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BACKGROUND: The relationship between 25-hydroxyvitamin D (25-OH-vitamin D) and
COPD outcomes remains unclear. Using the Subpopulations and Intermediate Outcome
Measures in COPD Study (SPIROMICS), we determined associations among baseline 25-
OH-vitamin D and cross-sectional and longitudinal lung function and COPD exacerbations.

METHODS: Serum 25-OH-vitamin D level was measured in stored samples from 1,609 SPI-
ROMICS participants with COPD. 25-OH-vitamin D levels were modeled continuously and
dichotomized as deficient (< 20 ng/mL) vs not deficient ($ 20 ng/mL). Outcomes of interest
included % predicted FEV1 (current and 1-year longitudinal decline) and COPD exacerba-
tions (separately any and severe, occurring in prior year and first year of follow-up).

RESULTS: Vitamin D deficiency was present in 21% of the cohort and was more prevalent in
the younger, active smokers, and blacks. Vitamin D deficiency was independently associated
with lower % predicted FEV1 (by 4.11%) at enrollment (95% CI, –6.90% to –1.34% predicted
FEV1; P ¼ .004), 1.27% predicted greater rate of FEV1 decline after 1 year (95% CI, –2.32% to
–0.22% predicted/y; P ¼ .02), and higher odds of any COPD exacerbation in the prior year
(OR, 1.32; 95% CI, 1.00-1.74; P ¼ .049). Each 10-ng/mL decrease in 25-OH-vitamin D was
associated with lower baseline lung function (–1.04% predicted; 95% CI, –1.96% to
–0.12% predicted; P ¼ .03) and increased odds of any exacerbation in the year before
enrollment (OR, 1.11; 95% CI, 1.01-1.22; P ¼ .04).

CONCLUSIONS: Vitamin D deficiency is associated with worse cross-sectional and longitudinal
lung function and increased odds of prior COPD exacerbations. These findings identify 25-
OH-vitamin D levels as a potentially useful marker of adverse COPD-related outcomes.
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Nutritional and vitamin deficiencies are prevalent in
COPD.1-3 Relationships between 25-hydroxyvitamin
D (25-OH-vitamin D) and COPD outcomes are of
interest because of the effects of 25-OH-vitamin D on
the immunologic and musculoskeletal systems,
which may contribute to respiratory outcomes.4

Vitamin D deficiency (VDD) (25-OH-vitamin D
level < 20 ng/mL5) has been implicated as a risk
factor for the development and severity of airflow
limitation6-8 and physical function in those with
COPD.9-14 Analyses of the general US population in the
National Health and Nutrition Examination Study have
reported lower lung function and increased chronic
bronchitis in vitamin D-deficient participants.8,15

However, longitudinal declines in FEV1 among
individuals with COPD are heterogeneous.16 Prior
studies limited to those without COPD17,18 have not
described an association between vitamin D levels and
lung function decline. To date, the impact of 25-OH-
vitamin D levels on individuals with established COPD
is not established.
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Randomized controlled trials have failed to show lung
function improvement,19 decreased risk of
exacerbation,19,20 or improved COPD symptoms with
vitamin D supplementation.21 These trial findings are
limited by including participants at or near vitamin D
sufficiency.19,20 Despite these trial findings, participants
with lower vitamin D levels may benefit from
supplementation.4,22,23 As equipoise remains regarding
the role VDD may play in prospective COPD outcomes,
an analysis of large, well-characterized COPD-specific
cohorts with detailed and standardized clinical
phenotyping and longitudinal follow-up may be of
particular interest to clinicians who treat patients with
COPD and VDD.

We use the detailed demographic, clinical, and
spirometric data from the multicenter, prospective
Subpopulations and Intermediate Outcome Measures
in COPD Study (SPIROMICS)24 cohort to characterize
cross-sectional and longitudinal independent
associations among 25-OH-vitamin D, lung function,
and acute exacerbations of COPD (AECOPD). We
hypothesize that VDD in the SPIROMICS cohort will
be associated with poorer baseline and longitudinal
lung function and greater risk of AECOPD at
enrollment and over the first year of the SPIROMICS
study.

Methods
Study Participants

SPIROMICS is a multicenter, observational, prospective, cohort study
that includes current or former smokers ($ 20 pack-years), with or
without chronic airflow obstruction, between the ages of 40 and 80
years, and nonsmoking control subjects recruited from 12 clinical
centers (n ¼ 2,974).24,25 Participants included in this analysis had
spirometry-confirmed COPD (FEV1/FVC < 0.70) and available
baseline clinical data (n ¼ 1,609) (Fig 1). Institutional review boards
at each center approved SPIROMICS and participants provided
informed, written consent (e-Table 1).

Data Collection

The SPIROMICS cohort provided participant-reported demographic
data, medical history, smoking history, and serum samples at
enrollment. Postbronchodilator FEV1 and FVC were determined at
enrollment and at the 1-year follow-up visit. Use of vitamin D
supplementation was determined via patient report without specific
ascertainment of formulation. An AECOPD was defined as the
report of any worsening of COPD symptoms requiring antibiotics or
steroids. Severe AECOPD was defined as the report of worsening
COPD symptoms requiring an ED visit or hospitalization.26 Baseline
AECOPD data were obtained through participant self-report at the
time of enrollment. Longitudinal AECOPD data were collected by
self-report during quarterly telephone calls and at a yearly follow-up
visit. CT scan metrics (percent emphysema, functional small-airway
disease [FSAD], airway wall thickness at an internal perimeter of
10 mm [Pi10] for airways # 20 mm) were assessed as previously
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2,974 SPIROMICS
participants

• 202 Nonsmokers (Stratum 1)
• 941 Smokers without COPD (Stratum 2)

1,831 SPIROMICS
participants with COPD

222 Participants without 25-OH-vitamin D
measurements

203 Participants without follow-up
clinical data

1,609 Participants in
baseline cohort

1,406 Participants with
follow-up data

Figure 1 – CONSORT diagram showing selection of analytical cohort.
25-OH-vitamin D ¼ 25-hydroxyvitamin D; CONSORT ¼ Consolidated
Standards of Reporting Trials; SPIROMICS ¼ Subpopulations and In-
termediate Outcome Measures in COPD Study.
defined.27-29 Serum 25-OH-vitamin D levels were measured post hoc
from stored baseline serum samples, using radioimmunoassay
(enzyme immunoassay [IDS]; intraassay coefficient of variance,
8.14%; limit of detection, 3.7 ng/mL).
Statistical Methods

Two-sample Student t-test or Kruskal-Wallis testing and c2 testing
were performed to identify relationships between VDD and
continuous or categorical variables, respectively. 25-OH-vitamin D
levels were modeled continuously and as VDD (< 20 ng/mL)
vs not deficient ($ 20 ng/mL).5 Multilevel linear regression
modeling was used to determine relationships between 25-OH-
vitamin D levels and % predicted FEV1 at baseline as well as the
rate of change over 1 year. Exacerbations were modeled in binary
fashion (0 vs $ 1 episode). Logistic regression analysis was used to
determine the association between 25-OH vitamin D and the odds
of experiencing an AECOPD in the year before and after
enrollment. Severe AECOPD in the year before and after
enrollment was also separately explored as outcomes. Covariates in
the multivariable model were selected on the basis of clinical
relevance.30 Covariates in linear regression include pack-years of
smoking (per 10 pack-years), smoking status, and season of 25-
OH-vitamin D blood draw (spring, summer, and fall with winter
as referent). As age, sex, race, and height are incorporated into the
% predicted FEV1 calculation, these covariates were not separately
included in % predicted FEV1 models. Covariates in logistic
regression models include age (per 10 years), race, sex, pack-years
of smoking (per 10 pack-years), current smoking status, and season
of blood draw. The association between 25-OH vitamin D and CT
scan metrics was assessed in bivariate and multivariable linear
regression models. Adjusted CT models included age, race, sex,
BMI, current smoking, pack-years of smoking, and site of study.
Total lung capacity was also included for the models incorporating
Pi10. Sensitivity analyses were performed by incorporating reported
yearly income (< $50,000/y vs $ $50,000/y) into statistically
significant models. Baseline postbronchodilator % predicted FEV1

was added to statistically significant AECOPD models (with
removal of age, race, and sex to avoid collinearity). Main modeling
approaches were performed restricting to participants not reporting
vitamin D supplementation. For all comparisons, P < .05 was
considered significant; CT scan associations were corrected for
multiple comparisons. Statistical analysis was performed with SAS
version 9.4 (SAS Institute).
Results

Cohort Characteristics

There were 1,609 participants in the analytical cohort
(Table 1). Participants had a mean age of 65 years,
42% were female, and 14% were black. Severe COPD
(Global Initiative for Chronic Obstructive Lung Disease
[GOLD] stage III-IV) was present in 34% of participants,
and 31% reported one or more AECOPD in the year
before enrollment. All participants had 25-OH-vitamin D
levels above the limit of detection (> 3.7 ng/mL). The
median vitamin D level in the cohort was 28.9 ng/mL
(quartile 1-quartile 3, 21.3-36.5 ng/mL), with 338 (21%)
having VDD. By vitamin D category, 1% had vitaminD<

10 ng/mL, 20% between $ 10 and < 20 ng/mL,
33% between $ 20 and < 30 ng/mL, and 46% $ 30 ng/
mL. Figure 2 shows the distribution of vitamin D levels
stratified by GOLD FEV1 severity. A total of 24% of the
cohort reported some form of oral vitamin D
supplementation (6% in the VDD group and 29% in the
vitaminD-nondeficient group). VDDwas associated with
younger age (62 vs 66 years; P < .0001), black race
(29% vs 10%;P < .0001), and current smoking
(48% vs 30%; P < .0001). The VDD group had lower
postbronchodilator % predicted FEV1 at baseline
(57.5% vs 62.0% predicted; P ¼ .001) and at 1 year
(56.7% vs 63.4% predicted; P< .001). There was a greater
proportion of baseline visits occurring during winter
among VDD participants compared with non-VDD
participants (27% vs 18%; P¼ .003). A greater proportion
of participants with VDD experienced one or more
AECOPD in the year before enrollment (39% vs 30%; P¼
.005), as well as one or more severe AECOPD in the year
before enrollment (22% vs 14%; P < .001).
25-OH-Vitamin D and FEV1 Associations

In bivariate linear regression, a 10-ng/mL decrease in
25-OH-vitamin D was associated with lower % predicted
FEV1 (–1.14% predicted; 95% CI, –2.26% to



TABLE 1 ] Cohort Characteristics

Total Vitamin D < 20 Vitamin D $ 20 P Value

Patients 1,609 338 1,271 .

Age, y 65.3 (7.9) 62.0 (7.9) 66.1 (7.7) < .001

Sex, female 673 (42) 154 (46) 519 (41) .12

Black race 226 (14) 97 (29) 139 (10) < .001

BMI, kg/m2 27.3 (5.3) 27.4 (5.7) 27.3 (5.1) .71

Current smoker 529 (33) 161 (48) 368 (30) < .001

Pack-years smoking, median (Q1-Q3) 46 (35-62) 45 (35-60) 48 (36-63) .20

History of asthma 363 (24) 88 (28) 275 (23) .055

Yearly income < $50,000 819 (51.0) 211 (62.6) 608 (47.8) < .001

FEV1/FVC ratio, baseline 0.51 (0.13) 0.50 (0.13) 0.51 (0.13) .13

FEV1 % predicted, post-BD, baseline 61.1 (23.1) 57.5 (22.7) 62.0 (23.1) .001

FVC % predicted, post-BD, baseline 88.8 (19.9) 86.1 (19.4) 89.5 (20) .005

GOLD FEV1 severity

Stage I 346 (22) 59 (17) 287 (23) .115

Stage II 712 (44) 145 (43) 567 (45)

Stage III 383 (24) 92 (27) 291 (23)

Stage IV 159 (10) 40 (12) 119 (9)

Vitamin D supplementation 383 (24) 20 (6) 363 (29) < .001

Vitamin D category

< 10 ng/mL 24 (1.05) 24 (7) 0 (0) N/A

10 to < 20 ng/mL 314 (19.5) 314 (93) 0 (0)

20 to < 30 ng/mL 535 (33.2) 0 (0) 535 (42)

$ 30 ng/mL 736 (45.7) 0 (0) 736 (58)

Season of baseline visit

Spring 441 (27) 94 (28) 347 (27) .003

Summer 423 (26) 72 (21) 351 (28)

Fall 414 (26) 80 (24) 334 (26)

Winter 330 (21) 92 (27) 238 (18)

FEV1 % predicted, post-BD, 1 y 61.1 (23.1) 56.7 (22.4) 63.4 (22.6) < .001

AECOPD in previous year, any

0 1,092 (69) 207 (61) 885 (70) .005

1 273 (17) 75 (23) 198 (16)

2þ 224 (14) 53 (16) 171 (14)

AECOPD in previous year, severe

0 1,336 (84) 258 (78) 1,078 (86) < .001

1 173 (11) 50 (15) 123 (10)

2þ 76 (5) 24 (7) 52 (4)

AECOPD in first year, any

0 1,125 (74) 226 (72) 899 (74) .35

1 226 (15) 48 (15) 178 (15)

2þ 172 (11) 40 (13) 132 (11)

AECOPD in first year, severe

0 1,324 (87) 273 (86) 1,051 (88) .59

1 123 (8) 24 (8) 99 (8)

2þ 71 (5) 22 (6) 50 (4)

All values represent No. (%) or mean (SD) unless otherwise indicated. P value, comparing vitamin D strata. AECOPD ¼ acute exacerbation of COPD; BD ¼
bronchodilator; GOLD ¼ Global Initiative for Chronic Obstructive Lung Disease; Q1, Q3 ¼ quartile 1, quartile 3.



0
Total Stage I Stage II

<10 ng/mL 10 to <20 ng/mL
20 to <30 ng/mL ≥30 ng/mL

Stage III Stage IV

%
 P

ar
ti

ci
p

an
ts

20

40

60

80

100

Figure 2 – Distribution of vitamin D levels in the SPIROMICS cohort,
stratified by GOLD FEV1 stage. GOLD ¼ Global Initiative for Chronic
Obstructive Lung Disease. See Figure 1 caption for expansion of other
abbreviation.
–0.28% predicted; P ¼ .01) at enrollment. Similarly,
VDD was associated with lower % predicted FEV1

(–4.98% predicted; 95% CI, –7.66% to –2.30% predicted;
P ¼ .003) at enrollment. Multivariable multilevel linear
regression modeling, adjusting for covariates described
in Methods, was performed (Table 2). In this model, a
10-ng/mL lower vitamin D level at baseline was
associated with lower % predicted FEV1
TABLE 2 ] Multilevel Linear Regression Modelinga of Assoc
% Predicted at Baseline and First Year of Follow

FEV1 % Predicted (Co

FEV1
(% Predicted) 9

25-OH-vitamin D
(per 10-ng/mL decrease)

–1.04 –1.96

Annual FEV1 rate of change, % predicted
(per 10-ng/mL decrease)

–0.19 –0.53

25-OH-vitamin D (< 20 vs $ 20 ng/mL) .

Annual FEV1 rate of change, % predicted
(< 20 vs $ 20 ng/mL)

.

Visit 1 vs baseline –1.19 –0.15

Current smoking –0.37 –1.69

Pack-years smoking
(per 10 pack-years)

–0.16 –0.56

Season of blood draw

Spring 3.04 –0.23

Summer 5.56 2.26

Fall –1.88 –5.19

Winter (Ref)

25-OH-vitamin D ¼ 25-hydroxyvitamin D; Ref ¼ referent.
aAdjusted for all covariates in table.
(–1.04% predicted; 95% CI, –1.96% to –0.12% predicted;
P ¼ .03) at enrollment. Continuous 25-OH-vitamin D
was not associated with a more rapid rate of lung
function decline in the first year of follow-up. In
multivariate modeling, VDD was associated with lower
% predicted FEV1 (–4.11% predicted; 95% CI, –6.90% to
–1.34% predicted; P ¼ .004) at baseline. VDD was
associated with a significantly greater rate of % predicted
FEV1 decline over the first year of follow-up
(–1.27% predicted; 95% CI, –2.32% to –0.22% predicted;
P ¼ .02).

25-OH-Vitamin D and AECOPD Associations

In bivariate analysis, a 10-ng/mL decrease in 25-OH-
vitamin D was associated with 14% higher odds of
an AECOPD in the year before enrollment (95% CI,
1.04-1.24; P ¼ .005). Similarly, VDD was associated
with 48% increased odds of an AECOPD in the year
before enrollment (OR, 1.48; 95% CI, 1.15-1.91; P ¼
.002). In addition, a 10-ng/mL decrease in vitamin D
was associated with a 17% increase in the odds of a
severe AECOPD in the year before enrollment (OR,
1.17; 95% CI, 1.04-1.32; P ¼ .01). VDD was
associated with a 77% increase in the odds of a
severe AECOPD in the year before enrollment (OR,
1.77; 95% CI, 1.30-2.39; P < .0001) in bivariate
analysis.
iations Between 25-Hydroxyvitamin D and FEV1

-Up

ntinuous Vitamin D) FEV1 % Predicted (Vitamin D Deficiency Status)

5% CI P Value
FEV1

(% Predicted) 95% CI P Value

to –0.12 .03 . . .

to 0.15 .28 . . .

. . –4.11 –6.90 to –1.34 .004

. . –1.27 –2.32 to –0.22 .02

to 0.53 .04 –0.36 –0.83 to 0.12 .14

to 0.96 .58 –0.27 –1.59 to 1.06 .69

to 0.25 .45 –0.16 –0.57 to 0.24 .43

to 6.31 .07 3.07 –0.20 to 6.33 .07

to 8.85 .001 5.38 2.09 to 8.67 .001

to 1.42 .26 –2.02 –5.32 to 1.28 .23

. . (Ref) . .



In multivariable analysis adjusted for covariates
described in Methods, every 10-ng/mL decrease in 25-
OH-vitamin D was associated with an 11% increase in
the odds of an AECOPD in the year before enrollment
(OR, 1.11; 95% CI, 1.01-1.22; P ¼ .04) (Table 3).
Similarly, VDD was associated with 32% higher odds of
an AECOPD in the year before enrollment (OR, 1.32;
95% CI, 1.00-1.74; P ¼ .049). Neither continuous nor
dichotomized vitamin D levels were associated with
prior severe AECOPD in adjusted analyses (e-Table 2).

There were no associations between continuous 25-OH-
vitamin D or VDD and the odds of an AECOPD at 1
year in bivariate or multivariable analysis (e-Table 3).
Moreover, there was no association between vitamin D
levels (bivariate or multivariable) and a severe AECOPD
at 1 year (e-Table 4).

CT Analysis

In comparing VDD with nondeficient participants, there
were no differences in percent emphysema
(11.6% vs 11.3%; adjusted P > .99), FSAD
(26.5% vs 27.4%; adjusted P > .99), and Pi10 (3.73
vs 3.72 mm; adjusted P ¼ .22). Modeling 25-OH-
vitamin D continuously (per 10-ng/mL increase), there
was no association with percent emphysema (0.065%;
adjusted P > .99) or FSAD (0.64%; P ¼ .18). For every
10-ng/mL increase in 25-OH-vitamin D, Pi10 increased
0.004 mm (95% CI, 0.007-0.002; P ¼ .03). However, this
association was attenuated in multivariable modeling
(P ¼ .11).
TABLE 3 ] Logistic Regression Modelinga of Associations Be
Year Before Enrollment

Odds of COPD Exa
(Continuo

OR 95

25-OH-vitamin D (per 10-ng/mL decrease) 1.11 1.01-

25-OH-vitamin D (< 20 vs $ 20 ng/mL) .

Age (per 10 y) 0.60 0.52-

Sex, female 1.73 1.38-

Race, black 1.28 0.93-

Current smoking 0.49 0.37-

Pack-years smoked (per 10 pack-years) 0.97 0.93-

Season of blood draw

Spring 0.89 0.65-

Summer 0.91 0.66-

Fall 0.90 0.65-

Winter (ref)

aAdjusted for all covariates in table. See Table 2 legend for expansion of abbre
Sensitivity Analyses

Yearly self-reported income category (reported by
82% of the analytical cohort) was added to the
statistically significant FEV1 and AECOPD models.
Inclusion of income in FEV1 models did not attenuate
the relationship between VDD and baseline or
longitudinal % predicted FEV1. Inclusion of income did
attenuate the relationship between continuous vitamin
D level and baseline % predicted FEV1 (per 10-ng/mL
decrease in 25-OH-vitamin D: –0.43% predicted FEV1;
95% CI, –0.57% to 0.37% predicted; P ¼ .43). Income
also attenuated the relationship between VDD and prior
AECOPD (OR, 1.20; 95% CI, 0.87-1.63; P ¼ .27) and the
relationship between continuous vitamin D and prior
AECOPD (OR, 0.95; 95% CI, 0.85-1.07; P ¼ .41).
Inclusion of baseline lung function into AECOPD
models did not attenuate the association between
continuous 25-OH-vitamin D or VDD with prior
AECOPD.

Sensitivity analysis restricting the analytical cohort to
the 76% of participants not reporting vitamin D
supplementation (n ¼ 1,226) was performed (e-Table 5).
The associations between continuous vitamin D and
baseline lung function and any prior exacerbation were
not attenuated. Similarly, the associations between VDD
and baseline lung function and prior COPD
exacerbations were not attenuated. However, restricting
the analysis to participants not reporting
supplementation attenuated the association between
VDD and rate of lung function decline
tween Vitamin D and Odds of COPD Exacerbation in the

cerbation in Prior Year
us Vitamin D)

Odds of COPD Exacerbation in Prior Year
(Vitamin D Deficiency Status)

% CI P Value OR 95% CI P Value

1.22 .04 . . .

. . 1.32 1.00-1.74 .049

0.71 < .001 0.60 0.54-0.74 < .001

2.16 < .001 1.67 1.34-2.10 < .001

1.77 .09 1.28 0.93-1.77 .09

0.63 < .001 0.48 0.37-0.63 < .001

1.02 .19 0.97 0.93-1.02 .19

1.23 .96 0.88 0.64-1.21 .63

1.26 .99 0.91 0.66-1.26 .91

1.25 .97 0.90 0.65-1.25 .81

. . (ref) . .

viation.



(–1.05% predicted; 95% CI, –2.21 to 0.12% predicted;
P ¼ .09).
Discussion
This study presents the relationship between 25-OH-
vitamin D levels and COPD outcomes among 1,609
participants in the SPIROMICS cohort. VDD was seen
in 21% of the study cohort and was associated with black
race, younger age, and current smoking. VDD was
independently associated with lower FEV1 at baseline, a
greater rate of lung function decrement after 1 year, and
experiencing AECOPD in the year before study
enrollment. These findings demonstrate the association
between VDD and COPD outcomes, and indicate the
need for a future randomized study analyzing whether
attaining vitamin D sufficiency prevents adverse COPD
outcomes.

Patients with COPD are more likely to have VDD,
including when compared with age- and sex-matched
control subjects.12,31 This relationship may be due to
heavier smoking history, current smoking, more
advanced pulmonary disease, or a lower BMI.12 Our
study reports lower baseline lung function, increased
rate of lung function decline, and higher odds of
reported prior AECOPD independent of these factors. A
randomized study has shown no effect on lung function
decline with supplementation in individuals with COPD
and baseline 25-OH-vitamin D near 20 ng/mL.19

However, understanding relationships between VDD
and clinical outcomes may inform the importance of
remedying VDD in people with COPD.

Our analysis demonstrates that VDD is independently
associated with lower % predicted FEV1 (by 4.11%) at
study enrollment. These findings are consistent with
previous observational studies associating VDD with
lower FEV1 and higher incident COPD.8,12,13,32 Our
study extends these observations by showing that VDD
was associated with a 1.27/y greater decrease in FEV1

% predicted over 1 year in our study. This differs from
other cohort studies of those with and without COPD,
where VDD has not been shown to be associated with
greater lung function decline.17,18 Our cohort,
exclusively those with spirometry-confirmed COPD,
may contain participants with differential inflammatory
profiles. Although the mechanism cannot be determined
from this analysis, altered inflammatory responses to
noxious stimulants and decreased innate immune
system effectiveness may be a potential explaination.33-35

Vitamin D sufficiency has been associated with a
protective effect against lung function decline in
smokers,18 suggesting an antiinflammatory role for
vitamin D in the airways.36 Smoking status or history
did not independently contribute to FEV1 decline in our
models. Future investigation in smokers with preserved
lung function may further inform the interaction of
smoking, vitamin D status, and lung function.

Beyond the immunologic role of vitamin D, VDD is
associated with demographic factors, poorer health
status, and poor diet37 and may be an indicator of poor
general health in those with lower lung function or
rapidly progressing COPD. These potential
explanations are supported by the attenuation of some
of our results by inclusion of income as a surrogate for
socioeconomic status into models. These findings
illustrate the potential for reverse causality in the
relationship between 25-OH-vitamin D levels and
COPD outcomes.

This study demonstrates an increase in the odds of
experiencing an AECOPD in the year before enrollment
in those with VDD. An association between VDD and
any or severe AECOPD in the year after enrollment was
not observed. However, the numerically higher odds of
experiencing an AECOPD in the year after study
enrollment in those with low 25-OH-vitamin D is
similar to another study,23 and the potential to observe
statistically significant associations may be hindered by
the low number of exacerbations and severely vitamin
D-deficient participants in the SPIROMICS cohort.26

Studies regarding AECOPD and VDD have differential
results, with meta-analyses suggesting that VDD is not
significantly associated with an increased risk of
AECOPD.4,38 In our models, the association between
VDD and prior AECOPD is not attenuated by the
addition of % predicted FEV1, suggesting VDD was not
mediating exacerbation risk through an association with
lung function. Implementing vitamin D
supplementation as an intervention to prevent AECOPD
has been investigated,20,39,40 with those most likely to
benefit being patients with 25-OH-vitamin D levels <
10 ng/mL.19,20,23 Our analysis highlights the need for
further studies of COPD populations to identify who
may benefit from 25-OH-vitamin D supplementation.

This study has several limitations. The observational
nature of this study does not allow us to conclude
causality in the relationship between 25-OH-vitamin D
levels and COPD outcomes. Lung function data were
collected only at baseline and 1 year. SPIROMICS
captures patient-reported outcomes to assess AECOPD



rather than chart-adjudicated events. These events were
collected with greater frequency in the year after
enrollment, potentially introducing differential recall
bias contributing to the differential associations of
vitamin D on prior vs 1-year AECOPD assessments.
Moreover, reliable outdoor time, frailty, and diet metrics
were not assessed. As with any cohort study, those too
unwell to present for study visits would not be
represented, reducing the inclusion of those with
decreased outdoor time and higher risk for VDD.
Vitamin D supplementation was collected by participant
report without ascertainment of dosage. Longitudinal
lung function is attenuated in restricted analysis of those
not receiving vitamin D supplementation. As vitamin D
supplementation data were collected by patient report in
SPIROMICS and the dosage was not adjudicated, this
effect may be due to reducing the analytical cohort size.
Radioimmunoassay analysis used in this study is not the
“gold standard” for assessing 25-OH-vitamin D levels.
Although the kit manufacturer does participate in the
Centers for Disease Control and Prevention Vitamin D
Standardization Certification Program, the performing
laboratory did not participate in vitamin D external
quality assessment. However, all testing included
standard curves, kit controls, and internal laboratory
controls. This method is used to assess 25-OH-vitamin
D levels in the clinical setting, making our results
relevant to clinical practice. We do not have longitudinal
25-OH-vitamin D levels to assess the impact of varying
vitamin D levels on lung function decline estimates over
multiple years. Effect size of our findings cannot be
reliably reported. The predominance of white
participants may limit generalizability to other
populations with COPD and greater racial diversity.
Conclusion
We have observed VDD in approximately one of five
participants with COPD in a multicenter cohort.
Active smokers, blacks, and younger participants were
more likely to have VDD. Lower 25-OH-vitamin D
levels are independently associated with lower
baseline lung function as well as greater odds of an
AECOPD in the year before enrollment. VDD was
associated with a greater rate of lung function decline
over 1 year. These findings describe potential adverse
effects of VDD on lung function decline in those with
COPD.
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