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Novel proteomics platforms, such as the aptamer-based SOMAscan platform,
can quantify large numbers of proteins efficiently and cost-effectively and are
rapidly growing in popularity. However, comparisons to conventional
immunoassays remain underexplored, leaving investigators unsure when
cross-assay comparisons are appropriate. The correlation of results from
immunoassays with relative protein quantification is explored by SOMAscan.
For 63 proteins assessed in two chronic obstructive pulmonary disease
(COPD) cohorts, subpopulations and intermediate outcome measures in
COPD Study (SPIROMICS), and COPDGene, using myriad rules based
medicine multiplex immunoassays and SOMAscan, Spearman correlation
coefficients range from −0.13 to 0.97, with a median correlation coefficient of
≈0.5 and consistent results across cohorts. A similar range is observed for
immunoassays in the population-based Multi-Ethnic Study of Atherosclerosis
and for other assays in COPDGene and SPIROMICS. Comparisons of relative
quantification from the antibody-based Olink platform and SOMAscan in a
small cohort of myocardial infarction patients also show a wide correlation
range. Finally, cis pQTL data, mass spectrometry aptamer confirmation, and
other publicly available data are integrated to assess relationships with
observed correlations. Correlation between proteomics assays shows a wide
range and should be carefully considered when comparing and
meta-analyzing proteomics data across assays and studies.
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1. Introduction

Immunoaffinity assays have long been
the standard method for assessing
protein concentrations in plasma and
other tissues. Some multiplexed im-
munoaffinity methods are available, but
only ≈30–50 proteins can be accurately
assessed at once, and cross-reactivity
may reduce sensitivity as compared
to monoplex immunoassays.[1] There
is increasing interest in the use of
novel large scale proteomics platforms
to facilitate biomarker discovery for
sub-phenotyping and risk prediction
in complex diseases.[2] Oligonucleotide
aptamer-based platforms, such as the
SOMAscan assays marketed by Soma-
Logic (Boulder, CO), can be used for
quantification of >1300 proteins,[3–6]

with >4000 proteins assayed in recent
publications.[7] Aptamers are randomly
generated nucleotide sequences that
bind specific antigens, mimicking the
function of antibodies. Aptamer-based
assays can detect very low abundance
proteins compared to immunoassays,
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but, as a discovery tool, the large SOMAscan platform provides 
only relative quantification, rather than absolute concentrations. 
Although the SOMAscan platform has been useful to detect re-
producible protein quantitative trait loci (pQTLs) and epidemi-
ological associations, problems with specificity have been re-
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ported for a subset of proteins.[8,9] Relatively little information
is publicly available on how well the protein levels assessed us-
ing the SOMAscan platform correlates with multiplex or indi-
vidual immunoaffinity assays. In a small sample (n ≤ 42) com-
paring nine proteins measured with both aptamer assays and
other clinical assays in the Atherosclerosis Risk in Communities
Study, the median Spearman correlation coefficient was >0.8 at
two separate visits.[5] Comparisons of 20 proteins assessed with
both Luminex xMAP immunoassays and SOMAscan in a small
number of serum samples demonstrated that nearly half had
Pearson correlation coefficients <0.5[10] when compared to SO-
MAscan relative fluorescence units. Poor correlation across as-
says, like that reported comparing SOMAscan and Luminex im-
munoassays, is certainly not unique to aptamer based platforms,
as immunoaffinity assays also often have relatively low interas-
say correlations.[10,11] However, to facilitate large genetic and epi-
demiological meta-analyses across traits, more publicly available
information is necessary regarding which proteins correlate reli-
ably across commercially available platforms. There is also very
little information on correlation between SOMAscan and Olink
assays; Olink is another popular high throughput platform using
proximity extension assay technology to allow for multiplex im-
munoassays (92 proteins across 96 samples) without the exten-
sive cross-reactivity that would occur using conventional ELISAs
at this scale.[12]
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This study explores inter-platform correlations of pro-
teomics assays using data available from four cohorts: Sub-
populations and Intermediate Outcome Measures in COPD 
Study (SPIROMICS), COPDGene, the Multi-Ethnic Study 
of Atherosclerosis (MESA), and a small cohort of patients 
undergoing septal ablation for hypertrophic cardiomyopathy 
(inducing planned myocardial infarction).[3]  The first two co-
horts (SPIROMICS[13]  and COPDGene[14]) include current and 
former smokers with or without chronic obstructive pulmonary 
disease (COPD). The MESA cohort is diverse, recruited from 
the general population, and free of cardiovascular disease at 
baseline.[15]  Each cohort had multiple assays performed on 
multiple platforms on aliquots taken from the same plasma or 
serum sample. These platforms included the SOMAscan 1.1 k or 
1.3 k array, a custom Myriad Rules Based Medicine (RBM) set of 
multiplexed Luminex assays,[16,17] Meso Scale Discovery (MSD) 
assays, Olink panels, and ProterixBio assays, along with many 
additional individual immunoassays. The different platforms 
have overlapping proteins, allowing us to explore correlations 
of target proteins across platforms. Similar assays available in 
COPDGene and SPIROMICS allowed assessment of many of 
the same correlations (notably between the SOMAscan 1.3 k 
array and Myriad RBM assays) in two independent cohorts.

2. Experimental Section
2.1. Cohorts

SPIROMICS (ClinicalTrials.gov Identifier: NCT01969344) was 
a multi-center cohort study that recruited ever-smokers (n = 
2,772, ≥20 pack-years, no exacerbation for >30 days) with 
and without COPD as well as age and gender-matched never-
smokers (n = 202). SPIROMICS study design has been previ-
ously described.[13]  All subjects provided serum using an SST 
tube (Becton Dickinson) and fresh frozen plasma collected us-
ing either an 8.5 mL EDTA collection tube or a P100 tube 
with K2EDTA, which contained anti-coagulant and proprietary 
protease inhibitor additives (antiproteases; BD product number 
366448).[18]  SOMAscan data (1.3 k version) was available in 288 
participants, of whom 176 overlap with proteomics data available 
from a custom 13-panel multiplex assay (114 protein measures, 
Myriad-RBM, Austin, TX).[16]  Additionally, data was available 
from a Meso Scale Discovery (MSD) assay assessing nine pro-
teins (TNF𝛼; IL-2, -6, -8, -10; interferon 𝛾 ; CCL11 (eotaxin); CCL26 
(eotaxin 3); CCL17)[19]  and from unpublished ProterixBio ELISA 
data for 23 target proteins. ProterixBio immunoassays were de-
veloped using commercially sourced antibodies and reagents;[20]  
detailed methods are included in the Supporting Information.
COPDGene (ClinicalTrials.gov Identifier: NCT00608764) was a 
multi-center cohort study designed to identify genetic factors as-
sociated with COPD. Phase 1 visits were conducted from Jan-
uary 2008 until April 2011, with a subset of participants returning 
for a second phase approximately five years later. COPDGene re-
cruited 10 263 current and former smokers (≥10 pack-years, no 
exacerbation >30 days) with and without COPD of non-hispanic 
white and African American ancestry,[14]  age- and sex-matched 
healthy individuals (n = 108) with no history of smoking were en-
rolled as controls during phase 1, with an additional 347 never-

Significance Statement

This paper provides informationon the comparability of
antibody- and aptamer-basedproteinmeasures acrossmul-
tiple cohort studies. Asnewmulti-cohort andmulti-platform
meta-analyses and replication efforts are initiatedusingnovel
proteomics assays, our analysis suggests that investigators
mustmore fully consider differences in protein concentration
measurements obtained fromdifferent platformsandassess
the level of correlationbetween thoseplatforms. In addition to
correlationdata,metrics such asmass spectrometry-based ap-
tamer confirmationor thepresenceof cispQTLsmayhelp infer
the specificity of different proteomics platformswhen results
differ.

smokers enrolled during phase 2. A subset of subjects in both
phase 1 and phase 2 provided fresh frozen plasma collected using
an 8.5mLp100 tube (BectonDickinson—BD).[16,19,21] SOMAscan
data (1.3 k version) was available in 1248 participants at phase 1
and 1086 participants at phase 2. Data from the same multiplex
RBM assays as used in SPIROMICS was available in 602 indi-
viduals at phase 1, of whom 371 overlapped with SOMAscan.[16]

The same participants from phase 2 also had MSD assays avail-
able at this timepoint (n = 500 overlapping).[19] Additionally, data
from monoplex quotient bio research (QBR) assays at phase 1
was available for some proteins, such as C-reactive protein (n =
1096 overlapping).[21]

MESA was a community-based cohort study designed to de-
termine the prevalence, determinants, and progression of sub-
clinical cardiovascular disease (CVD). MESA recruited men and
women aged 45–84 free of clinical CVD at baseline from four
major race/ethnicity groups from six different locations in the
United States (2000–2002).[22] Exam 5was conducted from 2010–
2011. Correlations for target proteins were assessed where indi-
viduals were assessed with both conventional ELISA assays and
SOMAscan using the same blood sample. SOMAscan data was
newly generated for theMESA cohort by theNHLBI Trans-Omics
for Precision Medicine Initiative (TOPMed). Biomarker assays
were previously reviewed[23] (see Methods section in Supporting
Information for references).
Olink and SOMAscan 1.1 k data was available in 48 samples

from ten patients undergoing septal ablation for hypertrophic
cardiomyopathy, with four timepoints each (baseline, 10 min,
1 h, and 24 h after intervention).[3] Raw data is available in Data
Object 1, Supporting Information. From the overlapping Olink
and SOMAscan 1.1 k results, a small number of analytes (eu-
karyotic translation initiation factor 5A-1 (eIF-5A-1), interferon
gamma (IFN-𝛾), interleukin 13 (IL-13), interleukin 1 alpha (IL-
1𝛼), interleukin 20 (IL-20), interleukin 22 receptor subunit alpha
1 (IL22RA1), tumor necrosis factor alpha (TNF-𝛼), and thymic
stromal lymphopoietin (TSLP)) were excluded due to Olink as-
say results below the lower limit of detection.
In all cases, the results of samples drawn on the same indi-

vidual participants were compared during the same study visit.
Note that, by design, there was no overlap of study participants
between the cohorts. Participants in all included studies provided



Figure 1. Flowchart of proteomics assays compared, by cohort. We also have listed total numbers of low correlation (rs < 0.3 in all included cohorts),
moderate correlation, and high correlation (rs > 0.7 in all included cohorts) proteins in each results table.

written informed consent, and studies were approved by the rel-
evant institutional review boards at all participating centers.

2.2. Analysis Methods

Cohorts and proteomics assays compared are summarized in
Figure 1. To compare the protein assessment platforms, only
proteins for which ≤20% of the assay results were below the
lower limit of detection (LLOD) were analyzed. As many as-
sessed proteins had non-normal distributions, a non-parametric
method was used, Spearman correlation coefficients, calculated
using R 3.5.3 or SAS 9.3. Proteins were matched wherever pos-

sible by Uniprot ID, taking into account additional annotation
information if needed.
The largest set of overlapping proteins in an adequate sam-

ple size for genetic analysis (from Myriad RBM and SOMAs-
can in COPDGene and SPIROMICS) was also used for cis
pQTL analysis, using the same set of overlapping samples used
for correlation analyses. Genetic association analyses were per-
formed using R with MatrixEQTL version 2.2, biomaRt ver-
sion 2.38.0, and snpStats version 1.32.0. An additive genetic
linear regression model was used, including five genotype prin-
cipal components to control for population substructure, sex,
age, and current smoking status. All protein concentration val-
ues were inverse normal transformed for the analysis. Geno-
type data in COPDGene was from a single version of the



Illumina HumanOmniExpress Beadchip. SPIROMICS used data 
from three versions of the Illumina OmniExpress HumanExome 
BeadChip.[16]  Variants with a minor allele frequency <1% were 
removed from the analysis. The p-value threshold for declaring 
a significant cis pQTL was p < 1 × 10−4 within 1 Mb of the gene 
encoding the protein product.
Information on non-specific aptamer binding, mass spectrom-

etry validation, and pQTLs were compiled and integrated from 
large previous SOMAscan studies[7,24] and a previous analysis of 
Myriad RBM data in COPDGene and SPIROMICS[16]  in a large 
sample size.

3. Results
3.1. SOMAscan versus Myriad-RBM Immunoassays

We first compared the results of a previously measured cus-
tom 13-panel multiplex assay (Myriad-RBM)[16]  with SOMAs-
can 1.3 k data (Table 1, Figure 2a). There were overlapping 
data from 371 subjects in COPDGene and 176 subjects from 
SPIROMICS. While all data was from blood collection at the 
same study visit, the SPIROMICS SOMAscan data used P100 
fresh frozen plasma, but the SPIROMICS RBM data were gen-
erated from EDTA plasma or SST serum.[18]  Spearman correla-
tion coefficients for individual proteins had a similar range in
both cohorts (−0.07 ≤ rs ≤ 0.97 in COPDGene, −0.13 ≤ rs ≤0.97 
in SPIROMICS); the median correlation coefficient was 0.57 in 
COPDGene and 0.46 in SPIROMICS (Table 1).
For the 63 proteins assessed, the correspondence between 

the intra-study correlation coefficients was high between the
COPDGene and SPIROMICS studies (rs = 0.88) (Figure S1, Sup-
porting Information). There are a few notable outliers, such as
angiopoietin-1, with rs = 0.26 in SPIROMICS and rs = 0.75 in 
COPDGene and superoxide dismutase [Cu-Zn], with rs = 0.21 in 
SPIROMICS and rs = 0.6 in COPDGene. We investigated if those 
disparities might result from use of serum for some RBM assays 
in SPIROMICS,[16]  instead of plasma (as used in COPDGene). 
However, five of the six proteins with the greatest difference in 
correlation between cohorts had assays performed using plasma 
in SPIROMICS, arguing against that explanation (though differ-
ences between the p100 plasma used in COPDGene and EDTA 
plasma used in SPIROMICS for Myriad RBM assays,[16]  partic-
ularly in terms of protease digestion, may play a role). In total, 
17 proteins (27%) had rs ≥ 0.7 in both cohorts (high correlation), 
and 13 proteins (21%) had rs < 0.3 in both cohorts (low correla-
tion) (Figure S1, Supporting Information). We next assessed the 
presence/absence of cis pQTLs with reference to the SOMAscan 
and Myriad-RBM assays in the same samples used for evalua-
tion of Spearman correlation coefficients (Table 1; Table S1, Sup-
porting Information). The presence of a cis pQTL can provide a 
measure of aptamer validation, suggesting robust binding to the 
target protein (though not excluding off-target binding). Of the 
63 proteins assessed, 31 had evidence of a cis pQTL in at least 
one study for at least one assay. For proteins with cis pQTL evi-
dence in at least one study for both assays, the median correlation 
was 0.505, similar to the overall median. Discordant cis pQTL ev-
idence was also evaluated. Five proteins had cis pQTL evidence 
with Myriad-RBM assays in both COPDGene and SPIROMICS

and did not have cis pQTL evidence from SOMAscan data in ei-
ther cohort. These five proteins (CCL24, CXCL5, IL2RA, SFTPD,
MMP3) had a low median correlation coefficient across the two
cohorts (rs = 0.1). ICAM1 had a cis pQTL in both cohorts for
SOMAscan data only and also has a low correlation coefficient
between assays (rs ≤ 0.13). Based on this data, presence of con-
cordant cis pQTLs does not ensure high correlation across assays,
but discordant cis pQTLs are generally found only for low correla-
tion assays, with the assay with the cis pQTL likely having higher
binding specificity for the target protein.
We additionally compiled publicly available data which might

be informative for antibody and aptamer binding specificity to
evaluate if this information was predictive of protein assay cor-
relations. Of the 63 Myriad RBM target proteins, 42 (67%) have
had reported cis pQTLs in either the AGES[7] or INTERVAL[24]

studies (median rs = 0.48, similar to all tested proteins),
with 21 having a reported cis pQTL in a previously published
COPDGene/SPIROMICS Myriad RBM pQTL study (in a larger
sample size than the samples used here with overlapping SO-
MAscan data)[16] (Table S2, Supporting Information). Proteins
with a cis pQTL for both assays in these previous studies had a
median rs of 0.40. Details on post-translational modifications and
isoforms from UniProtKB and on common coding SNPs (from
gnomAD server), which could impact antibody/aptamer bind-
ing, on proteins with discordant pQTL evidence or with rs < 0.3
in SPIROMICS and COPDGene are also listed in Table S3, Sup-
porting Information, with high correlation proteins also listed
for comparison. Few clear patterns are observed. Many SOMAs-
can aptamers have also been tested for cross-reactivity against
homologous proteins (at least 40% sequence homology).[24]

Of the 49 tested, seven have comparable binding with at least
one protein (median Spearman correlation coefficient of 0.46
with RBM assays, versus median correlation of 0.56 for all 49
aptamers tested). Finally, Emilsson et al. additionally examined
evidence of aptamer binding to target protein using a subset of
aptamers by multiple reaction monitoring or data-dependent
analysis mass spectrometry from AGES.[7] Proteins with mass
spectrometry confirmation were quite clearly enriched in the
high correlation group (12/17) versus the low correlation group
(0/14, see Table 1, Figure 2a). Confirmation of aptamers by
mass spectrometry was associated with higher correlation of SO-
MAscan with immunoassays, but few clear patterns were seen
for other factors, such as known aptamer cross-reactivity with
homologous proteins, that might also have been hypothesized
to systematically interfere with accurate quantification.

3.2. SOMAscan versus MSD, ProterixBio, and Other Assays

We also assessed Spearman correlation coefficients between
SOMAscan data and other antibody-based platforms, in-
cluding MSD (SPIROMICS/COPDGene), individual ELISAs
(COPDGene, MESA), and ProterixBio (SPIROMICS). Median
correlation values were similar for immunoassays in MESA (rs
= 0.41 for 18 unique proteins at Exam 1 (Table S4, Supporting
Informatio)), ProterixBio assays in SPIROMICS (median rs =
0.63 for 14 unique proteins (Table S5, Supporting Informa-
tion)), and QBR assays in COPDGene (median rs = 0.49 for



Table 1. Correlation coefficients for the 63 proteins assessed between the SOMAscan and Myriad RBM platform in both COPDGene and SPIROMICS.
Presence or absence of a cis pQTL variant (p < 1 × 10−4 within one megabase of the gene encoding the protein product) is also listed. rs, estimated
Spearman’s rho. We have separated out low correlation (rs < 0.3 in both cohorts) and high correlation (rs ≥ 0.7 in both cohorts) proteins, with all other
proteins listed in the moderate correlation category. We also list whether aptamers have cis pQTLs found in genetic analyses from either of the larger
AGES[7] and INTERVAL[24] studies using SOMAscan data or from previous analysis of the full published sample size in SPIROMICS and COPDGene
cohorts with Myriad RBM data.[16] Finally, we list if an aptamer has been validated as having at least some binding to its target by mass spectrometry in
AGES,[7] and whether an aptamer has comparable binding in cross-reactivity testing against homologous proteins (at least 40% sequence homology)
in ref. [24]. UniProt ID, gene name, and aptamer SomaId are listed in Table S2, Supporting Information.

SPIROMICS COPDGene Evidence from prior publications

Protein N rs Myriad
pQTL

SOMAscan
pQTL

N rs Myriad
pQTL

SOMAscan
pQTL

Any
evidence of
SomaScan
pQTL

Myriad
pQTL

AGES Mass
Spec.

INTERVAL
Comparable

binding to other
proteins

Low correlation

Alpha-1-antitrypsin 175 0.26 yes yes 371 0.24 yes yes yes not tested

Cadherin-1 176 0.21 371 0.14 yes yes no

C─C motif chemokine 13 171 -0.02 364 0.12 no

C─C motif chemokine 24 175 0.1 yes 370 -0.02 yes yes no

C─C motif chemokine 8 176 0.2 yes 369 0.18 yes yes yes yes no

Haptoglobin 175 0.2 yes yes 367 0.26 yes yes yes yes yes

Hepatocyte growth factor 175 0 368 0.15 yes yes no

Intercellular adhesion molecule 1 174 0.04 yes 369 0.13 yes yes not tested

Interleukin-2 receptor subunit
alpha

176 0.08 yes 370 0.12 yes yes not tested

Platelet endothelial cell adhesion
molecule

175 0.04 370 -0.07 yes not tested

Pulmonary surfactant-associated
protein D

175 -0.13 yes 370 0.02 yes yes not tested

Tumor necrosis factor receptor
superfamily member 11B

176 -0.11 370 -0.03 yes no

Vascular endothelial growth
factor A

175 0.03 yes yes 364 0.08 yes yes yes yes no

Moderate correlation

Alpha-2-macroglobulin 175 0.45 yes 371 0.7 yes no

Angiopoietin-1 175 0.26 370 0.75 yes yes no

Antileukoproteinase 176 0.41 371 0.62 yes yes no

Beta-2-microglobulin 176 0.66 371 0.49 yes no

Brain-derived neurotrophic
factor

175 0.48 368 0.82 yes no

C─C motif chemokine 2 175 0.42 370 0.46 no

C─C motif chemokine 22 175 0.62 370 0.74 yes yes

C─C motif chemokine 23 175 0.69 yes yes 371 0.59 yes yes yes yes

C─C motif chemokine 5 175 0.56 371 0.91 yes no

Coagulation factor VII 176 0.45 yes yes 369 0.56 yes yes yes yes yes no

Complement C3 175 0.35 371 0.45 yes yes yes yes yes

Creatine kinase M-type:Creatine
kinase B-type heterodimer

174 0.46 370 0.44 yes yes yes

C─X─C motif chemokine 5 175 0.31 yes 369 0.39 yes yes yes yes no

C─X─C motif chemokine 9 175 0.66 371 0.56 no

Decorin 174 0.38 370 0.54 no

Fibrinogen 173 0.12 370 0.32 yes yes

Interleukin-16 175 0.32 yes yes 370 0.33 yes yes yes yes not tested

Interleukin-18-binding protein 175 0.69 370 0.57 yes not tested

Interleukin-8 175 0.52 366 0.55 no

Lactotransferrin 174 0.34 358 0.48 yes yes yes no

(Continued)



Table 1. Continued.

SPIROMICS COPDGene Evidence from prior publications

Protein N rs Myriad
pQTL

SOMAscan
pQTL

N rs Myriad
pQTL

SOMAscan
pQTL

Any
evidence of
SomaScan
pQTL

Myriad
pQTL

AGES Mass
Spec.

INTERVAL
Comparable

binding to other
proteins

Mast/stem cell growth factor
receptor Kit

175 0.62 371 0.65 yes no

Matrix metalloproteinase-9 167 0.46 368 0.63 yes yes yes no

Metalloproteinase inhibitor 1 176 0.54 371 0.25 not tested

Metalloproteinase inhibitor 2 176 0.45 371 0.13 yes yes yes yes no

Myoglobin 175 0.62 371 0.57 yes no

Neuronal cell adhesion molecule 173 0.38 370 0.4 yes yes yes no

Plasminogen activator inhibitor 1 174 0.69 367 0.89 yes no

Stromelysin-1 176 0.34 yes 369 0.1 yes yes yes no

Superoxide dismutase [Cu-Zn] 176 0.21 370 0.6 not tested

Thyroxine-binding globulin 175 0.64 371 0.65 yes no

Transforming growth factor
beta-1

176 0.21 370 0.38 yes no

Tumor necrosis factor receptor
superfamily member 6

175 0.44 358 0.61 yes yes not tested

von Willebrand factor 175 0.48 365 0.45 yes yes not tested

High correlation

Adiponectin 175 0.94 371 0.91 yes yes no

Advanced glycosylation end
product-specific receptor,
soluble

172 0.7 366 0.7 yes yes yes yes no

C─C motif chemokine 16 175 0.77 yes yes 371 0.79 yes yes yes yes yes no

C─C motif chemokine 18 175 0.81 yes yes 371 0.94 yes yes yes yes yes no

Chromogranin-A 176 0.92 370 0.89 yes yes yes not tested

C-reactive protein 174 0.97 yes 371 0.96 yes yes no

C─X─C motif chemokine 10 175 0.76 371 0.78 yes yes yes no

E-selectin 175 0.84 371 0.87 yes yes no

Ferritin 175 0.97 371 0.97 yes yes

Immunoglobulin A 175 0.88 370 0.85 yes no

Immunoglobulin M 175 0.72 371 0.73 no

Interleukin-6 receptor subunit
alpha

176 0.76 yes yes 368 0.73 yes yes yes yes yes not tested

Serum amyloid P-component 175 0.8 371 0.86 yes yes no

Sex hormone-binding globulin 175 0.92 yes 371 0.97 yes yes yes not tested

Tumor necrosis factor receptor
superfamily member 1A

176 0.7 370 0.73 no

Tumor necrosis factor receptor
superfamily member 1B

176 0.8 yes 371 0.83 yes no

Vascular cell adhesion protein 1 176 0.78 371 0.72 yes no

Of the 114 analytes on the RBM platform, 18 do not have a corresponding protein on the SOMAscan panel, and missingness was high (>20% of samples were below the
lower limit of detection (LLOD)) in an additional 33 analytes (COPDGene (n = 30) and SPIROMICS (n = 32)). A few proteins had low missingness in only one study, three
in COPDGene (SL000248/Alpha-1-antichymotrypsin, rs = 0.33, n = 370, SL001802/IFN-g, rs = 0.11, n = 339, SL002621/midkine, rs = 0.23, n = 369) and one in SPIROMICS
(SL002785/N-terminal pro-BNP, rs = 0.94, n = 172).

three unique proteins (Table S6, Supporting Information)).
Correlations were lower for the nine unique proteins in the
inflammation-focused MSD platform (rs = 0.38 in SPIROMICS,
rs = 0.28 in COPDGene) (Table S7, Supporting Information).
Comparisons between antibody-based platforms were not the

central focus of our analyses, as this topic has been assessed
in a number of previous efforts,[11,25] but are presented for
SPIROMICS (Table S8, Supporting Information), with a median
rs of 0.76 for Myriad RBM and ProterixBio, higher than for
antibody versus SOMAscan comparisons (n = 323 individuals,



Figure 2. Summary of correlations in datasets with the greatest number of proteins tested. We have separated out low correlation (rs < 0.3 in both
cohorts) and high correlation (rs ≥ 0.7 in both cohorts) proteins, with all other proteins listed in the moderate correlation category. a) Comparisons
between SOMAscan 1.3 k andMyriad RBM assays in SPIROMICS and COPDGene. Concordance of pQTLs (i.e. presence of a cis pQTL for both assays) is
evaluated forMyriad RBM cis pQTLs in any dataset (SPIROMICS samples with SOMAscan, COPDGene samples with SOMAscan, or previously published
meta-analysis[16]) versus SOMAscan pQTLs detected in any dataset (including published data from refs. [7, 24]). Mass spectrometry (MS) confirmation
of aptamers is from ref. [7]. b) Comparisons between SOMAscan 1.1 k and Olink panels in planned myocardial infarction patients. pQTL data is from
previously published SOMAscan meta-analyses.[7,25] Most Olink analytes are not available in currently published genetic analyses.

eight proteins compared, three not assessed due to >20% of
samples below the LLOD).
Finally, we assessed correlations between the SOMAscan plat-

form (1.1 k version) and overlapping assays fromOlink in a small
cohort of myocardial infarction patients (ten patients, up to 48
samples due to multiple time points per patient) (Table 2; Ta-
ble S9, Supporting Information); the median rs of 0.36 was sim-
ilar to the comparisons between SOMAscan and conventional
immunoassays. Similar enrichment of mass spectrometry con-
firmed aptamers[7] in the high correlation group was observed,
as well as enrichment for proteins with a SOMAscan cis pQTL
(Figure 2b).

3.3. Summary

Correlation between immunoassays and SOMAscan varied
widely by protein. Approximately 27% of the proteins, for exam-
ple, C-reactive protein (CRP), were well correlated in both stud-
ies (rs ≥ 0.7) for the RBM platform. Similarly, a CRP immunoas-

say compared to SOMAscan in MESA (rs = 0.96, n = 976) (Table
S4, Supporting Information) and a QBR CRP immunoassay to
SOMAscan in COPDGene (rs = 0.94, n = 1096) (Table S6, Sup-
porting Information) had high correlations, suggesting good con-
sistency across cohorts and platforms for this biomarker. How-
ever, other target proteins measured in both COPDGene and
SPIROMICS were essentially uncorrelated between SOMAscan
and the RBM platform (rs < 0.3, representing 20% of all com-
pared proteins), for example, tumor necrosis factor receptor su-
perfamily member 11B (TNFRSF11B), C─C motif chemokine
24 (CCL24), stromelysin-1 (MMP3), vascular endothelial growth
factor A (VEGFA), pulmonary surfactant-associated protein D
(SFTPD), C─C motif chemokine 13 (CCL13), and platelet en-
dothelial cell adhesion molecule (PECAM1). This wide range
in correlation coefficients is broadly consistent comparing other
platforms, such as MSD and Olink, with SOMAscan. For ex-
ample, for Olink, correlation coefficients range from −0.58 to
0.93 for the 425 tested proteins, with 13% of proteins with
rs ≥ 0.7 (well correlated) and 42% with an rs < 0.3 (poorly cor-
related). For proteins present in the reference HUPO plasma
dataset, protein abundance in reference plasma samples was not



Table 2. Distribution of Spearman correlation coefficients for comparison of Olink analytes which overlap with SOMAscan 1.1 k array in a small cohort
of hypertrophic cardiomyopathy patients undergoing septal ablation (n = 48). Full results in Table S9, Supporting Information. rs, estimated Spearman’s
rho.

Correlation range Count Example proteins

Low correlation <0.10 110 Brain-derived neurotrophic factor, C─C motif chemokine 24, Cathepsin D, Interleukin-27

0.10≤ rs <0.20 40 Cadherin-3, Cystatin-C, Ficolin-2, Tissue factor

0.20≤ rs <0.30 29 CD40 ligand, L-Selectin, Stromelysin-1, Tumor necrosis factor receptor superfamily member 19

Moderate correlation 0.30≤ rs <0.40 55 Angiogenin, Eotaxin, Granzyme B, Wnt inhibitory factor 1

0.40≤ rs <0.50 40 Endostatin, Resistin, Tissue-type plasminogen activator, von Willebrand factor

0.50≤ rs <0.60 56 Cathepsin S, Glucagon, Myoglobin, P-Selectin

0.60≤ rs <0.70 40 C─C motif chemokine 22, Granulysin, Leptin, Vitamin K-dependent protein C

Well-correlated 0.70≤ rs <0.8 31 Angiopoietin-1, E-Selectin, Myeloperoxidase, Platelet-derived growth factor subunit B

0.8≤ rs <0.9 20 Angiopoietin-2, Interleukin-6, Renin, Tissue factor pathway inhibitor

0.9≤ rs <1.0 6 C─C motif chemokine 21, Insulin-like growth factor-binding protein 1, Interleukin-1 receptor-like 1, Spondin-1

correlated with reported Spearman correlation coefficients across
platforms in our analyses (rs = 0.082), suggesting low and high
abundance proteins were equally likely to have poor correlation
across platforms (Table S10, Supporting Information). However,
we do note that for the 43 proteins included in both our Myriad
RBM/SOMAscan comparisons in COPDGene and SPIROMICS
(Table 1) and Olink/SOMAscan comparisons in the planned MI
cohort (Table 2; Table S9, Supporting Information), there was
a strong relationship between the correlation coefficients (rs =
0.63), showing some consistency for SOMAscan comparisons
with two different antibody-based platforms (Figure S2, Support-
ing Information).

4. Discussion

In four cohorts (SPIROMICS, COPDGene, MESA, and a small
cohort of planned myocardial infarction patients) comprising
both adult participants in good health and those with cardiovas-
cular and smoking-related diseases, we identified a wide range
of correlations between SOMAscan aptamer results and data
from multiple antibody-based assays. Assay correlations ranged
from very high (e.g., CRP) to non-existent (SFTPD, PECAM1).
We found that cis pQTLs and mass spectrometry confirmation
of aptamers are more often observed with well correlated assay
pairs than poorly correlated assay pairs, suggesting that these
are valuable measures of aptamer/antibody specificity for target
proteins. Availability of many of the same assays in COPDGene
and SPIROMICS demonstrated the similarity in assay corre-
lations across two cohorts. Epitope availability, cross-reactivity,
and negative cooperative binding could all contribute to lack of
concordance between methods. Some non-specificity has previ-
ously been reported for the SOMAscan platform, for example, the
known binding of an aptamer for GDF11 to GDF8[8] (though this
has been addressed on the current version of the platform[26]).
Specificity problems and lack of correlation between immunoas-
say platforms have also been reported, however.[10,11] A careful
examination of platform concordance is essential for proteomics
analyses, and the data presented here should be useful in the de-
sign of studies which combine proteomics data across platforms.

Our results support the general feasibility of meta-analysis
with immunoassays for some proteins assessed by the novel SO-
MAscan platform, while highlighting a subset of proteins that
may be problematic to compare across platforms. Many analy-
ses have been performed to determine the most likely protein
biomarkers for a disease or trait using large-scale proteomics
platforms, for example,[27,28,29] but few include replication anal-
yses across many cohorts, with a few recent exceptions (such as
ref. [28]), or effectively utilize multiple proteomics platforms. Al-
though pQTLs often have larger effect sizes than are seen in other
complex trait genetics analyses,[24,30] increasing power through
meta-analysis will also be essential to pQTL discovery, particu-
larly for trans variants with more modest effect sizes or for analy-
ses of gene × gene and gene × environment interactions. It is
important to utilize alternate protein assessment platforms to
validate pQTLs (as done for a subset in ref. [24]) or disease as-
sociation results. Despite differing scales (as both Olink and SO-
MAscan provide only relative, not absolute, quantification),meta-
analysis with traditional ELISAs or other technologies should be
appropriate for well-correlated assays but would be meaningless
for essentially uncorrelated assays.
We argue that the presence or absence of cis pQTLs and

reproducibility of pQTLs across platforms may provide clues to
assay specificity. The high reproducibility (74.6% replicated) of
previously published non-aptamer identified pQTL associations
in the recent AGES study[7] points to reasonable consistency of
aptamer and non-aptamer methods for many proteins, while not
excluding problematic quantification for a subset of assays. Sun
et al. also found that, of 74 tested cis pQTLs from SOMAscan, 60
replicated with the Olink platform, again pointing to reasonable
platform concordance.[24] Preliminary results released by Olink
suggest that 90% of biomarkers on their CVD I-panel (80 of
90 tested proteins) have a genome-wide significant cis pQTL
in a sample of n = 22 000, suggesting high specificity for their
paired antibody-based system. However, further follow-up of an
increased number of Olink assays using both pQTLs and other
analysis techniques is needed in future work,[31] as are better
powered meta-analyses of SOMAscan assays to definitively
confirm the presence or absence of cis pQTLs. Our analyses of
cis pQTLs in SPIROMICS and COPDGene suggest that discor-
dant cis pQTLs may be helpful for determining which assay is



likely more specific for the target protein for poorly correlated 
assay pairs. For example, SFTPD has a cis pQTL in Myriad 
RBM based analyses from COPDGene and SPIROMICS (lead 
pQTL rs2146192),[16]  which coincided with previous associations 
for COPD phenotypes. However, this protein had no reported 
cis pQTLs in SOMAscan pQTL results from COPDGene and 
SPIROMICS or in two other previous studies.[7,24] One potential 
reason for this lack of replication is differences in assay speci-
ficity and performance, with the antibody for SFTPD for Myriad 
RBM likely having higher affinity or less off-target binding than 
the SOMAscan aptamer for this protein, allowing detection of 
this cis pQTL. Conversely, for analytes with a strong cis pQTL for 
SOMAscan data but not for antibody-based assays, there may be 
an issue with the specificity of antibody-based assays. However, 
concordant cis pQTLs do not ensure that assays will be well corre-
lated. For poorly correlated analyte C─C motif chemokine 8, a cis 
pQTL signal is found both for SOMAscan data and Myriad RBM 
data, suggesting at least some binding to the target protein for 
both these assays, but likely with variable specificity or binding 
properties. Finally, for cis pQTL missense variants, such as lead 
variant rs5498 with SOMAscan measured ICAM1 (Table S1, 
Supporting Information), it is important to note that differences 
in antibody or aptamer binding to different isoforms may drive 
missense variant cis pQTLs, as opposed to true differences in pro-
tein levels. For example, differences in antibody binding causing 
spurious pQTLs was found for VDBP (not assessed here) in prior 
work using the Myriad RBM platform[16]  and for other ELISAs in 
past efforts (such as ref. [32]). Missense variants impacted levels 
of >32% of proteins assessed in INTERVAL, in some cases likely 
due to artefactual differences in aptamer binding unrelated to 
biologically relevant changes in protein abundance.[24]  Future 
studies should also consider common missense variants which 
may cause assay interference and decrease biomarker correla-
tions in only some ancestry groups, particularly those common 
only in non-European ancestry populations (and therefore not 
assessed in existing pQTL studies[7,24]). In cases where missense 
variants do impact aptamer or antibody binding, stratifying 
by genotype may improve correlation across assays.[16]  While 
we did not see a systematic pattern for presence/absence of 
common missense variants among well- and poorly-correlated 
proteins in our analysis (Table S3, Supporting Information), 
careful consideration of missense variants which may interfere 
with appropriate antibody/aptamer binding to target epitopes 
is necessary. Along with these known concerns for coding cis 
pQTLs, cis genetic variants that alter protein oligomerization 
and posttranslational modifications through their regulatory 
roles could also impact antibody or aptamer-based quantification 
without truly influencing protein abundance.
Along with cis pQTLs, we also explored other potential explana-

tory factors for observed correlation coefficients for assessed pro-
teins. As explored in Table S3, Supporting Information, for pro-
teins from SPIROMICS and COPDGene compared across the 
Myriad RBM and SOMAscan platforms, we did not see system-
atic differences in post-translational modifications or number 
of isoforms between highly correlated and poorly correlated (or 
pQTL discordant) proteins. However, more high correlation pro-
teins versus low correlation proteins had aptamers confirmed 
by mass spectrometry,[7]  for both Myriad RBM and Olink com-
parisons (Figure 2). Other studies prior to Emilsson et al. also

validated SOMAscan aptamers with mass spectrometry, provid-
ing important validation of cardiovascular disease related find-
ings for proteins such as epidermal growth factor receptor[3] and
adenylosuccinate synthase 1,[33] among others; data from these
studies could additionally provide validation for some aptamers
of interest. Cumulatively these studies provide convincing evi-
dence of the utility of mass spectrometry-based aptamer confir-
mation. Cross-reactivity for aptamers or antibodies might also be
hypothesized to lead to low correlation between assays. Recent
work by Sun et al.[24] extensively tested cross-reactivity of 920 SO-
MAmers against homologous proteins (at least 40% sequence ho-
mology), and found that 126 SOMAmers (14%) showed compa-
rable binding with a homologous protein. However, nearly half
of these were binding to alternative forms of the same protein;
the likelihood of cross-reactivity also increased with increasing
amino acid homology (the median was 70% for those with com-
parable binding). While we observed few systematic differences
in cross-reactivity between low and high correlation assays, cross-
reactivity could be a cause for low correlations for a few of the
assays examined here. For example, the D-dimer aptamer had
comparable binding to fibrinogen and fibrinogen 𝛾 chain (but no
appreciable binding to fibrinogen 𝛽 chain) in the analyses by Sun
et al., suggesting a cause for the modest observed correlation for
D-dimer immunoassays with SOMAscan (rs = 0.14 in MESA).
A central strength of our analysis is concurrent assessment of

correlations with an immunoassay platform in four independent
cohorts, two of which (COPDGene and SPIROMICS) have very
similar proteomics datasets. This helped us obtain amore consis-
tent picture of the true correlations between platforms. Our study
has important limitations as well. As is standard for most cohort
studies, data sharing is based upon participant informed con-
sent; thus, not all underlying data can be freely shared. All data
are available through data access procedures as described in the
Associated Data. There are many novel options for proteomics
analysis (such as high throughput mass spectrometry pipelines)
which are not considered here. We also cannot comment on
which assays (SOMAscan, MSD, QBR, etc.) most accurately
reflect the true levels of protein biomarkers without comparing
them to fully validated immunoassays that have been vetted for
specificity, linearity, and possible interference (which for the
majority of measured analytes do not exist). In the COPDGene
cohort, data for four well-vetted immunoassays in clinical use
were available; concordance with SOMAscan data was ≈0.6 or
higher for three of these (but not for alpha-1-antitrypsin, which
was also poorly correlated with RBM values) (Figure S3, Sup-
porting Information). However, in most cases there is no clinical
assay available, increasing the utility of data on mass spectrom-
etry confirmation or on cis pQTLs. Presence of a cis pQTLs for
both platforms does not guarantee high correlation (as evidenced
by similar median correlation for proteins with/without a cis
pQTL for Myriad RBM comparisons for example), but presence
of a cis pQTL suggests an antibody/aptamer has at least some
binding with its target protein. Discordant cis pQTLs can be
helpful in interpreting low correlation between assays, with the
assay with a cis pQTL likely more accurately assessing abundance
of the target protein. We do note as a limitation of our analyses
the different genotyping platforms and use of genotyped vari-
ants only in comparing pQTL analyses between COPDGene
and SPIROMICS, but our purpose was simply to evaluate the



presence or absence of cis pQTLs. Comparison of serum and 
plasma protein quantification is also an issue for some assays 
(notably some of the SPIROMICS Myriad RBM/SOMAscan 
comparisons in Table 1, as annotated in Table S2, Supporting 
Information), as there may be differences in protein stability, 
the formation of aggregates, and other attributes for some 
proteins between serum and plasma (though previous work[18]  
from SPIROMICS has shown high correspondence between 
serum and plasma results for the Myriad RBM platform). Our 
Olink/SOMAscan comparison dataset is small (n = 48) and thus 
could not be used for cis pQTL analysis. It also uses an older 
(1.1 k) version of the SOMAscan platform (a small subset of the 
aptamers have been retired in more recent versions).
Our results provide an important starting point for proteomics 

investigators, but differences between platforms still need to be 
more fully explored. High-throughput proteomics technologies 
such as the SOMAscan platform[12]  can assess a very large 
number of proteins in a single assay at relatively low per analyte 
cost and low sample volume. However, it is evident that some 
proteins examined do not correlate well with antibody-based 
assays, including novel Olink proximity extension assays, poten-
tially due to lack of specificity for some aptamers or antibodies 
or differences in signal to noise ratios. Different assays may 
have varying benefits and drawbacks. For example, in Olink 
proximity extension assays, binding of a pair of antibodies to 
each protein[12]  might be hypothesized to increase specificity. 
However, the real-time PCR quantification may differ in signal to 
noise ratio compared to other quantification approaches. Addi-
tional validation for top results with any novel discovery platform 
(using mass spectrometry, ELISAs, etc.) is important, especially 
if there is evidence of lack of correspondence between platforms 
and a lack of cis pQTL evidence for the target protein with the 
novel assay. The use of relative quantification for SOMAscan and 
Olink also leads to some uncertainty about which proteins may 
indeed be below reasonable detection limits in a large portion of 
individuals, with again orthogonal methods required for some 
applications. However, we do note that protein abundance in 
reference data from HUPO was not significantly correlated 
with Spearman correlation coefficients across platforms, so 
low protein abundance is unlikely to be the main reason for 
discrepant quantification. Still, we feel a comprehensive study of 
many available platforms (including mass spectrometry-based 
platforms) in a reasonably sized set of overlapping samples 
(≈100), with comparison to serum and plasma reference stan-
dards, would be a precious asset for future research. Complete 
understanding of the comparability of results from aptamer 
technology to other protein biomarker or proteomics platforms 
is still lacking and is vital for interpretation of research findings.
To conclude, more analysis is needed to assess the potential to 

integrate data across proteomics platforms fully. Olink and SO-
MAscan do not provide exact quantification and are not designed 
to correspond perfectly to exact quantification methods. How-
ever, sample ranking (as assessed here using Spearman corre-
lation coefficients) should be quite similar if both the novel assay 
(Olink or SOMAscan) and existing immunoassays perform well. 
Ideally, all novel assays should be confirmed by multiple orthogo-
nal methods (e.g., both MRM and well-validated immunoassays) 
in a well-powered sample, as well as using well-characterized ref-
erence samples in relevant tissue types (such as serum, plasma,

and urine). Investigators should be careful to treat discovery plat-
forms like Olink and SOMAscan appropriately, confirming key
results with additional methods, and using comparisons to refer-
ence standards to obtain exact protein quantification. However,
the correlation information presented here provides a starting
point for evaluating the comparability of antibody- and aptamer-
based protein measures, similar to previous efforts publicly com-
piling the coefficients of variation and stabilitymeasurements for
SOMAmers.[34] As new multi-cohort meta-analyses and replica-
tion efforts are initiated, our analysis suggests that investigators
must be aware of differences in biomarkers obtained from dif-
ferent platforms and can use metrics such as the presence of cis
pQTLs or orthogonal assays like mass spectrometry to infer the
specificity of different proteomics platforms.

5. Associated Data

Data is available through dbGaP or other secure access mech-
anisms to approved researchers. Full data is available from
MESA (https://www.mesa-nhlbi.org/), SPIROMICS (https://
www.spiromics.org/spiromics/), and COPDGene (http://www.
copdgene.org/) by approved manuscript proposal and data use
agreement at the respective study websites. The Multi-Ethnic
Study of Atherosclerosis (MESA) proteomics data is available
at dbGaP phs000209; SOMAscan data will soon be posted to
phs001416. Genetic Epidemiology of COPD (COPDGene) data is
available at dbGaP phs000179. Subpopulations and Intermediate
Outcome Measures in COPD Study (SPIROMICS) data (genetic
data only) is available at phs001119. Data from the small cohort
of patients undergoing septal ablation for hypertrophic cardiomy-
opathy (inducing planned myocardial infarction) is included as a
supplemental data object.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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