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Abstract

Background: Quantitative computed tomographic (QCT) imaging-based metrics enable to quantify smoking induced
disease alterations and to identify imaging-based clusters for current smokers. We aimed to derive clinically meaningful
sub-groups of former smokers using dimensional reduction and clustering methods to develop a new way of COPD
phenotyping.

Methods: An imaging-based cluster analysis was performed for 406 former smokers with a comprehensive set of
imaging metrics including 75 imaging-based metrics. They consisted of structural and functional variables at 10
segmental and 5 lobar locations. The structural variables included lung shape, branching angle, airway-circularity,
airway-wall-thickness, airway diameter; the functional variables included regional ventilation, emphysema percentage,
functional small airway disease percentage, Jacobian (volume change), anisotropic deformation index (directional
preference in volume change), and tissue fractions at inspiration and expiration.

Results: We derived four distinct imaging-based clusters as possible phenotypes with the sizes of 100, 80, 141, and 85,
respectively. Cluster 1 subjects were asymptomatic and showed relatively normal airway structure and lung function
except airway wall thickening and moderate emphysema. Cluster 2 subjects populated with obese females showed an
increase of tissue fraction at inspiration, minimal emphysema, and the lowest progression rate of emphysema. Cluster 3
subjects populated with older males showed small airway narrowing and a decreased tissue fraction at expiration, both
indicating air-trapping. Cluster 4 subjects populated with lean males were likely to be severe COPD subjects showing
the highest progression rate of emphysema.
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Conclusions: QCT imaging-based metrics for former smokers allow for the derivation of statistically stable clusters
associated with unique clinical characteristics. This approach helps better categorization of COPD sub-populations;
suggesting possible quantitative structural and functional phenotypes.

Keywords: COPD, Emphysema, Functional small airway disease, Former smokers, Imaging-based cluster analysis

Background
Chronic obstructive pulmonary disease (COPD) is the
third leading cause of death in the United States [1]
and is identified by airflow limitation and/or obstruc-
tion. The severity of COPD is assessed by forced
expiratory volume in 1 s (FEV1%) predicted values at
post bronchodilator [2]. The pulmonary function test
(PFT)-based FEV1 and forced vital capacity (FVC)
values are highly recommended to assess the global
alteration of lung, but they do not correlate well with
symptoms [3]. In addition, PFTs do not reveal local
structural and functional alterations, which are essen-
tial in examining the heterogeneity of COPD pheno-
types. Thus, the ability to quantify these alterations at
multiple scales during COPD progression is necessary
to characterize COPD phenotypes.
A multicenter study of COPD, i.e., Subpopulations

and Intermediate Outcomes in COPD Study (SPIRO-
MICS) [2] acquired QCT scans at total lung capacity
(TLC) and residual volume (RV) [4]. This is an
integral part of the multicenter study to find structural
and functional phenotypes. A recent advance of quan-
titative medical imaging and data analysis techniques
allows for derivation of QCT imaging-based metrics,
leading to identification of statistically stable clusters/
phenotypes. For instance, using only QCT imaging-
based variables, Choi et al. [5] derived clinically mean-
ingful asthmatic sub-groups, being potentially useful
in developing clusters-specific treatments. Further-
more, Haghighi et al. [6] expanded the QCT imaging-
based clustering approach to identify homogenous
clusters within current smokers from SPIROMICS. In
this study, we hypothesize that QCT-based imaging
metrics could be used to identify distinct COPD former
smoker sub-groups with clinically meaningful charac-
teristics, subsequently adding insights to the previous
study of current smokers [6]. Shaker et al. [7] and Zach
et al. [8] reported that former smokers had significantly
higher % low-attenuation areas (%LAAs) on inspiration
and expiration CT scans (for emphysema and air trap-
ping measures) than current smokers. This is possibly
due to parenchymal inflammation in current smokers
serving to mask CT-based indices relative to former
smokers [6, 7]. Therefore, we divided the subjects into
former and current smokers to independently assess

phenotypes between these two groups and report on
the former smokers in this work.
With the aid of machine learning techniques, QCT

imaging-based metrics have been used to find homoge-
neous sub-groups of COPD subjects. As an example,
Bodduluri et al. [9] have employed image registration-
based metrics to discriminate COPD subjects from non-
COPD subjects. The study demonstrated the potential of
registration-based variables to characterize COPD
phenotypes, but this study was limited in supervised
learning. In regards to unsupervised learning methods,
there have been several efforts to identify COPD sub-
groups, but they employed either clinical data-only or a
mix of clinical and CT data together [10–12] as we focus
on imaging-only parameters to identify clusters.
Although it would be possible to add clinical/physio-
logical/biological measures into our cluster analysis, we
used only imaging-based features to focus features of
airway structure and lung function. Once established,
our clusters were evaluated for their clinical, physio-
logical, or biological measures. The associations between
imaging-only clusters and the non-imaging phenotypes
provide a validation of the ability of imaging metrics to
characterize clinically meaningful phenotypes. Choi et al.
[5] pioneered the use of unsupervised cluster analysis
using CT image data acquired by the Severe Asthma Re-
search Program (SARP) to identify four asthmatic clus-
ters. Their approach accounted for inter-site and inter-
subject variations, enabling an analysis of large data sets
acquired by multiple centers. Furthermore, Choi et al.
[13] successfully identified imaging-based structural and
functional features that differentiate asthmatics and
COPD patients with chronic functional alteration.
In this study, we adopted the approach by Choi et al.

[5]. In addition to the existing imaging-based metrics
developed for asthma, we introduced several new met-
rics to account for tissue alterations and emphysematous
lung [5, 6]. A comprehensive set of imaging-based met-
rics were transformed to the principal component
domain, and a cluster analysis was performed to explore
possible COPD phenotypes of former smokers. The
former smokers-clusters were then evaluated in associ-
ation with severity, GOLD stages [14], sex, BMI and bio-
markers, such as neutrophil counts, leukocyte (WBC)
count and matrix metalloproteinase (MMP-3). We then
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compared the cluster membership of former smokers in
this study with that of current smokers presented in our
previous study [6].

Methods
Human subject data and QCT imaging
We analyzed a total of 758 SPIROMICS subjects con-
taining an extensive set of biomarkers. In our analysis,
we hypothesized that smoking status may have effects
on CT measures of former and current smokers [7, 8].
The hypothesis was further consolidated by performing
a combined analysis and finding that a mix of both
groups cannot provide adequate cluster stability. Hence,
we excluded current smokers, so that a total of 406 for-
mers smokers remained. The healthy never smokers
without COPD were considered as healthy controls and
were not included in the clustering analysis. PFTs were
performed for all subjects pre- and post- bronchodilator,
and CT was performed post-bronchodilator. Table 1
shows the demographic and PFT measures based on
each stratum. Former smokers with post-bronchodilator
FEV1/FVC > 0.7 were grouped in stratum 2, and former
smokers in strata 3 and 4 had post-bronchodilator
FEV1/FVC < 0.7, with FEV1 > 50% in stratum 3 and
FEV1 < 50% in stratum 4, respectively [2].

Two QCT scans at TLC and RV were acquired by
multiple imaging centers in the NIH-funded SPIRO-
MICS multicenter research study [4]. The CT imaging
protocols were approved by each center’s institutional
review boards (IRB). All QCT scans were obtained with
post-bronchodilator. They were segmented with an auto-
mated commercial airway/lung segmentation software
(Apollo 2.0, VIDA Diagnostics), and registered with a
non-rigid mass-preserving imaging registration tech-
nique [15, 16].

Derivation of QCT imaging-based metrics
A total of 75 multiscale imaging-based variables were
extracted to derive principal components (Fig. 1). The
segmental variables included bifurcation angle (θ), air-
way circularity (Cr), wall thickness (WT) and hydraulic
diameter (Dh), where each variable indicated alteration
of skeletal structure, alteration of airway shape, wall
thickening and luminal narrowing, respectively. The
sizes of WT and Dh were normalized by tracheal WT
and average diameter (Dave) predicted from healthy sub-
jects [5], being denoted by WT* and Dh*, to eliminate
inter-subject variability due to age, sex, and height. The
four segmental variables were extracted from ten local
regions to reflect characteristics of regional alterations.

Table 1 Demography, baseline (Pre-bronchodilator) and maximal (Post-bronchodilator) pulmonary function tests for 105 Stratum 1
(healthy), 119 Stratum 2, 184 Stratum 3 and 103 Stratum 4 subjects

Stratum 1 (Healthy) Stratum 2 Stratum 3 Stratum 4 P value

N = 69 N = 119 N = 184 N = 103

Demography

Age, yrs 58.6
(10.5)

65.1
(7.5)

69.1
(6.4)

65.2
(7.5)

< 0.0001

BMI, kg/m2 28.4
(5.2)

29.5
(4.8)

28.4
(4.6)

27.0
(4.7)

< 0.0001

Sex, (Male/Female %) 42/58 51.3/48.7 62.5/37.5 57.3/42.7 = 0.02

Race, Caucasian/ African American/ Other (%) 62.3/26.1/ 11.6 81.5/12.6/ 5.9 88.0 /7.1/ 4.9 85.4 /9.7/ 4.9 < 0.0001

Baseline lung function
a

FEV1% predicted 98
(13)

91
(14)

67
(16)

28
(8)

< 0.0001

FVC % predicted 98
(11)

94
(13)

91
(16)

67
(15)

< 0.0001

FEV1/FVC × 100 78
(6)

74
(6)

55
(9)

32
(9)

< 0.0001

Maximal lung function
b

FEV1% predicted 102
(12)

97
(14)

76
(15)

34
(10)

< 0.0001

FVC % predicted 98
(11)

95
(13)

99
(15)

76
(17)

< 0.0001

FEV1/FVC × 100 81
(6)

78
(5)

57
(8)

34
(9)

< 0.0001

Values expressed as mean (SD) or number (%). Kruskal-Wallis and chi-square tests were performed for continuous and categorical variables
aBaseline (Pre-bronchodilator) values with greater than six hours withhold of bronchodilators. bMaximal (Post-bronchodilator) values after six to eight puffs
of albuterol
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A detailed derivation of the above structural variables
can be found in reference [17].
We further derived both strain-based and density-based

functional metrics with the aid of image registration that
matched two QCT images at TLC and RV. The strain-
based variables included fractional air volume change
(ΔVair

F), the determinant of Jacobian (Jacobian), and aniso-
tropic deformation index (ADI). These are estimates of re-
gional ventilation, local volume change, and preferential
local lung deformation respectively [18, 19]. Next, the
density-based functional metrics included functional small
airway disease percentage (fSAD%) and emphysema
percentage (Emph%) to characterize the portions of small
airway narrowing/closure and emphysematous lung, re-
spectively. This approach was devised to dissociate emphy-
sematous region from air-trapping region, previously
proposed by Galban et al. [20]. In order to eliminate inter-
site variation, we employed a fraction-based fSAD% and
Emph% using 90 and 98.5% air-fraction as the threshold,
instead of using the density threshold of − 856 and − 950,
respectively [21]. We further added two more imaging-
based metrics that measure tissue fraction [13, 22] at TLC

and RV (βtissue
TLC and βtissue

RV). The tissue fractions meas-
ure the portion of tissue volume in each voxel. These are
supplementary metrics for Emph% and fSAD%, because
βtissue

TLC decreases if tissue destruction is captured and βtis-
sue

RV decreases if air fraction increases due to air-trapping.
In addition, we included global imaging-based metrics

such as the ratio of apical-basal distance over ventral-dorsal
distance at TLC (lung shape), the ratio of air-volume
changes in upper lobes to those in middle and lower lobes
between TLC and RV (U/(M+L)|v), fSAD%, Emph%, βtis-
sue

TLC and βtissue
RV, Jacobian and ADI in the whole lung.

Overall, there were 32 local/segmental structural variables,
35 lobar structural variables and 8 global structural variables.

Cluster and statistical analysis
Raw imaging data were scaled with standard scaler, and
a principal component analysis was performed to derive
linearly uncorrelated variables, so-called principal com-
ponents (PCs). To obtain an optimal number of PCs, a
parallel analysis [23] with random uncorrelated data was
adopted. The analysis led to the number of 7 as an opti-
mal choice of PCs (Additional file 1: Figure S1).

Fig. 1 An expanded set of imaging-based metrics including emphysema percentage, tissue fraction at TLC and RV. a Inspirational image-based
local structures: θ, Cr, WT*, and Dh*. b Expiration image-based global and lobar function: AirT%. c Inspiration image-based global and lobar
function: Emph%. d Global structure:. e Registration-based global and lobar functions:.
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Using the 7 derived PCs, to find the optimal clustering
method and number, we then assessed internal properties
including connectivity, average Silhouette width and Dunn
indices [24] for three different clustering methods, i.e.,
hierarchical, K-means, and Gaussian finite mixture model-
based methods. Connectivity, average Silhouette width
and Dunn indices measure the inverse of ith nearest neigh-
bors which is not assigned to the same cluster, how tightly
grouped all the points in the cluster are, and the ratio
between the minimal inter-cluster distance to maximal
intra-cluster distance, respectively. Thus smaller connect-
ivity and larger Silhouette width and Dunn index indicate
better clustering properties. First, K-means method
was found to be a good clustering method for current
data based on connectivity, and average Silhouette
width (Additional file 2: Figure S2a). Dunn criteria
then suggested that the number of 4 is an optimal
choice in using K-means. To further test stability of
the clustering membership, a nonparametric bootstrap
analysis was performed with 200 bootstrapped data
sets. The mean of Jaccard similarity coefficients, de-
fined by the size of intersection divided by the size of
the union between clusters [25], was computed to find
the optimal cluster number and clustering approach
(Additional file 2: Figure S2b).
Kruskal-Wallis and chi-square tests were performed to

compare differences of continuous and categorical vari-
ables, respectively. The reported P values were significant,
if any one group is statistically different from one group
or more. We then performed association tests of imaging-
based clusters with demographic and clinical variables to
investigate the clinical relevance of current clusters.

Results
Structural and functional features of imaging-based
clusters
Cluster analysis identified four stable [6] imaging-based
clusters with the sizes of 100, 80, 141 and 85, respectively
(Table 2, and Fig. 2). Five major variables with higher

Wilk’s λ values which best describe the four clusters were
selected with a stepwise forward variable selection tech-
nique using Wilk’s λ criterion [26]. Note that the clusters
were differentiated predominantly with whole lung (total)
parenchymal metrics including βtissue at RV and TLC,
Jacobian, Emph% and fSAD%. Overall whole lung Emph%
and fSAD% increased with increasing cluster number. It
was noted that Emph% and fSAD% in Cluster 2 fell within
the similar range with healthy subjects (Fig. 3).
Structural alterations in segmental airways were also

captured between clusters (Table 3). Tracheal bifurcation
angle (θ) and circularity (Cr) measured in the sLUL were
significantly reduced in Cluster 4. Cluster 1 was character-
ized by airway wall thickening (WT*↑), whereas Clusters 3
and 4 were demonstrated by airway wall thinning (WT*↓)
and airway narrowing (Dh*↓). As summarized in Fig. 2,
clusters were characterized by airway wall thickening-
dominance (Cluster 1), increased tissue fraction at TLC
with marginally increased emphysema (Cluster 2), prox-
imal and peripheral airway narrowing (Cluster 3), and
severe alterations of tracheal bifurcation angle (θ) and air-
way shape (Cr) on proximal airways as well as peripheral
alterations (Cluster 4).

Associations of imaging-based clusters with clinical
features
Clusters 1 and 2 were mostly populated in GOLD 0, 1 and
2 along with a lower BODE index, while Cluster 4 was
mostly populated with GOLD 3 and 4 (stratum 4) with
the highest BODE index (Table 4). Cluster 2 showed the
highest BMI (obese) among all clusters. Clusters 1 and 2
demonstrated similar post-bronchodilator FEV1/FVC
values, but Cluster 2 had lower FEV1%predicted and FVC
%predicted values compared with Cluster 1. Cluster 3 had
significantly lower FEV1%predicted value and FEV1/FVC,
along with preserved FVC value, whereas Cluster 4 had
the lowest FEV1 and FVC % predicted values, along with
the lowest FEV1/FVC.

Table 2 Major imaging-based features selected by Wilk’s λ value of a stepwise forward variable selection method in four imaging-
based clusters and healthy subjects (stratum 1)

Variable Region Wilk’s
λ value

Cluster 1
(N = 100)

Cluster 2
(N = 80)

Cluster 3
(N = 141)

Cluster 4
(N = 85)

P value Stratum 1
(N = 69)

βtissueRV Total 0.286 0.240
(0.041)

0.245
(0.041)

0.172
(0.026)

0.110
(0.020)

< 0.0001 0.264
(0.054)

Jacobian Total 0.145 2.16
(0.259)

1.67
(0.200)

1.63
(0.201)

1.32
(0.147)

< 0.0001 2.11
(0.378)

Emph% Total 0.116 5.8
(0.058)

2.4
(0.026)

10.4
(0.073)

25.0
(0.110)

< 0.0001 0.024
(0.028)

fSAD% Total 0.093 8.7
(0.065)

7.5
(0.055)

23.5
(0.086)

36.8
(0.074)

< 0.0001 0.050
(0.052)

βtissue
TLC Total 0.080 0.109

(0.015)
0.142
(0.019)

0.103
(0.014)

0.081
(0.014)

< 0.0001 0.122
(0.03)

Values expressed as mean (SD). Full names of each variable or region were described in Abbreviations used
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The smoking pack-years were significantly greater in
Clusters 3 and 4 than those of Clusters 1 and 2 (Table 5).
Cluster 4 showed higher associations with pulmonary/
vascular condition, and chronic bronchitis, emphysema,
and COPD diagnosed at baseline across all clusters.
Shortness of breath during sleep was increased in
Clusters 2 and 4. Fathers and mothers of subjects in
Cluster 4 were likely to have COPD. The WBC counts

were increased in Clusters 2–4, with increased neutro-
phils (Table 6). Lymphocytes were reduced in Cluster 4.
The proteolytic enzymes of matrix-metalloproteinases
(MMPs) were reduced especially in Cluster 2. Based on
the lowest CAT score and exacerbation, Cluster 1
subjects were likely asymptomatic (CAT< 10) former
smokers with the lowest exacerbation across all clusters.
In contrast, Cluster 4 showed the highest CAT score

Fig. 2 A summary of imaging and clinical characteristics between clusters

Fig. 3 a Percentage of emphysema (Emph%) for four clusters and the healthy control group (green). † P > 0.05 between clusters 1, 2, 3 and the
healthy group. P < 0.05 between Cluster 4 and other groups for all pairwise comparisons b Percentage of small airway disease (fSAD%) for four
clusters and the healthy control group (green). ‡ P < 0.05 for comparisons between four clusters 2, 3, 4 (red) and the healthy group for all
pairwise comparison. P > 0.05 for between Cluster 1 and the healthy group
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with the lowest 6-min walk distance along with severe
oxygen desaturation.
We further associated the clusters with visual diag-

nostic assessments including COPD subtypes (CLE:
Centrilobular; PSE: Paraseptal; PLE: Panlobular em-
physema) as well as interstitial lung disease (ILD) by
an experienced thoracic radiologist at the University
of Iowa (Table 7) because these subtypes might be

associated with airway abnormalities [27]. Cluster 4
was less likely related to ILD and had a significant in-
crease of PLE. Subjects with PLE were not observed in
Clusters 1 and 2. We analyzed longitudinal data of 169
available subjects among the current cohort of former
smokers to quantify change of Emph%, i.e., emphysema
progression index (ΔEmph%) between baseline and one-
year follow-up. ΔEmph% is computed as the percentage of

Table 3 Segmental airway features at specific regions

Variable Region Cluster 1
(N = 100)

Cluster 2
(N = 80)

Cluster 3
(N = 141)

Cluster 4
(N = 85)

P value Healthy
(N = 69)

θ Trachea 91.1
(12.3)

93.0
(10.1)

91.1
(12.8)

86.5
(11.4)

< 0.001 91.8
(10.9)

Cr sLUL 0.961
(0.014)

0.959
(0.015)

0.956
(0.012)

0.943
(0.021)

< 0.0001 0.958
(0.013)

WT* sLUL 0.571
(0.035)

0.564
(0.034)

0.546
(0.035)

0.536
(0.042)

< 0.0001 0.561
(0.036)

Dh* sLUL 0.273
(0.028)

0.256
(0.029)

0.236
(0.024)

0.230
(0.033)

< 0.0001 0.264
(0.031)

Cr, WT*, and Dh* were only presented at sLUL, but overall trends between clusters were consistent in different locations

Table 4 Demography, baseline (pre-bronchodilator) and maximal (post-bronchodilator) PFTs, in four imaging-based clusters

Cluster 1 Cluster 2 Cluster 3 Cluster 4 P value

N = 100 N = 80 N = 141 N = 85

Demography

GOLD (%) (0/1/2/3/4) 62/23/14/1/0 57/20/20/2/0 6/24/51/16/3 2/0/12/46/40 < 0.0001

Strata (%) (2/3/4) 62/37/1 57/40/2 6/74/19 2/12/86 < 0.0001

BODE index 0.28
(0.61)

0.60
(1.12)

1.31
(1.78)

3.99
(2.00)

< 0.0001

Sex (Female %) 32 64 34 41 0.00015

Race (White/African-American/Other) 88/6/6 75/20/5 91/4/5 84/12/5 0.0088

Age (yrs.) 64.91
(7.11)

66.59
(7.92)

69.37
(5.94)

65.67
(7.92)

< 0.0001

BMI (kg/m2) 28.67
(4.43)

30.76
(4.55)

28.49
(4.6)

25.68
(4.44)

< 0.0001

PFT Baseline lung function a

FEV1% predicted 88
(18)

79
(16)

59
(20)

31
(15)

< 0.0001

FVC % predicted 97
(14)

88
(14)

85
(18)

71
(19)

< 0.0001

FEV1/FVC × 100 68
(10)

68
(9)

51
(11)

32
(10)

< 0.0001

PFT Maximal lung functionb

FEV1% predicted 95
(17)

86
(16)

68
(19)

37
(17)

< 0.0001

FVC % predicted 101
(14)

91
(14)

94
(17)

80
(20)

< 0.0001

FEV1/FVC × 100 72
(10)

71
(9)

53
(11)

34
(12)

< 0.0001

Data presented as number (%) or mean (SD)
aPre-bronchodilator values
bPost-bronchodilator values after six to eight puffs of albuterol. Full names of each variable were described in Abbreviations used. BODE indexes for 24 subjects
were not available
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voxels within the lung less than − 950 HU and assesses
the extend of emphysema (ΔEmph% ≥ 1% and ΔEmph% ±
0.5% are considered as rapid-progressors and non-
progressors, respectively) [28]. ΔEmph was marginal in
Cluster 2 (Table 7), whereas it was significantly higher in
Cluster 4.
Furthermore, we compared two different clusters-

grouping derived from current smokers [6] and former
smokers, respectively (Table 8). Overall CAT score and
exacerbation histories of current smokers were greater
than those of former smokers. WBC counts were not
differentiable in current smokers-derived clusters be-
cause all clusters showed large numbers of WBC count.
On the other hand, WBC count of former smokers-
derived Cluster 1 was the smallest and it was increased
as increasing the cluster membership of former smokers.
On the contrary to the finding of WBC counts, former
smokers demonstrated greater Emph and fSAD% than
current smokers, based on kernel density estimation
(KDE) plots (Fig. 4). The dispersed density distribution
of current smokers may indicate the masking effect of
CT-based measures of emphysema and small airway
disease, compared to former smokers [7]. The Emph%
and fSAD% of former smokers (Table 2) were especially
increased in Clusters 3 and 4, as compared with coun-
terparts of current smokers [6].

Decision tree analysis
We performed a decision tree analysis to construct a
simple predictive model (Additional file 3: Figure S3) to
classify former smokers. The data set was shuffled
randomly into training (n = 324) and test sets (n = 82)
and the accuracy was assessed on the test set. The model
comprising 5 discriminant variables resulted in accuracy
of 81%. These variables were βtissue

RV (Total), Jacobian
(Total), βtissue

TLC (Total), Dh* (RMB) and ADI (Total).
We further evaluated an association between current

and former smoker clusters by assessing the membership
of former smokers in the decision tree of current smokers
[6] and vice versa. The classification accuracy for both
cases was about 0.62 based on the confusion matrices
(Additional file 4: Table S1). It can give an assessment for
possible overlap between clusters of these two cohorts.

Discussion
In this study, we applied an unsupervised clustering method
with an expanded set of imaging-based variables to former
COPD smokers collected in the multicenter study of
SPIROMICS. Four homogeneous clusters were derived
within a former-smoker population, exhibiting distinct
phenotypic characteristics and strong associations with clin-
ically relevant COPD biomarkers. The imaging-based clus-
ters can provide more information than the conventional

Table 5 Associations of symptoms and disease histories with cluster membership

Cluster 1 Cluster 2 Cluster 3 Cluster 4 P value

N = 100 N = 80 N = 141 N = 85

Symptoms and disease History

Smoking pack-years at baseline 48.09
(22.27)

48.21
(25.3)

57.64
(27.4)

54.44
(22.9)

0.001

History of pulmonary/vascular condition (%) 24 18 21 39 0.0056

Chronic Bronchitis (%) 10 18 19 31 0.005

Emphysema (%) 28 24 45 76 < 0.0001

COPD diagnosed at baseline (%) 40 34 64 88 < 0.0001

Chronic bronchitis diagnosed at baseline (%) 11 5 16 19 0.061

Asthma (%) 12 20 19 23 0.285

Wheezing and whistling in chest (%) 46 50 59 59 0.167

Wheezing age (yrs.) (%) 60 67 78 68 0.19

Sleep Apnea at baseline (%) 28 29 15 17 0.106

Shortness of breath during sleep (%) 6 17 7 17 0.012

Coronary artery disease 6 12 15 7 0.101

Diabetes (%) 12 19 11 14 0.452

Heart attack (%) 1 5 6 10 0.08

Congestive heart failure (%) 1 2 3 2 0.81

Genetic effect

Father had COPD (%) 15 14 22 33 0.006

Mother had COPD (%) 9 12 12 23 0.041
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PFT-based classification of COPD, such as stratum and
GOLD criteria, because they explain structural and func-
tional alterations at lobar and segmental levels. We also in-
cluded parenchymal metrics including Emph%, fSAD%,
tissue fractions at TLC and RV as well as segmental-level
structural metrics including wall thickness and diameter of
airway branches. The imaging and clinical phenotypes based
on the clusters could be explained as follows.

Features of respective clusters
The cluster memberships can suggest possible pheno-
types with distinct characteristic correlated with relevant
clinical/biomarker measures for former COPD smoker.

Cluster 1: asymptomatic resistant smokers with preserved
pulmonary function
Cluster 1 showed preserved pulmonary function (FEV1/
FVC= 0.72) at post bronchodilator and was mostly popu-
lated in GOLD stages 0 and 1. This cluster had a relatively
low Emph% and fSAD% with structural and functional
characteristics close to those of healthy controls. BODE
index, exacerbation histories and WBC count of this clus-
ter were relatively lower compared with other clusters.
These characteristics along with CAT< 10 and the lowest
exacerbation among all clusters suggests that Cluster 1 be-
longs to asymptomatic resistant smokers. Cluster 1 im-
aging metrics were very close to those of healthy subjects.
Airway wall thickening was the only abnormality in this

Table 6 Characteristics of biomarkers in four imaging-based clusters

Cluster 1 Cluster 2 Cluster 3 Cluster 4 P value

N = 100 N = 80 N = 141 N = 85

Blood/serum biomarkers

RBC distribution width (%) 13.69
(1.49)

13.66
(1.62)

13.77
(1.54)

13.78
(1.57)

0.953

Total WBC count (N/μl) 6203.8
(1595.18)

6773.08
(1954.3)

6907.27
(1721.5)

7330.24
(2155.13)

0.0005

Neutrophils% (%) 59.74
(8.48)

61.17
(9.35)

62.12
(8.32)

63.5
(11.2)

0.044

Lymphocyte% (%) 28.38
(7.98)

27.28
(8.74)

25.97
(7.14)

23.9
(9.47)

0.002

Monocyte% (%) 7.97
(2.43)

7.72
(2.44)

8.3
(2.55)

8.06
(2.71)

0.432

Eosinophils% (%) 3.29
(2.12)

3.18
(1.98)

2.85
(1.62)

2.64
(1.73)

0.071

Basophils% (%) 0.68
(0.41)

0.59
(0.41)

0.65
(0.52)

0.57
(0.56)

0.321

Matrix metalloproteinase (MMP-3) (pg/mL) 10.17
(8.1)

8.41
(4.65)

11.07
(6.12)

12.43
(10.57)

0.0082

Baseline CAT scorea

9.36
(6.19)

10.73
(6.61)

10.96
(6.38)

17.06
(7.34)

< 0.0001

Exacerbations

Severeb 0.08
(0.34)

0.25
(1.11)

0.23
(0.7)

0.84
(1.61)

< 0.0001

Totalc 0.44
(0.96)

0.81
(1.78)

0.94
(1.52)

2.56
(3.09)

< 0.0001

Total at baselined 0.16
(0.44)

0.32
(0.87)

0.21
(0.53)

0.66
(0.92)

< 0.0001

Activity limitation

6-min walk distance (m) 459.23
(84.5)

431.4
(91.71)

412.76
(113.09)

338.5
(114.57)

< 0.0001

Oxygen desaturation with 6-min walk (%) 18 17 36 76 < 0.0001

Kruskal-Wallis and chi-square tests were performed for continuous and categorical variables, respectively, and their P values were reported
aCAT score range from 0 to 40, with higher scores indicating greater severity symptoms
bTotal count of exacerbations requiring ED visit or hospitalization since entering the study
cTotal count of exacerbations since entering the study
dTotal Exacerbations for baseline
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cluster. A large population study, Multi-Ethnic Study of
Atherosclerosis (MESA) [29], reported that long-term
smoking may contribute to airway wall thickening prior to
the development of more severe imaging features of
COPD.

Cluster 2: obese female individuals with preserved lung
function and marginal emphysema
Cluster 2 with the highest BMI and over-representation of
women indicated clinical and epidemiological importance
as reported by Castaldi et al. [10] and Martinez et al. [30].
Castaldi et al. [10] derived four clusters with 10,192
subjects from COPDGene using several imaging-based
metrics, e.g., Emph%, upper/lower ratio of Emph%, gas
trapping, and PFT results acquired by a feature selection
method. Note that our Cluster 2 is aligned with Cluster 2
of Castaldi et al. [10] in high BMI, African-American and
women-dominance. Cluster 2 showed the preserved pul-
monary function (FEV/FVC= 0.71) close to Cluster 1, but
the CAT score and exacerbation of this cluster was greater
than that of Cluster 1. This group showed a noticeable in-
crease of tissue fraction at TLC, and a decrease of emphy-
sema index among clusters. This cluster included more

CLE-only type while showing the lowest ΔEmph% among
clusters. This finding is of interest because most studies
showed that development of CLE is associated with severe
abnormalities of the small airways, e.g. wall thickening.
Thus, CLE may be more related to air-borne risk factors
that cause airway inflammatory processes [27]. Cluster 2
also showed the lowest value of MMPs among clusters.
Ostridge et al. [31] investigated the association between
specific pulmonary MMPs and emphysema as these
enzymes degrade the extracellular matrix and have been
identified as potentially important in the development of
emphysema [31].

Cluster 3: older male individuals with increasing fSAD and
emphysema
Unlike Clusters 1 and 2, Cluster 3 demonstrated a
significant decrease of FEV1/FVC and FEV1% predicted
values, but their FVC % predicted value remained in the
normal range. This cluster was mostly populated in
GOLD stages 2 and 3 with a significant increase in BODE
index. From this cluster, Emph% and fSAD% in parenchy-
mal regions were significantly increased, being similar
with Cluster 4. Thus, this cluster showing airway

Table 7 Associations of visual diagnostics (VD) and of emphysema subtypes with cluster membership

Cluster 1 Cluster 2 Cluster 3 Cluster 4 P value

Visual Diagnosis by Radiologist (VD)

N = 55 N = 41 N = 76 N = 51

Bronchiectasis (%) 45 31 57 62 0.018

Interstitial lung disease (ILD, %) 25 34 30 10 0.030

Lung nodule (%) 65 68 73 61 0.476

N = 14 N = 14 N = 23 N = 5

Ground glass opacities (GGO) 93% 100% 95% 60% 0.023

Reticular opacities 93% 93% 100% 80% 0.309

Honeycombing 57% 29% 65% 40% 0.163

Emphysema subtypes

N = 51 N = 31 N = 74 N = 49

CLE 7.8% 16.1% 10.8% 6.1% 0.481

PSE 9.8% 12.9% 0 0 < 0.005

PLE 0 0 0 0 NS

CLE + PSE 82.4% 67.7% 85.1% 65.3% < 0.005

CLE + PLE 0 0 0 10.2% < 0.005

PSE + PLE 0 0 0 0 NS

CLE + PSE + PLE 0 0 4.1% 18.4% < 0.0001

Progression Index

(ΔEmph%≥ 1%) (Rapid-progressors) N = 51 N = 46 N = 50 N = 22

25% 11% 58% 68% < 0.001

Kruskal-Wallis and chi-square tests were performed for continuous and categorical variables, respectively, and their P values were reported
Kruskal-Wallis and chi-square tests were performed for continuous and categorical variables, respectively. Five hundred ninety-nine SPIROMICS subjects were used
for progression index (169 former smokers were available)
CLE Centrilobular, PSE Paraseptal, PLE Panlobular emphysema

Haghighi et al. Respiratory Research          (2019) 20:153 Page 10 of 14



Table 8 Comparison of major clinical and biomarkers between current and former smokers

Current smokers

Cluster 1 Cluster 2 Cluster 3 Cluster 4 P value

Total WBC count (N/μl) 7153
(2291)

7353
(2527)

7110
(1954)

7073
(2123)

0.924

Baseline CAT score 13.17 (7.95) 16.45 (9.54) 13.78 (7.86) 20.06 (7.86) < 0.0001

BMI (kg/m2) 27.63
(4.7)

31.1
(5.04)

25.58 (4.76) 23.65 (4.26) < 0.0001

Exacerbations

Severe 0.2
(0.6)

0.44
(1.62)

0.31
(0.82)

1.25
(2.27)

< 0.0001

Total 0.49
(1.19)

1.09
(3.39)

0.92
(2.14)

2.09
(2.91)

< 0.0001

Total at baseline 0.25
(0.68)

0.58
(1.39)

0.22
(0.63)

0.62
(0.99)

0.011

Oxygen desaturation with 6-min walk (%) 14 36 14 41 < 0.0001

Post-bronchodilator values (FEV1/FVC × 100) 74
(9)

68
(13)

63
(11)

44
(12)

< 0.0001

Former smokers

Total WBC count (N/μl) 6204
(1595)

6773
(1954)

6907.27 (1722) 7330.24 (2155) 0.005

Baseline CAT score 9.36
(6.19)

10.73 (6.61) 10.96 (6.38) 17.06 (7.33) < 0.0001

BMI (kg/m2) 28.67 (4.43) 30.76 (4.55) 28.49 (4.60) 25.68 (4.44) < 0.0001

Exacerbations

Severe 0.08
(0.34)

0.25
(1.11)

0.23
(0.70)

0.84
(1.61)

< 0.0001

Total 0.44
(0.96)

0.81
(1.78)

0.94
(1.52)

2.56
(3.09)

< 0.0001

Total at baseline 0.16
(0.44)

0.32
(0.87)

0.21
(0.53)

0.66
(0.92)

< 0.0001

Oxygen desaturation with 6-min walk (%) 18 17 37 76 < 0.0001

Post-bronchodilator values (FEV1/FVC × 100) 72
(10)

71
(9)

53
(11)

34
(12)

< 0.0001

Kruskal-Wallis and chi-square tests were performed for continuous and categorical variables, respectively, and their P values were reported

Fig. 4 Kernel density estimation (KDE) plots with contour labels based on Emph% and fSAD% for current and former smokers
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narrowing without airway wall thinning, and normal
circularity and skeletal structure (airway geometry) would
be categorized as an intermediate cluster between less se-
vere stage (Cluster 1) and more severe stage of COPD
(Cluster 4).

Cluster 4: severe emphysema and fSAD individuals with
severe structural alterations
This cluster showed the highest Emph%, fSAD%, BODE
index, WBC count and CAT score along with the lowest
FEV1/FVC among all clusters. These characteristics along
with structural and functional variables indicated that
Cluster 4 belongs to severe symptomatic COPD subjects.
The pattern of decreasing Dh* with increasing fSAD%
(non-emphysematous air trapping) indicates severely
narrowed status of both proximal and distal airways. In
addition to airway narrowing, this group actually contains
most of the significant structural and functional alter-
ations. It is especially noted that prominent airway wall
thinning and alteration of airway geometry change were
only observed in this cluster. Assuming that this cluster is
the most severe COPD group, alterations of airway
features including airway wall thinning (WT*), elliptic
airway shape (Cr), and change of airway geometry (θ) may
occur at the end stage of COPD.
Dominance of PLE with diffuse destruction in Cluster

4 along with its highest progression index among all
clusters might be related to blood-borne mechanism ra-
ther than the possible air-borne mechanism in Cluster 2.
These finding shows the possibility of two different
pathogenetic mechanisms among subjects. In addition,
Koo et al. [32] studied WBC count as a biomarker and
their associations with the severity of the disease. WBC
count in former smokers has an increasing pattern from
Cluster 1 to Cluster 4 (Table 6) along with increasing
CAT score and decreasing FEV1/FVC.
With previously analyzed current smokers [6], the com-

parison for important clinical and biomarker measures be-
tween former and current smokers are shown in Table 8.
Overall, exacerbation has increasing pattern between clus-
ters of former smokers with Cluster 1 and Cluster 4 with
the lowest and highest, respectively. Cluster 2 for both
current and former smokers has increased exacerbation
compared to clusters 1 and 3 and might be related to
the highest tissue fraction and possible inflammation
in Cluster 2.
WBC count was lower in former smokers possibly due

to the effect of smoking on the WBC [6], which was also
significantly elevated as increasing cluster membership.
This result indicates that WBC count can serve as an
important risk factor such as inflammation especially in
former smokers. Furthermore, the CAT score and ex-
acerbation histories were significantly higher in current
smokers than in former smokers. An increase in

inflammatory markers in current smokers relative to
former smokers was contradictory to imaging-based fea-
tures such as Emph% and fSAD% (Fig. 4). The smoking
status could affect parenchymal inflammation, leading to
an increase of CT density [6, 7]. Thus Emph% and
fSAD% could be underestimated, if patients are on smok-
ing. This confounding effect prevents from applying a
clustering algorithm for former and current smokers due
to the low Jaccard index (< 0.7).
To assess a possible overlap between current and former

smokers, we used the trained decision tree on current
smokers to classify former smokers and vice versa; the clas-
sification accuracy for both cases was about 0.62 (the con-
fusion matrices are reported in Additional file 4: Table S1).
This result indicates that two clustering analyses between
former and current smokers can be further used to investi-
gate the difference in phenotypic characteristics of these
cohorts. The impact of smoking status on cluster member-
ship requires further investigation with larger cohorts as
well as with longitudinal data to inspect disease progression
and membership transition over time.

Conclusions
We performed a cross-sectional study to derive four
unique imaging-based clusters in former smokers with
COPD. The current cluster analysis can be used in con-
junction with our previously reported cluster analyses in
current smokers with COPD to assess the differences in
smoking status (former vs current) in the COPD popula-
tion and explore possible different phenotypes between
these two groups.

Additional files

Additional file 1: Figure S1. A scree plot: eigenvalues (magnitude
of variances) according to the number of principal components for
determining the optimal number of components. (DOCX 65 kb)

Additional file 2: Figure S2. (a) Internal properties in different
clustering methods to find the best clustering approaches as well as the
optimal number of clusters; (b) Bootstrapping stability analysis between
K-means and hierarchical clustering with 4 or 5 numbers of clusters.
(DOCX 58 kb)

Additional file 3: Figure S3. Predicting imaged-based cluster using only
5 important variables. Variables are βtissueRV (Total), Jacobian (Total), βtissueTLC

(Total), Dh* (RMB) and ADI (Total) with 81% accuracy. (DOCX 59 kb)

Additional file 4: Table S1. The confusion matrices to assess the
possible overlap between current and former smoker clusters. Values are
presented as the number of subjects (%). (DOCX 15 kb)
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