a
clear dose-response relationship with exposure: the concentra-
tion of the biomarker chemical increases with an increase in
exposure and decreases upon cessation of exposure with a
known time course, 2) qualitative and quantitative identifica-
tion over a wide range of concentrations so that both low and
high levels of exposure are accurately estimated, 3) detection
in readily collected biospecimens (e.g., saliva, urine, and
blood), and 4) stability upon storage for prospective analyses.

Biomarkers of exposure, such as nicotine or nicotine metab-
olites (including cotinine) and TSNA metabolites (e.g.,
NNAL), are specific to the use of tobacco and nicotine delivery
products (of all the categories discussed above). Dietary or
environmental exposures contribute little to the body burden of
these chemicals. Nevertheless, other less-specific biomarkers
of tobacco product exposure, such as carbon monoxide (CO),
volatile organic chemicals (VOCs), and polycyclic aromatic
hydrocarbons (PAHs), can provide additional information rel-
evant to a more comprehensive exposure assessment and can
help relate exposure to injury. Because some chemicals or their

metabolites accumulate in tissues, their measurement can pro-
vide exposure estimates that integrate the duration and extent
of exposure, as well as the rate of chemical or metabolite
clearance. Therefore, in selecting a biomarker to quantify
exposure, it is important to consider the source, persistence,
and pharmacokinetics of the biomarker, dose of exposure, as
well as duration between exposure and measurement.

Biomarkers of Nicotine

Nicotine was one of the first biomarkers to be used for
assessing exposure to cigarette smoke (26, 215). However, its
short half-life (t1/2; ~2 h) and variable rate of metabolism led to
the use of cotinine and other nicotine metabolites as biomark-
ers of nicotine exposure (28, 29). Cotinine is the major metab-
olite of nicotine, and its longer t1/2 (16–18 h) makes it a good
biomarker for nicotine uptake in various biological fluids and
tissues (47, 138, 159, 198, 228, 264). Nicotine and its metab-
olites are discussed in detail in Nicotine in Blood through
Over-the-Counter Cotinine Tests.

Biomarkers of Tobacco Use Other Than Nicotine

Tobacco and nicotine delivery product chemicals originate
from the tobacco production process, the product manufactur-
ing process, chemical reactions during product storage, or
combustion or pyrolysis during product use. Table 2 summa-
rizes the major categories of these chemicals and the corre-
sponding biomarkers commonly used to assess tobacco and
nicotine delivery product exposure (102, 173). These include
exhaled CO, VOCs, PAHs, and TSNAs [mainly 4-(methylni-
trosamino)-1-(3-pyridyl)-1-butanone (NNK) and its metabo-
lite, NNAL]. NNAL is a biomarker for the use of combustible
and smokeless tobacco products. Because e-cigarettes do not
attain true combustion temperatures, they do not emit CO or as
many different VOCs and PAHs in measureable quantities (97,
104, 145, 177). Thus exhaled CO and metabolites of PAHs are
not associated with the use of e-cigarettes.

Biological Cut-Point Values

Biological cut-point values differentiate tobacco and nico-
tine delivery product users from nonusers (e.g., smokers from
nonsmokers) and can be used to identify product-use patterns.
Specific cut-point values that separate populations with differ-
ent tobacco product exposures are established by obtaining
biomarker data from a large number of users and nonusers who

Table 1. Categories of tobacco and nicotine delivery
products

Tobacco Combustion Heat Delivery Smokeless

Cigarettes E-cigarettes
Heated, tobacco-based,
noncombusting cigarettes

Lozenges
Gums
Smokeless tobacco
Chewing tobacco
Snuff
Snus

Cigars
Cigarillos
Little cigars
Water pipes

Table 2. Biomarkers of tobacco and nicotine delivery product use and exposure

Smoke Constituent Example/Biomarker Measured in References

Nicotine Cotinine Blood
Urine
Saliva
Respiratory fluids

(22, 27, 28, 38)

Tobacco-specific nitrosamines NNK/NNAL Urine (41, 49, 53, 62, 98, 118, 144)
Volatile organic compounds (VOCs) 1,3-Butadiene/N-acetyl-S-(4-hydroxy-2-buten-1-yl)-L-cysteine

(MHBMA-3)
Urine (151, 223)

Polycyclic aromatic hydrocarbons
(PAHs)

Pyrene/1-hydroxypyrene Urine (87, 221)

Metals Cadmium Blood
Urine

(158, 175)

CO Exhaled CO
carboxyhemoglobin

Blood
Breath

(31, 63, 134, 153, 208, 218, 220)
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are classified using a separate method (e.g., self-report) to
arrive statistically at an optimum cutoff value (90). Both the
sample matrix (e.g., blood vs. urine) and metabolic variations
among individuals influence these values. For example, the
cutoff value of cotinine in urine is much higher than that of
cotinine in serum, because cotinine concentration is four to six
times higher in the urine than in blood (14, 274). In addition,
optimum cutoffs may vary slightly, based on the subjects’
genetic backgrounds (269). For example, the optimal serum
cotinine level to separate adult smokers from nonsmokers is
6 ng/ml for non-Hispanic blacks, but 5 and 1 ng/ml for
non-Hispanic Whites and Mexican Americans, respectively
(21). Moreover, in recent years, biological cut-point values
have decreased as people tend to smoke less and are less likely
to be exposed to secondhand smoke (SHS) because of indoor
smoking bans (14, 123, 137, 139, 229).

It is relatively simple to separate nonsmokers from typical
daily smokers using any of the aforementioned markers, as
plots of such data typically result in two distinct distribution
curves. However, it is not always possible to arrive at a clear
distinction between the two groups. For example, biomarker
values for heavy SHS exposure overlap with those from occa-
sional smokers for some biomarkers (14, 121, 124). Hence, to
distinguish SHS exposure from intermittent smoking, bio-
marker measurement should be supplemented with data from
questionnaires. In case of mismatches, a positive biomarker
value may be more reliable than self-reported data.

PLANNING FOR BIOMARKER ANALYSIS

Biomarkers of tobacco and nicotine exposure are present in
trace concentration in chemically complex biological fluids.
The first step in selecting a method for biomarker measurement
is to determine the lowest concentration of the chemical or
metabolite that must be quantified to address the primary study
aims. This lower limit is defined by biological cut-point values
separating active tobacco product users from nonusers and by
biomarker patterns separating users of one product from users
of other products (Fig. 1, and see Table 5). Biomarkers of tobacco
exposure have been measured in almost every biological material,
including hair and nails, although the vast majority of information
has come from measurements in blood (serum or plasma) and
urine. The matrices of choice are discussed in conjunction with
each biomarker. The measurement of biomarkers of exposure in
animals is useful and often critical for understanding human
disease, because these models allow experiments and samples that
are not feasible in human studies.

LOD and LLOQ

The limit of detection (LOD) and lower limit of quantitation
(LLOQ) define limits of identification and quantification, re-
spectively. The LOD is the lowest concentration of a chemical
that can be detected over the background noise in a given
biological sample. LOD is technology and assay dependent:
assays with elaborate sample preparation procedures that re-
move interfering compounds often have a lower LOD than
those with simpler sample preparation. However, it is easier to
detect a chemical in a specimen than to quantify it. The
coefficient of variation (CV; reproducibility) at the LOD may
be much larger than that at the LLOQ, and thus data may not
be acceptably precise at the LOD.

The LLOQ is the concentration at and above which the assay
is sufficiently reliable and reproducible for measuring the
quantity of a chemical in a given specimen. For example, the
acceptable LLOQ for precise cotinine measurement following
SHS exposure is lower than that for precise cotinine measure-
ment following cigarette smoking. In general, the smaller the
CV, the better the assay can discriminate among experimental
groups or conditions. Whereas multiple methods exist for
defining LOD and LLOQ (182, 252), the guidelines typically
used for tobacco studies involving biomarkers are those devel-
oped for drug clinical trials (225, 266). These guidelines also
describe criteria for method development, validation, and qual-
ity control and for compound quantification (e.g., setting the
LLOQ at CV � 20%). Commonly available assays and the
LLOQ for each are listed (see Table 6).

Nicotine in Blood

Blood nicotine concentration—whether measured in whole
blood, serum, or plasma—is a key determinant of the pharma-
cologic effects of tobacco products. The time course of nico-
tine in the body and resultant pharmacologic effects are highly
dependent on dose, as well as the route and rate of dosing.
Smoking a cigarette, for example, delivers nicotine rapidly to
the pulmonary venous circulation, from which it moves
quickly to the left ventricle of the heart and to the systemic
arterial circulation and brain. Venous blood concentration after
smoking a single cigarette ranges from 5 to 30 ng/ml, depend-
ing on how the cigarette is smoked. The mean nicotine boost in
a large study of smokers was 10.9 ng/ml (195). Nicotine
concentrations in arterial blood after smoking a cigarette can be
quite high (up to 100 ng/ml) but usually range between 20 and
60 ng/ml (101, 119, 166, 213). For most purposes, a single
blood sample within 1 or 2 min of smoking a cigarette will give
an acceptable estimate of the peak nicotine concentration.
However, to capture the true “peak,” multiple blood samples
must be collected during and immediately after use.

Blood nicotine levels typically peak at the end of smoking a
cigarette and decline rapidly over the next 20 min due to tissue
distribution. The initial t1/2 of nicotine decline, during which
the drug distributes into tissue, averages ~8 min. Peak venous
blood levels of nicotine are similar among cigarette smokers,
cigar smokers, snuff users, and chewing tobacco users, al-
though the rate of rise of nicotine is faster among cigarette
smokers (20). Pipe smokers, particularly those who have pre-
viously smoked cigarettes, may have blood and urine levels of
nicotine and cotinine as high as cigarette smokers (174, 273).
Cigar and pipe smokers who have previously smoked ciga-
rettes may inhale more deeply and achieve higher blood levels
of nicotine than primary cigar or pipe smokers (258). Water-
pipe users attain blood nicotine levels that are, on average,
lower than those seen with cigarette smoking, but their total
nicotine exposure can be higher, because the duration of use is
much longer (128, 235). E-cigarette use yields variable blood
nicotine levels, dependent on the type of device used, the
power output of the device, the nicotine content of the e-liquid,
and the user’s puffing behavior (249). Cigarette-like e-ciga-
rettes usually generate much lower blood nicotine levels,
whereas tank or modifiable devices generate peak levels as
high as seen with cigarette smoking (237, 263).



The elimination t1/2 of nicotine in blood is determined by a
combination of clearance rate and redistribution of nicotine
out-of-body tissues. Based on an average t1/2 of ~2 h, one
would predict a progressive rise in nicotine blood and tissue
levels over 6–8 h (3 to 4 t1/2) of regular smoking and persis-
tence of significant levels for 6–8 h after cessation of smoking.
Studies of nicotine blood levels in regular cigarette smokers
confirm these predictions (32). Peak and trough levels follow
each cigarette, but as the day progresses, trough levels rise, and
the influence of peak levels becomes less important. Thus
regular smoking is a multidosing situation, where nicotine
concentrations rise during waking hours and decline during
sleep, but because the nicotine t1/2 is 2 h, levels persist at
significant levels for 24 h each day. Light, intermittent smoking
results in less nicotine accumulation in the body over the day,
and oscillations in nicotine blood levels are more prominent.
Plasma nicotine t1/2 in rodents is generally shorter than in
humans: 45 min in the rat and 6 to 7 min in the mouse. This
means that studies in rodents require higher daily doses of
nicotine to achieve blood nicotine concentrations similar to

those seen in smokers (172). Perhaps the best measure of
the nicotine-related pharmacologic effect is the area under the
blood nicotine concentration time curve, which reflects the
time-weighted exposure of body tissues to nicotine. This mea-
sure has been used to study the pharmacology of cigarettes,
smokeless tobacco, and water pipes (26, 30, 128). The plasma
nicotine concentration curves for various tobacco products are
presented in Fig. 2.

Analytical methods. Generally, GC-based methods are most
suitable for measuring blood nicotine concentrations and are
reasonably economical. For the utmost sensitivity that may be
required for studies of occasional tobacco users or users of
products delivering low nicotine levels, GC-tandem MS (GC-
MS/MS) is the method of choice (235).

Cotinine in Blood, Saliva, and Urine

Cotinine is the major proximate metabolite of nicotine and is
the most widely used biomarker of nicotine exposure. On
average, 75–80% of nicotine is converted to cotinine, primar-

Fig. 2. Average blood nicotine concentration
comparison. A: average blood nicotine con-
centrations in 10 subjects during and after
cigarette smoking for 9 min (34); B: oral
snuff (2.5 g) (34); C: chewing tobacco (av-
erage 7.9 g) (34); and D: nicotine gum (2,
2-mg pieces) (34). E: average plasma nico-
tine concentrations, corrected for baseline
level, in 14 experienced e-cigarette users
after 15 puffs from their usual brand of
e-cigarette (237). F: average plasma nicotine
concentration for hookah (water pipe) users
over 24 h after 2� sessions of hookah use
between 900 and 1800 (128).



ily by the liver enzyme cytochrome P-450 family 2 subfamily
A member 6 (CYP2A6) (126). Cotinine can be measured in
whole blood, serum, plasma, saliva, and urine. Because its t1/2

(16–18 h) is longer than that of nicotine (2 h), cotinine
concentrations fluctuate much less than nicotine concentrations
throughout the day, making it the most practical biomarker for
measuring nicotine exposure (27, 126). Cotinine concentra-
tions in blood and saliva are highly correlated, with saliva
concentrations averaging 15–20% higher than plasma (239).
Urine cotinine concentrations, on average, are four to six times
higher than blood or saliva levels, making urine a more
sensitive matrix to detect low-dose exposure (22). Whereas the
t1/2 of 16 h makes cotinine a more stable biomarker than
nicotine, cotinine levels still reflect a relatively short-term
exposure to tobacco, over the past 3 to 4 days.

Cotinine blood concentrations average ~150–250 ng/ml in
daily cigarette smokers. Due to its longer t1/2 than nicotine,
cotinine levels rise gradually during the day, peaking at the end
of smoking, and persisting at high concentrations overnight.
The daily variation in blood cotinine levels throughout the day
in regular smokers is ~30%. Blood cotinine concentrations are
similar in smokers and regular smokeless tobacco users (3).
Urine cotinine levels are generally lower in exclusive pipe and
cigar smokers compared with cigarette smokers (92, 210). To
date, the limited available data indicate that plasma and saliva
cotinine levels in regular e-cigarette users are similar to those
of smokers. However, because most e-cigarette users also
smoke cigarettes, it is difficult to disentangle the contributions
of each (82, 177, 265).

The mathematical relationship between nicotine intake and
steady-state cotinine blood levels, based on steady-state expo-
sure conditions, can be expressed as follows: Dnic � CLCOT �
CCOT/f, where Dnic is the intake (dose) of nicotine, CLCOT is
the clearance of cotinine, CCOT is the steady-state blood con-
centration of cotinine, and f is the fraction of nicotine con-
verted to cotinine (27). With the rearrangement of the equation,
Dnic � (CLCOT/f) � CCOT � K � CCOT, where K is a constant
that converts a given blood level of cotinine to nicotine intake.
On average, K � 0.08 mg·24 h�1·ng�1·ml�1 (range 0.05–1.1,
CV � 21.9%) (27). Thus a cotinine level of 200 ng/ml in blood
corresponds, on average, to a nicotine intake of 16 mg/day. The
K value is an average based on a small group of healthy
volunteer smokers and is expected to vary among smokers and
to be influenced by genetic and environmental factors that
influence nicotine and cotinine metabolism and, therefore, to
vary in smokers of different racial groups. Results from spe-
cific populations may vary.

Whereas cotinine functions well as a marker of nicotine
intake, individual variation in metabolism makes it an imper-
fect biomarker of exposure. The pathway from nicotine to
cotinine is affected by genetic variation in the liver enzyme
CYP2A6; race; sex; use of certain medications, including
estrogen-containing hormones (e.g., oral contraceptives); alco-
hol use; pregnancy; and existing liver or kidney disease (126).
Certain CYP2A6 gene variants slow cotinine formation and
removal, although unequally, generally resulting in higher
cotinine levels for a given daily nicotine intake (286). Because
African Americans and Asians have, on average, lower
CYP2A6 activity, they tend to have higher cotinine levels than
whites for the same daily nicotine dose. However, in rare cases
with extremely low CYP2A6 activity, little cotinine is gener-

ated, so levels of this biomarker are lower than expected for a
given daily nicotine dose (35). Cotinine levels are also higher
in African Americans because of lower rates of conversion to
cotinine-N-glucuronide by uridine diphosphate-glucuronosyl-
transferase 2B10 (UGT2B10) (185). The same is true for men
compared with women, whose higher estrogen levels induce
higher CYP2A6 activity (33). For these reasons, the most
accurate biomarker of daily nicotine intake is urine total
nicotine equivalents (TNEs; see Total Nicotine Metabolites in
Urine).

Analytical methods. GC (72, 130) and HPLC (105, 254) are
appropriate methods for quantifying cotinine concentrations in
specimens from daily tobacco users. Liquid chromatography
(LC)-MS/MS is the best method for quantifying cotinine con-
centrations in samples from nondaily users and those exposed
to SHS (39, 132).

Total Nicotine Metabolites in Urine

Assessment of daily nicotine intake in tobacco product users
is important, as daily nicotine intake is related to nicotine/
tobacco dependence. Urine TNE is defined as the molar sum of
nicotine and all of its known metabolites in urine. It is consid-
ered the “gold standard” biomarker of daily nicotine intake.
TNE levels are independent of factors that affect the rate and
pattern of nicotine metabolism, such as genetics, sex, diet, and
medication use. Cotinine is the proximate metabolite of nico-
tine and primarily a product of CYP2A6-mediated nicotine
metabolism (126). Cotinine is metabolized further by CYP2A6
to trans-3=-hydroxycotinine (3-HC) and then primarily through
the action of UGT enzymes (UGT2B10) to cotinine glucuro-
nide (56, 126). Nicotine is metabolized, to a lesser extent, to its
glucuronide by UGT2B10 and to nicotine N=-oxide by flavin-
containing monooxygenase 3 (56, 126, 143). Given the high
prevalence of polymorphisms in genes that encode the major
nicotine metabolizing enzymes and the influence of factors,
such as sex hormones and diet, on the rate of various nicotine
metabolic pathways, a single nicotine metabolite cannot com-
prehensively assess daily nicotine intake. For example, African
Americans usually have slower CYP2A6 activity and/or slower
UGT2B10 activity and thus have higher cotinine levels for a
given nicotine exposure compared with those with normal
enzymatic activity (33, 286).

The combination of metabolites included in the term TNE
may vary among studies. Most commonly, TNE is based on the
six main metabolites: nicotine, cotinine, 3-HC, cotinine-N-
glucuronide, nicotine-N-glucuronide, and 3-HC-O-glucuro-
nide. Nornicotine, norcotinine, nicotine 1=-N-oxide, cotinine
N-oxide, 4-hydroxy-4-(3-pyridyl)butanoic acid (“hydroxy-
acid”), and other glucuronide metabolites that are present in
low abundance can be measured but are rarely included in TNE
determinations. When measured at steady state, these com-
pounds account for ~80–90% of a daily nicotine dose (29, 86,
126). Defined this way, TNE is highly correlated with daily
nicotine intake, as validated by administration of labeled nic-
otine in steady-state conditions (23).

Analytical methods. The method of choice is LC-MS/MS. It
provides high sensitivity and specificity and can measure
multiple metabolites in one analytical run. Administration of
stable, isotope-labeled nicotine to human study participants has



been used to correlate TNE with daily nicotine intake in
multiple studies (131a, 132).

Biomarkers of Exposure in the Airways

The airways, directly exposed to the ambient atmosphere,
are the body’s first point of contact with inhaled tobacco
products. Theoretical models and studies of airway casts pre-
dict that most inhaled tobacco smoke deposits in the central
airways (209). Smoke and other aerosol deposition is influ-
enced by breathing patterns and the ways particles change in
the airways and move as a cloud (12, 122, 164, 170, 171, 184,
199). For example, low-tar tobacco products prompt more
intense smoking and variability among smokers; in the high
humidity of the airways, smoke particles enlarge and coagu-
late, which changes their deposition pattern (209).

Exposure biomarkers have been studied less in the airways
and lung than in blood and urine. Because tobacco components
deposit directly into the airways, sampling from airway sur-
faces provides a reliable and local assessment of smoke expo-
sure. The upper airways include the nasal cavity, pharynx, and
larynx, and the lower airways include the trachea, bronchi, and
bronchioles. All airway surfaces are lined with a thin film (~7
�m in depth) of airway surface liquid (ASL), which is approx-
imately isotonic with plasma, has a pH between 7 and 7.4, and
contains ~1,000 proteins, many of which are involved in innate
immune defense (65, 250, 251, 279). Nicotine is inhaled into
the lung and then converted to cotinine by cytochrome P-450
(25). Most nicotine metabolism by P-450 enzymes occurs in
the liver (25). Although cytochrome P-450s are expressed in
airway epithelia, these enzymes are not present in the ASL
(146, 200), suggesting that any cotinine in the ASL is likely to
be from the underlying airway epithelia or from the liver via
the bloodstream. The reason to test ASL for exposure biomark-
ers is to estimate the local concentration in airway tissues.

The three main specimen options for ASL assessment are
nasal lavage fluid (NLF), sputum, and bronchoalveolar lavage
(BAL) fluid. These first two are noninvasive, and samples can
be easily obtained in the field. BAL requires sedation and
bronchoscopy to obtain but is considered the gold standard and
perhaps the specimen most representative of the deep lung.
However, all three specimen types are reliable for assessing
environmental tobacco exposure. Solid-phase microextraction
of volatile and semivolatile compounds using extraction fiber is
a common method for sample extraction and for estimation of
nicotine and cotinine in sputum (83).

Nasal lavage fluid. NLF collection is a noninvasive way to
procure specimens for tobacco product exposure assessment.
Typically, subjects simply expel NLF into a specimen cup after
spraying a saline solution into both nostrils. After centrifuga-
tion to remove cells and other solids, cotinine levels in NLF,
measured by a competitive immunoassay, provide a specific
and sensitive measurement of smoking with a cutoff of expo-
sure of 1 ng cotinine/ml NLF (188). To normalize samples and
to facilitate comparisons among subjects, the total protein
concentration can be measured using standard bicinchoninic
acid assays. However, whereas nasal cotinine can be a useful
marker of active smoking, SHS exposure does not increase
cotinine in NLF when quantified using the competitive immu-
noassay technology (188).

Sputum samples. Induced sputum samples represent ASL
from the large/central airways in the lung. The relatively easy
sample collection method involves inhalation of hypertonic
saline mist, followed by coughing to expel the sputum. Rinsing
of the mouth minimizes sample contamination with salivary
secretions (64). Carefully collected sputum samples are a
reliable tool to identify nicotine and cotinine levels after
smoking and could possibly be used to assess SHS exposure
(64). Sputum samples are first treated with 0.1% DTT to break
down the mucins and then filtered and centrifuged. The result-
ing supernatant can be used to measure nicotine and cotinine
by HPLC-MS/MS. Sputum samples collected immediately
following smoke exposure have been shown to have greater
nicotine and cotinine levels than predicted from serum and
plasma. Cotinine levels (6.5 	 1.1 �M) were lower than nic-
otine (33.6 	 5.5 �M). In contrast, nicotine and cotinine
plasma levels were in the nanomolar and micromolar ranges,
respectively (64, 131). Similar data have been generated in
vitro using well-differentiated human bronchial epithelial cul-
tures, followed by ASL lavage and subsequent MS analysis
(64). A strong correlation was observed between different
tobacco smoke dilutions and nicotine level, as well as cotinine
level of ASL in vitro. In all dilutions, the nicotine level
detected was in the micromolar range, although consistent with
the lack of expression of cytochrome P-450 enzymes in the
ASL, cotinine concentration was much lower than nicotine
concentration; the ratio of nicotine follows: cotinine was ~6:1
in sputum and ~100:1 in ASL in vitro (64). Furthermore,
whereas Clunes et al. (64) observed ~33 �M nicotine in
sputum, they observed varying nicotine levels in vitro (from
~3,001 �M), suggesting that this technique can be used to
adjust dosimetry for in vitro experiments.

BAL samples. BAL samples are collected by squirting saline
solution into the lung and aspirating the solution from lung
surface fluid and cellular components. Although evaluation of
BAL fluid for tobacco components and metabolites may prove
a critical tool for analyzing pathogenesis of tobacco smoke-
induced pulmonary diseases and evidence of exposure, most
BAL fluid analysis is focused on proteomics indicating the
exposure effects. The only study, to date, relating smoke-
induced effects identified aluminum silicate crystals in “black
macrophages” in BAL samples from cigarette smokers (167).

Breath biomarkers. The breath is a well-validated indicator
of concentrations of volatile chemicals in the respiratory tract.
Benzene, 2,5-dimethylfuran, toluene, and xylenes have been
measured in breath samples of smokers and nonsmokers. The
use of each of these chemicals as a smoking biomarker,
however, varies. The VOC, 2,5-dimethylfuran is invariably
detected in smokers, regardless of use patterns, but not in
nonsmokers, suggesting that it is a useful biomarker of com-
bustible tobacco product exposure (6). Elevations in acrolein
levels in smokers are matched by elevations of lipid oxidation
products, including malondialdehyde and hydroxynonenal,
which suggests that the acrolein may derive partially from lipid
oxidation rather than cigarette smoke (11); the measurable
presence of microgram quantities of acrolein in the smoke from
each cigarette indicates that some of the acrolein exposure
biomarkers measured in smokers also likely arise directly from
smoke acrolein (78, 197). Development of similar noninvasive
techniques to assess exposure to e-cigarettes and other novel
tobacco products would facilitate large population studies.



Although sometimes referred to as “nicotine” or “smoking”
tests, the analyte measured by over-the-counter (OTC) test kits
is cotinine. These kits require no instrumentation and are the
fastest and least expensive cotinine assays available. With the
exception of NicCheck I (Mossman Associate, Milford, MA),
which is an older, colorimetric device, all currently available
OTC cotinine test kits use some form of lateral diffusion
immunoanalysis on disposable strips containing cotinine anti-
bodies. These strips are designed to give a simple, qualitative
smoker/nonsmoker response, based on a cutoff level. Most kits
are meant for use with urine samples and according to the
vendors, have a lower cutoff for a positive result of 200 ng/ml.
As described earlier, most smokers and other active tobacco
users typically have urine cotinine concentrations significantly
higher than 200 ng/ml, so these strips, when positive, would
indicate a likely tobacco user. These strips, however, are not
sensitive enough to detect exposure to SHS and may not detect
nondaily smoking.

Similar kits are available for use with saliva and have been
reported to have greater sensitivity. These include the 1-Step
Cotinine Rapid Saliva Test (20 ng/ml cutoff; Alere, Waltham,
MA), the iScreen OFD Test (30 ng/ml cutoff; Alere), and the
“Second Hand Smoke” NicoTest (10 ng/ml cutoff; USHealth-
Tests, Albany NY). Since cotinine concentrations in saliva are
much lower than in urine, saliva tests must be more sensitive to
discriminate between tobacco users and nonusers. Some of
these kits include supplies and devices for sample collection,
whereas others do not. In general, with the assumption that
these OTC kits perform accurately at indicated cutoff values, a
positive result indicates an active tobacco user, whereas a
negative result indicates a likely nonsmoker, infrequent
smoker, or a user of a low-nicotine e-cigarette.

Although all of the kits described here use standard, lateral
diffusion immunoassays, specific information about the anti-
bodies or other test-strip components has not been published.
With the exception of the NicAlert strips (Nymox Pharmaceu-
tical, Hasbrouck Heights, NJ) described below, most of these
kits, although marketed under various brand names, appear to
be made by one manufacturer: Gemc Technology in Shenzhou,
China. These tests are usually described by the manufacturer as
providing preliminary results, requiring a more specific
method, such as GC-MS, for confirmation.

Nymox Pharmaceutical’s NicAlert and TobacAlert tests are
similar in concept but use multiple band (“reland,” or release
ligand) regions that vary in their affinity for the analyte and use
colloidal gold particles coated with cotinine conjugate for
visual detection. This approach produces a more complex
result pattern on the strip, which is visually evaluated by the
user based on the lowest colored band. The manufacturer states
that this approach provides for a semiquantitative assay. The
lowest band cutoff value is 10 ng/ml, with progressively higher
cutoffs assigned to higher bands, enabling the use of these
strips with urine or saliva.

Cotinine test strips can provide a simple, inexpensive, and
noninstrumental approach to assessing an individual’s current
tobacco exposure and potentially distinguishing between reg-
ular tobacco users and nonusers. Although these devices lack
the sensitivity necessary to address low-level exposures reli-
ably, including SHS and nondaily tobacco use, and generally

provide results with greater variability than standard laboratory
assays, they can be helpful for certain applications. One im-
portant advantage is the ability to provide nearly immediate
feedback to a subject, as is also the case with breath CO
measurements.

TSNA METABOLITES IN URINE

The TSNAs include the potent lung carcinogen NNK and the
oral cavity and esophageal carcinogen N=-nitrosonornicotine
(NNN) and are—as indicated by their common name—re-
garded as completely specific to tobacco. Consequently, these
compounds and their metabolites are among the most impor-
tant biomarkers for monitoring tobacco exposure and evaluat-
ing tobacco and nicotine delivery products (109, 110, 118).
Urine is the preferred biospecimen, and the primary bio-
marker—considered as specific as nicotine or cotinine for
tobacco exposure—is NNAL, a metabolite of NNK and itself a
carcinogen. A key benefit of NNAL assays is the compound’s
estimated terminal t1/2 of 10–18 days (112), which is longer
than other tobacco biomarkers. The main disadvantage is that
the urinary concentration of NNAL is many times lower than
that of cotinine, so the assay is more technically challenging
and expensive to perform. Measurements of NNAL typically
require extensive sample prep, with analysis by LC-MS/MS,
and fewer laboratories can reliably measure NNAL than coti-
nine or nicotine.

Figure 3 shows the formation of the nitrosamines NNN and
NNK from nicotine. Whereas nicotine is converted to cotinine
in the body, the formation of NNK and NNN from nicotine
occurs mainly within tobacco itself, partly during plant devel-
opment but predominantly by nitrosation of nicotine during
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Fig. 3. Tobacco-specific nitrosamine formation from nicotine, a process that
occurs mainly during the curing and processing of tobacco [modified from
Kotandeniya et al. (150)].
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tobacco leaf processing and curing (88, 89). (NNN and NNK
are also formed from nornicotine and pseudo-oxy-nicotine
during curing.) Additional TSNAs can be formed from related
tobacco alkaloids, but NNN and NNK are believed to be the
primary carcinogenic forms in humans. There is strong evi-
dence that the TSNAs are carcinogenic in both experimental
animals and humans and that NNAL is not only a biomarker of
tobacco exposure but also an indicator of cancer risk (117,
244).

NNAL, the NNK metabolite, is the most stable and abundant
TSNA metabolite in urine samples, occurring both free and as
a glucuronide. NNN is also present in urine, but its concentra-
tion is lower than that of NNAL, making it more difficult to
detect and quantify. Measurements made after hydrolyzing the
glucuronides of NNAL provide “total” NNAL values, which
are the values most commonly used. Whereas NNAL is usually
measured in urine, where its concentration is highest, it has
also been measured in blood and in toenail clippings (a poten-
tially longer term storage site) (242).

TSNAs are released into the air when tobacco is burned, and
nonsmokers are also exposed (46, 114). There is evidence that
nicotine can continue to form NNK in the environment (224,
231). Nonsmokers exposed to SHS may have a higher NNAL-
to-cotinine ratio in their urine (96). NNAL concentrations in
urine of both smokers and nonsmokers have been reported in
several large studies, including a multiethnic cohort study
(193) and in all U.S. National Health and Nutrition Examina-
tion (NHANES) surveys since 2007 (37a, 277, 280). The total
NNAL geometric mean for nontobacco users in the 2011–2012
NHANES survey of the U.S. population was 1.19 pg/mg
creatinine (95% confidence interval 1.09, 1.29), whereas it was
216 pg/mg creatinine (95% confidence interval 182, 257)
among cigarette smokers (277). Although creatinine concen-
trations vary with age, sex, and muscle mass, they average
0.5–1.5 mg/dl in healthy adult humans and 0.1–0.5 mg/dl in
healthy adult mice. Mean values were lower in pipe and cigar
smokers and much higher in oral tobacco users, although the
sample sizes for the latter two groups were smaller. In a
multinational study of 631 smokers and nonsmokers, the cut
point for total NNAL between smokers and nonsmokers was
47.3 pg/ml (96). It is likely that occasional nonsmokers, with
heavy SHS exposure, may exceed this cut point, but most
nonsmokers fall well below this limit (96).

Since TSNAs are found in the tobacco leaf and also form
during combustion, they are also delivered via other tobacco
products, such as chewing tobacco, cigars, and pipes. Rela-
tively high TSNA exposure has been reported among some
smokeless tobacco users (115) and may contribute to the
increased oral cancer risk associated with the use of smokeless
tobacco products. Purified nicotine, such as that found in
nicotine patches, gums, and lozenges, should contain no
TSNA. However, NNN has been found in the urine of users of
some oral NRT products, possibly through endogenous forma-
tion by nitrosation of nornicotine (241). Additionally, studies
have shown that some e-cigarettes and e-cigarette liquids
provide low-level nitrosamine exposure through their aerosols
(99, 147). However, urinary NNAL concentrations decrease in
smokers who switch to e-cigarettes (97, 203), and urinary
NNAL concentrations in sole users of e-cigarettes are 1–10%
of the concentrations seen in cigarette smokers (113, 226, 268)
(e.g., 1.47 pg/mg creatinine vs. 53.4 pg/mg) (226).

Concentrations of TSNA in tobacco can be reduced by
selecting specific types of tobacco and by modifying the curing
and manufacturing process. Lower TSNA deliveries have been
reported for Swedish Snus (a smokeless tobacco product that
uses tobacco with relatively low TSNA content), the Omni
“reduced carcinogen” cigarette, and a medicinal nicotine patch
(107). The authors noted, however, that the patch delivered
significantly lower TSNA than any of the other recreational
products studied, and only trace levels of NNK have been
detected in a typical nicotine patch (243). The specificity of
NNAL to tobacco and its role as a human carcinogen make it
a fundamental marker for any evaluation of a new tobacco or
nicotine delivery product.

VOC METABOLITES IN URINE

VOCs are a diverse group of chemicals that are abundant in
tobacco product emissions and in the atmosphere, even where
no one is smoking (73, 74, 78, 94, 260). Many VOCs are
formed by incomplete combustion of organic materials, and
tobacco is not the only source of exposure. VOCs are also
present in foods and beverages. In addition to exogenous
sources, VOCs, such as acrolein, are generated by endogenous
processes, such as inflammation and lipid peroxidation. Acro-
lein is a product of the reactions catalyzed by myeloperoxidase
(10), and it is also generated as a result of lipid peroxidation
reactions (259). Given that smoking increases both oxidative
stress and inflammation, the measured levels of acrolein expo-
sure biomarkers likely reflect a combination of inhaled acrolein
from tobacco smoke (197) and endogenous inflammatory re-
sponses and lipid peroxidation. Hence, measurements of VOC
metabolites in the urine provide a somewhat nonspecific esti-
mate of exposure to tobacco products. Nevertheless, the levels
of many VOCs and VOC metabolites are elevated in smokers’
urine compared with nonsmokers (48, 77, 168, 238). Concen-
trations of VOCs, such as acrolein and crotonaldehyde, are up
to two orders of magnitude higher in cigarette smoke than in
ambient air (78). Therefore, many VOC metabolites are found
at background levels in all urine samples, and cigarette smok-
ing increases these exposure biomarkers above that back-
ground.

Several VOCs in tobacco smoke, including acrolein, ben-
zene, and 1,3-butadiene, are high-priority chemicals on the
U.S. Food and Drug Administration’s list of harmful and
potentially harmful tobacco product constituents (261b). Ac-
rolein can cause cardiovascular and lung damage. Benzene is a
human carcinogen (International Agency for Research on Can-
cer, Class 1A) known to cause leukemia. 1, 3-Butadiene is also
a human carcinogen. Acrolein forms during heating of glycerol
(glycerin) or glycerol-derived fats (e.g., triglycerides), making
it of particular interest for e-cigarettes, which commonly use
glycerol (“vegetable glycerin”) in their e-liquids (240). Ben-
zene exposure from hookah use may be higher than from
cigarette smoking, possibly due to the burning charcoal gen-
erally placed on top of the moist fruit–tobacco mixture (128).

A number of harmful VOCs can be measured directly in
human blood, urine, and breath (13, 43, 100). Furthermore,
many toxic VOCs are metabolized to forms, such as mercap-
turic acids, that are useful biomarkers of exposure (8). Some
mercapturic acid biomarkers that are useful in tobacco studies
are listed in Table 3. The acrylonitrile metabolites 2-cyanoeth-



ylmercapturic acid and/or N-acetyl-S-(2-cyanoethyl)-L-cys-
teine are highly selective biomarkers of smoke exposure that
effectively assess toxic acrylonitrile exposure and serve as a
surrogate measure for smoke exposure (128, 135, 180, 219,
222, 223). Nevertheless, it is important to remember that
several VOCs, such as acrolein and crotonaldehyde, and their
metabolites are highly reactive and readily form covalent
adducts with cell constituents, such as proteins, DNA, lipids,
and carbohydrates, and therefore, are retained in tissues for
extended periods. Consequently, the absence of urinary metab-
olites of VOCs, especially at low levels of exposure, cannot be
taken to indicate absence of exposure. Conversely, because
VOCs, such as acrolein, can also be generated by inflammation
(10) and oxidative stress (259), the presence of tissue acrolein–
protein adducts in smokers may not be entirely attributable to
exposure from tobacco smoke.

Analytical Methods

Characterization and quantitation of VOC mercapturates
usually require chromatographic separation—both GC and LC
have been used—followed by MS analyses. GC-MS is espe-
cially useful for the detection and quantitation of low molec-
ular weight VOCs and VOC metabolites, such as short-chain
carboxylic acids, some mercapturic acid conjugates, phenols,
and alcohols. These analytes are usually detected after extrac-
tion and derivatization (79, 142, 148, 155, 214, 219, 256, 262).
The development of ultrahigh performance LC and highly
sensitive MS detectors with ultrahigh scan speeds can elimi-
nate the need for sample derivatization, enhance sensitivity,
and decrease assay time (�10 min). These advances have led
to the development of a new generation of multimetabolite,
high-throughput assays, such as the one used by the Centers for
Disease Control and Prevention for detection of 28 VOC
metabolites (8).

With advances in MS technology and especially the advent
of high-accuracy and high-resolution MS time-of-flight and
Orbitrap mass analyzers, the monitoring and identification of
tens or even hundreds of compounds in one chromatographic
run are becoming a possibility. These new methods have
enabled the discovery of new mercapturates (140, 270, 271).
New assays are required to characterize and quantify signature
metabolites of emerging tobacco products, such as e-cigarettes,

cigarillos, and hookahs, as well as the flavoring reagents used
in these products.

PAH METABOLITES IN URINE

PAH formation results from the incomplete combustion of
organic compounds, including tobacco, during smoking. The
lower molecular weight PAHs, comprising two or three aro-
matic rings, occur mostly in the gas phase of tobacco smoke
and appear noncarcinogenic, except naphthalene. However, a
number of the higher molecular weight PAHs and their alkyl
derivatives, which occur mainly in the particulate matter of
tobacco smoke, are strong carcinogens and are considered to be
major factors in the development of lung cancer (13), due to
their conversion to reactive metabolites that form DNA ad-
ducts. Exposure to both mainstream and sidestream tobacco
smoke is associated with increased risk of lung cancer, cardio-
vascular disease, and chronic obstructive pulmonary disease.
Because tobacco is often dried and cured using fire and smoke,
smokeless tobacco products also contain PAHs. The quantita-
tive pattern of PAH exposure can differ for different tobacco
products, such as cigarettes vs. water pipes, as discussed later.
Yet, PAHs are not specific to tobacco, and exposures also come
from air pollution, food, and the workplace. Adducts of PAHs
with DNA or proteins have been measured as carcinogen
exposure biomarkers. Yet these PAH adduct biomarkers give
only nonspecific information about the source of carcinogens
and are difficult to measure, often yielding low or negative
numbers (111).

PAH biomarkers of tobacco smoke exposure that are com-
monly measured include 1-hydroxypyrene (1-HOP); 1-, 2-, and
3-fluorenols; 1- and 2-naphthols; monohydroxyphenanthrenes;
and 1,2,3,4-tetrahydroxy-1,2,3,4-tetrahydrophenanthrene (Fig.
4) (284, 285). Tetrahydroxy-7,8,9,10-tetrahydrobenzo[a]pyr-
ene (284) and hydroxylated metabolites of methylnaphthalenes
(MeNs) (160) have also been reported in smokers, but the
potential toxicity and health effects of MeNs are not well
studied (160). PAH metabolites are found in biofluids, mainly
in the conjugated (glucuronide and sulfate) forms, and decon-
jugation is typically performed before quantitative analysis.
Table 4 shows levels of various PAH metabolites measured in
U.S. smokers and nonsmokers.

Table 3. Volatile organic compounds and their biomarkers

VOC Biomarker Abbreviation

Acrolein 3-Hydroxypropylmercapturic acid 3-HPMA
Acrylamide 2-Carbamoylethylmercapturic acid (acrylamide mercapturic acid) AAMA
Acrylonitrile 2-Cyanoethylmercapturic acid CNEMA, CYMA
Benzene Phenylmercapturic acid PMA
1,3-Butadiene N-Acetyl-S-(4-hydroxy-2-buten-1-yl)-L-cysteine MHBMA-3
Crotonaldehyde 3-Hydroxy-1-methyl-L-propylmercapturic acid HMPMA
N,N-Dimethylformamide N-Acetyl-S-(N-methylcarbamoyl)-L-cysteine AMCC
Ethylbenzene Phenylglyoxylic acid PGA
Ethylene, ethylene oxide 2-Hydroxyethylmercapturic acid HEMA
Methylating agents Methylmercapturic acid MMA
Propylene, propylene oxide 2-Hydroxypropylmercapturic acid 2-HPMA
Styrene N-Acetyl-S-(1-phenyl-2-hydroxyethyl)-L-cysteine � N-acetyl-S-

(2-phenyl-2-hydroxyethyl)-L-cysteine � mandelic acid
PHEMA, MA

Xylene N-Acetyl-S-(2,4-dimethylphenyl)-L-cysteine, methylhippuric
acids

DPMA, 2MHA, 2MPHA, 4MPHA



1-HOP has been most commonly used as a PAH biomarker
of tobacco smoke exposure. It is a four-member aromatic ring
compound found predominantly in the particulate phase and is
thought to be the best surrogate biomarker for the potent
carcinogen, benzo[a]pyrene, a PAH, present in extremely low
levels and whose metabolite biomarkers are difficult to mea-
sure in urine. Several studies have shown increased concentra-
tions of 1-HOP in smokers; after smoking cessation, levels of
urinary 1-HOP were reduced by 50% (50). 1,2,3,4-Tetrahy-
droxy-1,2,3,4-tetrahydrophenanthrene is also increased in
smokers’ urine compared with nonsmokers (282). In one study,
levels of urinary MeNs were elevated 37-fold in smokers, on
average (160), but larger cohort studies are needed to confirm
this finding.

2-Naphthol and hydroxylated fluorenes appear more specif-
ically related to smoking exposure and nicotine intake than
1-HOP, having correlation coefficients of 0.66 and 0.71, re-
spectively, with urine nicotine equivalents, and are the best
PAH measures for daily smoke exposure (236). Naphthalene
metabolites in smokers are present in the highest concentration,
in the �10-ng/ml range and may be 5–10 times higher than
levels in nonsmokers. Levels of fluorenols are lower but were
found to have the highest probability of predicting smokers
from nonsmokers in both the United States and Poland (236).
However, fluorene is not known to be carcinogenic and is not
metabolized to diol epoxides, which are often highly potent
proximate carcinogens derived from higher molecular weight
PAHs. Fluorene’s predictive value for smoke exposure does
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not, therefore, predict cancer risk, unless it is determined that
these lower molecular weight PAHs are produced in the same
ratio during smoking, as the higher molecular weight carcino-
genic PAHs.

Because PAH metabolites are not specific for tobacco smoke
exposure, their main use is in distinguishing the use of com-
busted vs. noncombusted tobacco products and in characteriz-
ing different types of combusted tobacco products. For exam-
ple, pyrene metabolite levels are higher and naphthalene and
fluorene metabolite levels are lower in water-pipe users than in
cigarette smokers, presumably reflecting the contribution of the
burning charcoal in the water pipe (128). Similarly, different
PAH profiles were observed between cigarette smokers in the
United States and in China, presumably reflecting differences
in both tobacco blends and environmental exposures (24).

There are several limitations on the use of PAH metabolite
measurement to assess tobacco smoke exposure. First, the
environmental sources of PAH exposure may vary across
regions and countries, resulting in regional and national differ-
ences between nonsmokers’ and smokers’ test values. Addi-
tionally, the ratio of lower to higher molecular weight PAHs
varies with region and type of tobacco-filler composition (236).
Second, there are no clear-cut points for PAH metabolites that
can differentiate between smokers and nonsmokers and are
generalizable across regions. For example, optimal cut points
were found to be at least two times higher for Polish than for
U.S. samples, because Polish subjects were exposed to higher
background levels of PAHs (236). Regional, normal ranges are
therefore necessary to establish baseline background exposure.
Third, since PAH metabolites have short t1/2 (4–10 h), metab-
olite levels in a spot urine sample reflect the time interval
between the subject’s last smoking episode and urine collection
(236). Fourth, concentrations of urinary PAH biomarkers are
generally low in picograms/milliliters.

Because hydroxylated PAH metabolites are excreted mainly
as conjugates, PAH exposure is generally quantified after
de-conjugation with 
-glucuronidase. Because of the complex-
ity of the urine matrix and the low concentrations of PAH
metabolites present, extractive clean-up procedures are gener-
ally necessary. Mass spectrometric methods with stable iso-
tope-labeled internal standards provide the greatest sensitivity,
precision, and specificity and are most commonly used. An
exception is 1-HOP, for which HPLC with fluorescence detec-
tion has provided satisfactory results (52, 59).

Currently, the most commonly used instrumental methods
are GC-MS (51, 103, 116, 212) and LC-MS/MS (129, 186,

205, 281). Derivatization is necessary for GC-MS methods,
and generally, trimethylsilyl derivatives have been used (51,
103, 116, 212). High specificity and sensitivity in GC-MS
analysis have been achieved by using an accurate mass/high-
resolution mass spectrometer (212). Derivatization has been
used in LC-MS/MS analysis to increase the sensitivity and
specificity (129). Specific urinary biomarkers of tobacco expo-
sure, such as TNEs and NNAL, can be correlated with the
nonspecific PAH metabolite biomarkers and used as a measure
of tobacco exposure.

METALS

Tobacco plants readily absorb metal ions and compounds
from the soil. The amount of metals absorbed is influenced by
the concentrations of metals in the soil and in soil amendments,
such as phosphate fertilizers, animal waste, or sewage sludge
(2, 15, 183). Cadmium is a toxic and carcinogenic metal that is
absorbed from the soil by tobacco plants and is, therefore,
present at high concentrations in mainstream tobacco smoke
(192, 261a). Cadmium levels are higher in the blood and urine
of current smokers than in former smokers or nonsmokers (1,
108, 176, 196, 207). During combustion, cadmium is reduced
to the neutral form and is transported through the cigarette rod
in the gas phase before condensation (16, 191). Pulmonary
elimination of cadmium after inhaling tobacco smoke is slow.
The biological t1/2 of cadmium is 14–23 yr (91, 189, 247). Its
slow elimination from the lungs after inhalation exposure from
combustible tobacco products is consistent with exposure to
cadmium in the poorly soluble, neutral form. It is measured in
blood and urine using inductively coupled plasma MS (108,
178, 207, 230). Toxicokinetic studies suggest that cadmium
concentration in blood reflects recent exposure (1, 136),
whereas its concentration in urine reflects chronic exposure (1,
211). However, cadmium is a nonspecific biomarker of tobacco
exposure, because cadmium in human specimens may also
reflect dietary and occupational exposures. Cadmium levels
increase with age, and the average urinary cadmium concen-
tration for nonsmokers in the 1988–2004 NHANES was 0.21
ng/ml (253). For smokers, it was 0.40 ng/ml, and values above
5 ng/ml were associated with the occupational history of
working with metal.

With few exceptions, exposure to toxic metals from non-
combustible-inhaled tobacco products, such as e-cigarettes, is
likely to be lower than for combustible products. In e-ciga-
rettes, the aerosolization temperature is lower than combustion

Table 4. PAH metabolites in urine from smokers and nonsmokers (pg/ml)

Smokers Nonsmokers

Biomarker Least-Squares Geometric Means 95%Confidence Interval Least-Squares Geometric Means 95%Confidence Interval

1-Hydroxypyrene (1-HOP) 104 91–119 40 35–46
1-Hydroxynaphthalene (1-NAP) 6,293 5,570–7,111 1,523 1,367–1,697
2- Hydroxynaphthalene (2-NAP) 8,597 7,325–10,090 1,682 1,466–1,931
2-Hydroxyfluorene (2-FLUO) 990 871–1,125 236 211–265
3-Hydroxyfluorene (3-FLUO) 592 516–679 90 81–100
9-Hydroxyfluorene (9-FLUO) 342 310–377 200 174–231
1-Hydroxyphenanthrene (1-PHEN) 193 170–219 132 117–150
2-Hydroxyphenanthrene (2-PHEN) 88 75–103 48 38–57
3-Hydroxyphenanthrene (3-PHEN) 194 167–224 91 81–102
4-Hydroxyphenanthrene (4-PHEN) 53 40–70 39 28–54
9-Hydroxyphenanthrene (9-PHEN) 88 77–102 26 23–30



temperature. These temperatures are not high enough to cause
evaporation of metals from the heating element. However, any
metal in the e-liquid may be sputtered and entrained in the
heated aerosol as the heating element boils the liquid from the
wick. Moreover, the tobacco extract used as a source of
nicotine in e-juices is not the complete tobacco matrix. Tem-
peratures between 200 and 300°C are sufficient to aerosolize
propylene glycol or glycerol—the most common e-cigarette
solvents. However, the temperatures of the heating element are
sufficient to cause thermal decomposition of some extract and
solvent constituents, which may, in turn, contribute to e-ciga-
rette users’ exposure (Fig. 5) (81). E-cigarettes components—
including exposed wires, wire coatings, solder joints, electrical
connectors, heating element material, and vitreous fiber wick
material—constitute the second major source of inorganic
toxicants to which e-cigarette users may be exposed. Figure 5
shows an example of an e-cigarette’s nichrome heating element
wrapped around a vitreous fiber wick. Thermal decomposition
of some substances and possibly heat-induced breakage of the
wick fibers are apparent in the vicinity of the heating element
after use.

Figure 6 shows corrosion on a brass electrical connector
from an e-cigarette. The corrosion is reflected in the copper-
and zinc-containing particulate in e-liquid that was trapped
with polytetrafluoroethylene filters (Fig. 7). This source might

account for the elevated levels of copper and zinc in the aerosol
produced by some e-cigarettes (278). Similarly, a tin solder
joint could undergo corrosion (Fig. 8), leading potentially to
elevated levels of tin in some e-cigarette liquids (278).

EXHALED CO

CO is formed by incomplete combustion of organic materi-
als and is prevalent in the environment at low concentrations
due to its presence in motor vehicle exhaust. However, high
CO levels are generated during tobacco combustion, making
exhaled CO a useful and validated marker for identifying
individuals who have recently used a combustible tobacco
product. Exhaled CO can be measured easily and reliably by
asking study participants to blow into a portable CO monitor
after holding their breath for 15 s. The concentration of exhaled
CO [measured in parts per million (ppm)] correlates well (r �
0.95) with the concentration of carboxyhemoglobin in blood
(percent hemoglobin saturation), and so measurement of ex-
haled CO has become a standard method for assessing recent
smoking (25a, 272).

Although CO is produced in the human body (largely via
heme-oxygenase-1) and therefore, can affect both blood car-
boxyhemoglobin and exhaled CO (227), the contribution of
biologically generated CO to exhaled CO is small (in the range
of 1–5 ppm) relative to the increase in exhaled CO directly
attributable to active smoking (typically in the range of 7–60
ppm). For example, Cheng et al. (57) reported on health
correlates of exhaled CO in the Framingham community sam-
ple. In that group, although approximately one-third included
smokers, 78% of those with an exhaled CO � 5 ppm were
self-reported tobacco smokers, whereas only 10% of them
were never smokers (of whom some could have been misre-
porting their smoking). Studies that have confirmed abstinence
from smoking using cotinine have found that �3% of recent
ex-smokers have an exhaled CO � 4 ppm. Based on these data,
some investigators have recommended that the cutoff for
exhaled CO should be lowered to 4 ppm to confirm smoking
abstinence (70), although values of 6 ppm continue to be used
(see below).

Cut Points

Smoking cessation. The t1/2 of exhaled CO varies from 2 h in
someone actively exercising (e.g., jogging) to 8 h in someone
sleeping, with the average of 4 h (25a). The initial CO cut point
for verification of self-reported abstinence in a smoking ces-
sation study was 8–10 ppm, and CO � 10 ppm has been

Fig. 5. Light microscope image of the
nichrome heating element coiled around
the vitreous fiber wick of an e-cigarette
before (left) and after (right) use. Note the
evidence of thermally decomposed organic
substances and fragmented vitreous fibers
in the vicinity of the heating element.

Fig. 6. Zinc and copper corrosion has apparently occurred on the surface of this
brass electrical connector from an e-cigarette. [Image obtained using scanning
electron microscopy–energy dispersive spectroscopy (EDS).] The orange-
colored fibers are fragments of the vitreous wick fibers composed of silicate.



widely used in smoking cessation clinical trials (typically to
verify self-reported smoking abstinence for the past 7 days).
However, ambient indoor CO levels have decreased as smok-
ing prevalence and SHS exposure have fallen over the past two
decades. Many studies now suggest that CO � 6 ppm (169)
may be an optimal cut point to verify self-reported smoking
cessation for at least 1 wk (Table 5), and this value is now
being used in clinical trials (17, 216).

Because it is readily measured, exhaled CO is frequently
used in tobacco research to confirm smoking status. Both 8 h
“overnight abstinence” and 12 h abstinence are common in
studies that do not require zero blood nicotine concentrations at
baseline. If zero blood nicotine is necessary, then 16–24 h
abstinence may be necessary, as the average nicotine t1/2 can
reach 4 h in slow metabolizers. Without real-time blood nico-
tine measurement, however, it is difficult to decide which
exhaled CO cut point to use to verify abstinence compliance.
For example, many compliant volunteers will likely have
exhaled CO � 6 or � 10 ppm after overnight abstinence, partly

due to the longer t1/2 of CO during sleep. If an afternoon
baseline CO measurement (with normal smoking) is available,
then a verification cut point at least 50, 60, or 70% lower for
overnight (8 h) and 12 and 24 h abstinence is reasonable. If no
baseline smoking CO measure is available, then absolute cut
points of �16, �12, and �10 ppm are reasonable to verify
overnight (8 h) and 12 and 24 h of smoking abstinence.
Although exhaled CO does not offer “perfect” validation of
short periods of smoking abstinence, these guidelines may be
practical for laboratory studies. If saliva or urinary nicotine is
also measured, then researchers can exclude subjects with
unacceptably high nicotine concentrations.

Exhaled CO As An Estimate of Smoke Inhalation

A measurement of exhaled CO is generally regarded as a
valid and reliable estimate of recent smoke inhalation. How-
ever, the measure increases by 1–8 ppm with every cigarette
smoked and then immediately starts falling, with an average
t1/2 of 4 h. Thus the time of day and time since last smoke are
highly relevant, with afternoon or evening measurement pref-
erable to early morning. Moreover, in a repeated-measures
study, it is preferable to repeat CO measurements at the same
time of day and at the time of measurement to record how
many cigarettes a subject has smoked that day and the time
since the last smoke. With regular smoking, afternoon CO
measurements correlate well with intake of nicotine and other
tobacco toxicants (141). As research participants may be ex-
posed to a range of tobacco/nicotine products, as well as
nontobacco sources of inhaled CO (e.g., smoked marijuana)
(181, 206), it may be advisable to exclude recent users of
products, other than the product of interest, to enable greater
confidence in the source of measured CO (and nicotine).

CONFOUNDING EXPOSURES FOR NONSPECIFIC
BIOMARKERS

Metabolites of VOCs, PAHs, exhaled CO, and metal are not
specific to the use of and exposure to tobacco products.
Although the smoking of tobacco products causes characteris-
tic increases in the concentrations of these biomarkers, diet and

Fig. 7. Piles of fine and nano-sized particles obtained by filtration of the liquid from an e-cigarette before (left) and after (right) use. The violet and magenta colors
represent copper and zinc in the particulate. The orange and yellow–green particles are calcium silicate and silica particles.

Fig. 8. A tin solder connection on a battery of an e-cigarette appears to have
undergone some corrosion.



occupational and recreational exposure to smoke, vehicle ex-
haust, and welding fumes can also cause increases in these
biomarkers (7, 18, 135, 162, 202, 217, 275, 276). With the
measurement of nonspecific biomarkers of exposure to tobacco
and nicotine delivery products, it is very helpful to collect
questionnaire data on recreational, environmental, and occupa-
tional exposure to smoke, exhaust, dust, and metal fumes.

The use of cannabis (marijuana) is an important potential,
confounding exposure for VOCs, PAHs, CO, and metals.
Cannabis can be smoked, heated, and aerosolized; used as a
concentrate in an e-cigarette; or consumed orally. The preva-
lence of cannabis use is higher among smokers than among
nonsmokers (204, 206, 245). The compounds in cannabis
smoke are similar to those in tobacco smoke, except for
differences in the concentrations of nicotine, TSNAs, and
cannabinoids (181). The smoking of cannabis may cause in-
creases in nonspecific biomarkers of combustion aerosol ex-
posure, including CO and metabolites of VOCs and PAHs. The
aerosolizing of cannabis and the use of cannabis extracts in
e-cigarettes may also cause increases in metabolites of VOCs
and PAHs. The transfer of metals during the use of cannabis
products has not been studied sufficiently. The screening of
subjects in tobacco and nicotine delivery studies for biomark-
ers of exposure to cannabis can improve the interpretation of

results from these nonspecific biomarker tests, reduce the
prevalence of anomalous findings, and improve data quality.

There are two federal cut-point concentrations for cannabis
metabolites: one for the initial immunoassay test (50 ng/ml)
and a second for confirmation of a positive initial test, usually
by GC- or LC-MS (15 ng/ml) (75a). These concentrations do
not correlate with intoxication. The initial 50-ng/ml test may be
performed using an OTC test or by submitting a specimen to an
accredited testing laboratory. The OTC tests are usually less
expensive and offer low levels of false-positive and -negative
results (71).

Tetrahydrocannabinol (THC), the primary psychoactive
compound in cannabis, is lipophilic, so the t1/2 for elimination
of the primary metabolite of THC (delta-9-THC-9-carboxylic
acid) can be long. People who smoke cannabis more than
once a day, every day, can test positive at the initial federal
cutoff (50 ng/ml) for over 24 days after cessation (165). In
infrequent users, a single use will not be detectable after
3– 4 days (54). Likewise, even very heavy secondhand
exposure to cannabis smoke is unlikely to result in a positive
drug test after 12 h (66).

When a study participant smokes both tobacco and cannabis,
analysis of cotinine and NNAL will yield data that can quantify
tobacco use. Where spectrophotometric analysis of THC me-
tabolites is available, it is also possible to quantify cannabis
use. However, in dual users, it is not possible to apportion the
sources of CO, VOCs, and PAHs. In individuals who use
e-cigarettes with nicotine and cannabis regularly, the expected
pattern would be cotinine above 30 ng/ml in urine and THC
metabolite levels between 20 and 60 ng/ml.

POTENTIAL BIOMARKERS OF E-CIGARETTE USE

E-cigarettes are electrically powered devices that heat and
aerosolize a flavored liquid to produce an inhalable aerosol
without combustion (42, 45). Most e-cigarettes contain nico-

Table 5. Validated biological cut-point values separating
smokers and nonsmokers

Biomarker Specimen Concentration

Carbon monoxide Breath 6 parts/million (169)
Cotinine Urine 31 ng/ml (96)
Cotinine Saliva/blood 3 ng/ml (21)
Cotinine Nasal lavage fluid 1 ng/ml (188)
NNAL Urine 47.3 pg/ml (96)
NNAL-to-cotinine ratio Urine 0.74 � 10�3 (96)

Examples of
closed ECIG systems

Cartridge
(fillable)

“Tank” Battery

E-liquid reservoir

Mouthpiece Soaking wick Battery

Fitting

On/Off buttonCoil

Examples of open ECIG systems and parts

Fig. 9. Example of e-cigarette (ECIG) system
and parts.



tine. First-generation e-cigarettes (cig-alikes) are frequently
disposable and resemble combustible cigarettes but generally
deliver less nicotine (42). Second-generation e-cigarettes (e.g.,
“tank-style,” “vape pens,” “e-Gos”) are refillable, have easily
assembled components, are usually cigar sized, and are more
likely rechargeable than disposable (163). The nicotine delivery is
more similar or in some cases, higher than a combustible cigarette
(80, 85, 237). Third-generation devices (e.g., “mods,” “rebuild-
ables,” or “advanced personal vaporizers”) come in a large array
of customizable formats that generally include stronger batteries,
variable voltage, low amperage coils, and refillable tanks for
e-liquid (Fig. 9) (75, 249). These combinations affect toxicant
emissions in the e-cigarette aerosol (93, 95, 149, 283).

E-cigarette solution, known as e-liquid, can be a mixture of
propylene glycol and glycerol (typically, 75:25) or glycerol
alone, water, tobacco–nicotine extract, and flavorings. Flavor-
ings can include menthol, sugars, esters, and pyrazines (161).
More than 7,760 flavored e-liquids are now available (255,
287). E-liquid can also be contaminated with alkaloids other
than nicotine, carbonyls, VOCs, PAHs, TSNAs, and metals
(58, 127).

E-liquid is a starting point for the composition of e-cigarette
aerosol, but the aerosol is the source of human exposure and
thus, potential biomarkers. The physical composition of the
aerosol can be altered by many factors: the temperature of the
metal coil, rate of e-liquid flow through the heated coil,
chemical composition of the coil, the coil connection to the
power source, the wicking material transporting e-liquid, and
the hot aerosol contacts.

It is challenging to identify exposure biomarkers specific to
e-cigarette use because many e-liquid components are also
found in common foods and personal care products. For
example, the flavorings used in e-liquids are also used in
many foods. Similarly, propylene glycol and glycerol are in
many baked goods, beverages, sauces, soaps, lotions, and
toothpaste. The body metabolizes propylene glycol to D- and
L-lactic acid. Whereas L-lactate is a normal, endogenous
metabolic product, production of D-lactate is characteristic
of propylene glycol exposure, absent other causes of D-lac-
tate acidosis (61). The extent to which plasma D-lactate is
increased following frequent e-cigarette use is unknown and
worthy of further study. Glycerol is an endogenous constit-
uent in the synthesis and catabolism of triglycerides. Nico-
tine and its metabolites are present in the body fluids of
consumers of all tobacco products, including nicotine-con-
taining e-cigarettes.

During e-cigarette use, propylene glycol and glycerol can
react by dehydration and oxidation pathways to yield methyl
glyoxal (201, 232, 246); glyceraldehyde (60); propylene oxide
(154); glycidol (190); dioxolanes (69, 76, 125); and oxalic,
lactic, and pyruvic acids (156, 257), as shown in Figs. 10
and 11. In addition, the heating of e-liquids creates low
molecular weight carbonyls (formaldehyde, acrolein, acet-
aldehyde) and reactive oxygen species (19, 99, 120, 233).
However, all of these chemicals are also found in cigarette
smoke (248). As discussed earlier, at this time, the best way
to identify use of nicotine-containing e-cigarettes is to
confirm the presence of cotinine and the absence of other
biomarkers for the use of combustible tobacco products. It is
also necessary to exclude the use of NRT.

In comparison with cigarette smoke, e-cigarette aerosols
contain undetectable or low concentrations of TSNAs (84,
147). The levels of TSNAs, such as NNAL, are expected to be
lower in e-cigarette users than in smokers or oral tobacco users.
Likewise, levels of PAH metabolites and some VOC metabo-
lites should be lower in e-cigarette users than in smokers. Some
less-than-specific constituents of e-cigarettes and/or their me-
tabolites—including nicotine and menthol (as menthol glucu-
ronide)—may still be suitable as biomarkers of e-cigarette use
in well-characterized subjects whose prior exposure to non-e-
cigarette nicotine sources is known and can be controlled and
baseline concentrations established.

Flavor Biomarkers

Flavored noncigarette tobacco products are widely available,
and they may have particular appeal to youth (9, 68). Among
e-cigarette users who responded to an online survey, fruit
flavors are most preferred, and the most prevalent reason for
e-cigarette is the belief that they might be less harmful than
cigarettes (36). These results suggest that at least some users
are attracted to the various e-cigarette flavorings available and
have an unsubstantiated perception of the relative safety of
these products. Health effects of these flavorant additives are
not well understood. E-cigarette flavor compounds include
eucalyptol, camphor, menthol, methyl salicylate, pulegone,
ethyl salicylate, cinnamaldehyde, eugenol, diphenyl ether, and
coumarin (161). Except for the menthol biomarker, menthol
glucuronide, biomarkers for potentially toxic flavorants—in-
cluding cinnamaldehyde and cherry flavorants—have not been
well studied. Because flavors are often created from a mixture
of synthetic compounds, their exact compositions can vary,
even among flavors with the same name. For example, differ-
ent strawberry-flavored products, including cigarettes, e-ciga-
rette liquid, snus, and hookah tobacco, were found to contain
different flavoring compounds. These compounds included
esters and aldehydes; the terpenes linalool; �-terpineol; nero-
lidol and limonene; as well as the lactones �-decalactone,
�-dodecalactone, and �-undecalactone (194). Several studies us-
ing in vitro assays indicate that these flavorants may cause
oxidative and inflammatory responses in lung cells (human) and
tissues (rodents) (157). Together, these studies indicate that fla-
vored tobacco product users are exposed to potentially harmful
chemicals; however, we do not currently have the data to link
these inhaled exposures to health effects. Although we now have
considerable data on e-liquid constituents and aerosols, the deri-
vation of useful and specific exposure biomarkers from these data
remains a challenge because of the ubiquity of propylene glycol,
glycerol, and flavorants in consumer products.

TOBACCO EXPOSURE BIOMARKER RESEARCH AND
CAPACITY GAPS

Expanding Access to Biomarkers of Exposure

Biomarkers of exposure to tobacco and nicotine delivery
products are critical to establish links between tobacco product
use and subsequent health effects. These biomarkers allow us
to quantify exposure, ascertain dose-response relationships,
and in some cases, identify sources of exposure to tobacco
product toxicants. Accurate and sensitive biomarkers are es-
sential for characterizing exposure patterns and adverse health



effects of new and emerging tobacco and nicotine delivery
products.

Few laboratories can currently perform the most sophisti-
cated and sensitive assays of all of the biomarkers of exposure
to tobacco and nicotine delivery products. Although assays for
metabolites of nicotine, NNK, VOCs, and PAHs are necessary
to confirm nicotine-containing e-cigarette use and to differen-
tiate between active product use and SHS exposure, this suite
of assays is costly and time consuming, especially for large
studies and sample sets. Limited laboratory capacity impedes
research at a time when the market for tobacco and nicotine
delivery products is undergoing rapid change, and information
is needed to inform policymaking and regulations. In addition
to expanding access to existing assays, new biomarker assays
are needed to assess population harm attributable to new and
emerging tobacco and nicotine delivery products.

The development of biomarker assays proceeds through
distinct stages. First is the identification of new candidate
biomarkers. Next is assay development: the painstaking pro-
cess of finding the optimal way to quantify a biomarker. This
effort may include synthesis of the molecule of interest as an
internal standard, experimentation with different types of chro-
matographic techniques, development of methods for prelimi-
nary sample purification and/or derivatization, and develop-

ment of well-characterized control and test specimens to dem-
onstrate specificity and reproducibility.

Once identified, the biomarker must be validated. The pro-
cess of validation should address the following questions: how
well does the candidate biomarker correlate with tobacco and
nicotine delivery product use and exposure? If the biomarker
does correlate well, is it the best biomarker for exposure to a
specific product type or group of toxins, or are there better
candidates? Can the assay be improved? Does the assay gen-
erate reliable and valid results in samples from different pop-
ulations? Can cut-point values be determined to distinguish
among populations with different use and exposure patterns?
As a scientific consensus develops around a particular detec-
tion method, the details are disseminated to other research
laboratories, which then test the same samples using the same
or similar assays and compare findings—so-called interlabora-
tory testing (37). Concurrence of findings suggests that the
assay is valid and reproducible; discordant findings require
additional research and investigation. Moreover, interlabora-
tory validation assures that unavoidable, minor differences in
equipment and methods across laboratories do not affect the
quality of the results (37).

Currently, we are in the discovery and identification stage
for biomarkers of e-cigarettes, little cigars, cigarillos, and
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water pipes. Validated biomarkers of use and exposure to these
tobacco products are urgently needed. Cut-point values distin-
guishing between active cigarette use and SHS exposure have
been identified for serum cotinine (21) and for NNAL (96) (see
Table 5). The high-sensitivity LC-MS/MS assay for urinary
cotinine is in interlaboratory testing, and the high-sensitivity
LC-MS/MS assay for blood cotinine has completed interlabo-
ratory testing and been published (37). The candidate bio-
marker, NNAL, appears to be the optimal biomarker for TSNA
exposure, and many laboratories are using the assay validated
for distinguishing between active smoking and SHS exposure

to test samples from populations with different product use and
exposure patterns. Several laboratories are in the early stages
of validating biomarkers of VOC and PAH exposure (debating
the best biomarkers, refining methods, and comparing results
from different sample sets).

The measurement of nicotine exposure in smokers can be
costly (Table 6). Laboratories with limited throughput may be
able to analyze these samples at a lower cost but often have
longer turnaround times, slowing study progress. Studies with
large sample sets routinely face long turnaround times. In
addition, researchers often need to measure several biomarkers
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to create a detailed profile reflecting exposure to new, emerg-
ing, and traditional tobacco products. For example, to ascertain
whether a study participant uses nicotine-containing e-ciga-
rettes or nicotine-replacement products, but does not use com-
bustible tobacco products, researchers must measure cotinine,
NNAL, and/or VOC or PAH metabolites in a single sample.
This multivariate analysis can be cost prohibitive but is nec-
essary for an accurate exposure and outcome profile.

The equipment needed for these biomarker analyses is
highly sensitive and expensive. Additionally, it must often be
housed in a controlled environment and connected to uninter-
rupted and consistent electrical power. High-quality GC-MS/
MS, LC-MS/MS, and ultrahigh performance LC-MS instru-
ments cost hundreds of thousands of dollars and need expen-
sive technical support to install, calibrate, and maintain. Newer
instruments offer greater sensitivity and throughput than older
systems, but few laboratories have the resources required to
acquire and maintain a critical core of instrumentation and
staff.

The expansion of access to tobacco and nicotine delivery
system biomarker tests requires additional work across the
entire continuum of biomarker development. For example,
research is needed to investigate potential biomarkers of e-cig-
arette use, including flavors and the pyrolysis and metabolism
products of propylene glycol and glycerol (all typical e-liquid
constituents). Laboratories now validating assays for biomark-
ers, such as VOC and PAH metabolites, need access to more
specimens to identify specific biomarkers for combustible
products. Interlaboratory NNAL validation testing is also a
high priority to distinguish between light and infrequent smok-
ing and SHS exposure—an important distinction as product use
patterns change.

Expanded biomarker testing will also expand exposure data
sets that improve our ability to link biomarker measurements
with the use of specific tobacco products and subsequent health
effects, which is critical to inform public health policymaking.
To further this effort, we recommend five strategies to assess
better exposure to new and emerging tobacco and nicotine
delivery products.

Leverage advanced biomarker research. Advanced ap-
proaches will yield significant improvements in test sensitivity,
selectivity, and throughput—three crucial quality metrics. Ad-
vanced instrumentation and innovative sample preparation can
improve sensitivity and selectivity. Increased automation in
sample prep and data evaluation can drive down costs while
increasing throughput, making large population studies feasi-
ble to characterize population harm.

Build capacity for established biomarker methods. We must
build capacity for established biomarker methods by dissemi-
nating information about validated assays to more laboratories,
including commercial and hospital/clinical laboratories. This
strategy requires additional training and regular interlaboratory
testing. With the increase in the number of facilities able to
perform biomarker assays, we can increase access and enhance
collaboration among researchers toward the common goal of
assay improvement.

Educate researchers and policymakers. We must educate
researchers and policymakers about the importance of the
individual and quantitative exposure data provided by
biomonitoring. The generation of such data requires additional
resources but is crucial to attribute health effects accurately in
populations that are using new tobacco and nicotine delivery
products and potentially using more than one product or
subject to other recreational or occupational exposures . In-
creased biomonitoring will help researchers to characterize
better exposure and subsequent health effects caused by new
and emerging tobacco and nicotine delivery products.

Establish biospecimen repositories and data archives. Es-
tablishment of biospecimen repositories and data archives is
necessary to support assay development and validation. Large
numbers of well-characterized samples are needed to establish
biomarker cut-point values and to support optimization of
assay protocols. The proposed biospecimen repositories could
include samples from well-characterized small studies and
from large existing studies, such as NHANES and the Popu-
lation Assessment of Tobacco and Health study.

Develop and validate OTC kits. OTC kits need to be devel-
oped and validated so that that they can detect more reliably

Table 6. Assay sensitivity, cost, and availability

Biomarker Specimen Method LLOQ Cost Per Sample, $ Availability

Exhaled CO Breath Portable instrument 0.5 ppm 200–3,000 for instrumenta Commercial
Cotinine Urine OTC kit NA (200 ng/mlb) 0.50–5.00 Commercial
Nicotine � metabolites Urine GC-MS 2 ng/ml 120–200 Commercial
Nicotine � metabolites Blood GC-MS 2 ng/ml 180–300 Commercial
Nicotine and cotinine Urine, saliva, blood GC-NPD 1 and 10 ng/ml, respectively 50–100 Academic/govt.c

Nicotine Urine, saliva, blood GC-MS/MS 0.2 ng/ml 75–200 (for nic � cot) Academic/govt.c

Cotinine Urine, saliva, blood GC-MS/MS 2 ng/ml Academic/govt.c

Cotinine Urine LC-MS/MS 0.05 ng/ml 100–200 (for cot � 3-OH cot) Academic/govt.c

3-OH cotinine Urine LC-MS/MS 0.1 ng/ml Academic/govt.c

Total nicotine equivalents Urine LC-MS/MS Not applicable 180–300 Academic/govt.c

NNAL Urine LC-MS/MS 0.25 pg/ml 180–300 Academic/govt.c

Menthol glucuronide Urine, plasma LC-MS/MS Plasma: 4 ng/ml, urine: 500
ng/ml

40–100 Academic/govt.c

VOC metabolite panel Urine See Table 3 See Table 3 180–300 Academic/govt.c

PAH metabolite panel Urine See Table 4 See Table 4 180–300 Academic/govt.c

Costs and LLOQs are constantly changing. This table was accurate at the time of publication. Please contact the laboratories when you are creating your budget
and sample collection plans. The minimum sample volume for most chromatographic assays is 1 ml. NNAL and PAH metabolite assays require 3 ml. However,
it is best practice to provide enough volume to allow for losses in pipetting and for repeat testing. Thus the optimal sample volumes are 2.1 ml for most tests
and 6.2 ml for NNAL and PAH tests. NPD, nitrogen phosphorous detector; nic, nicotine; cot, cotinine; 3-OH, 3-hydroxycotinine. aCost per test depends on
frequency of use after instrument acquisition. bAs this is a qualitative test, there is no LLOQ [not applicable (NA)]. A positive result is at or above 200 ng/ml.
cInvestigators must contact the laboratory in advance to ascertain availability, cost, and turnaround time for tests at academic and government laboratories.



cotinine at the current biological cut-point values, distinguish-
ing smokers from nonsmokers based on both urine and saliva
specimens. Such tests might be useful in clinical settings to
screen patients for tobacco exposure or to assess response to
smoking cessation therapy. Furthermore, they could be admin-
istered in research settings to assess rapidly eligibility for
experimental studies by determining smoking status. As noted
in Over-the-Counter Cotinine Tests, there are commercial
products that claim levels of sensitivity that meet these needs,
but they are not yet validated by use and may need further
development to be effective. Affordable, effective OTC kits
will vastly increase the pace of research on new and emerging
tobacco products.

Biomarkers of exposure to tobacco and nicotine delivery
products are critical tools for identifying and quantifying the
health effects of tobacco products. The absence of unique
biomarkers for new and emerging tobacco products, especially
e-cigarettes, is an urgent problem. The implementation of these
five strategies will dramatically improve the characterization of
harmful and addictive exposures related to tobacco and nico-
tine delivery products, as well as characterize the resulting
health effects of these products on individuals and populations.
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