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Background: Cystic fibrosis (CF) patients develop severe lung disease including chronic airway infections,

neutrophilic inflammation, and progressive fibrotic remodeling in airways. However, cellular and molec- 

ular processes that regulate excessive collagen deposition in airways in these patients remain unclear.

Fibrocytes are bone marrow (BM)-derived mesenchymal cells that express the hematopoietic cell marker

CD45, and mesenchymal cell markers and implicated in collagen deposition in several fibrotic diseases.

It is unknown whether fibrocytes accumulate in the lungs of CF patients, so the current study evaluates

the presence of fibrocytes in the fibrotic lesions of airways in explanted CF lungs compared to non-CF

unused donor lungs (control).

Methods: We used immunofluorescence staining to determine if fibrocytes accumulate in explanted CF

lungs compared to healthy donor lungs. Simultaneously, we evaluated cells collected by bronchoalveolar

lavage (BAL) in CF patients using multi-color flow cytometry. Finally, we analyzed transcripts differentially

expressed in fibrocytes isolated from the explanted CF lungs compared to control to assess fibrocyte- 

specific pro-fibrotic gene networks.

Results: Our findings demonstrate fibrocyte accumulation in CF lungs compared to non-CF lungs. Ad- 

ditionally, fibrocytes were detected in the BAL of all CF children. Transcriptomic analysis of fibrocytes

identified dysregulated genes associated with fibrotic remodeling in CF lungs.

Conclusions: With significantly increased fibrocytes that show increased expression of pro-fibrotic gene

transcripts compared to control, our findings suggest an intervention for fibrotic remodeling as a potential

therapeutic target in CF.
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. Introduction

Cystic fibrosis (CF) is an inheritable multi-system disease due

o deficient chloride ion transport at the cell membrane of epithe-

ial cells, especially in the lower airways, that leads to significant

ung disease. CF is caused by mutations in the gene coding for the

ystic fibrosis transmembrane conductance regulator (CFTR) pro-

ein [1 , 2] . CF-associated mutations result in defective CFTR protein

ynthesis, processing or function, and often lead to fibrosis in mul-

iple organs including the liver, pancreas and lung [1 , 2] . In addition

o defective CFTR-dependent chloride transport, bicarbonate trans-

ort may be impaired and sodium absorption may be enhanced
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n the airways. Thick mucus gland secretions, airway mucus ob-

truction and susceptibility to chronic infection then ensue [2–4] .

he pathophysiologic mechanisms underlying CF lung disease that

ead to bronchiectasis, myofibroblast accumulation and progressive

ollagen deposition, also referred to as bronchial wall thickening,

emain undefined [3 , 5] . Previous fetal and animal work in CF sug-

ests CF pro-fibrotic abnormalities manifest during the early stages

f CF lung diseases before the establishment of chronic infection

f the lower airways [6 , 7] . However, strong evidence indicates that

he CF host inflammatory response is excessive and chronic inflam-

ation and fibrosis directly cause bronchiectasis and respiratory

ailure as the disease progresses [6] . 

The mechanisms governing fibrotic lung remodeling due to the

FTR mutations in CF are not clearly defined. Currently, there

s uncertainty whether early infection and inflammation initiate

his pro-fibrotic phenotype. Also, the lack of an animal model
l., Fibrocyte accumulation in the lungs of cystic fibrosis patients, 
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that mimics clinical features of CF lung disease has reduced the

progress on identifying mechanisms underlying fibrosis and other

clinical abnormalities in CF. However, recent development of CF

pigs that lack CFTR or express mutant CFTR (F508del) has cre-

ated a phenotype similar to human disease including intestinal,

pancreatic and airway disease. Moreover, newborn piglets with CF

have developed airflow obstruction and air trapping in part due

to tracheal structural abnormalities, in the absence of inflamma-

tion and mucus obstruction [8] . Several studies provide evidence

that pro-fibrotic growth factors, such as TGF β , function as modi-

fier genes in CF and may contribute to the severity of lung disease

by activating pro-fibrotic pathways [3 , 5] . Morphometric analysis of

TGF β signaling, myofibroblast differentiation, and collagen depo-

sition in the lungs of CF, IPF and non-CF patients demonstrate that

pulmonary fibrosis is prominent in CF and is comparable to IPF [3] .

Additionally, unresolved neutrophilic inflammation, and altered IL-

17A- and Th2 cytokine-driven signaling may also contribute to fi-

brosis and severe lung disease [3 , 5 , 9] . Other studies have suggested

that EGFR ligands, such as TGF α and cytokines including TNF α, IL-

13, and IL-17, are abundant in CF compared to non-CF lungs [5 , 10] .

Experimental models of chemical-induced lung injury or overex-

pression of TGF α have demonstrated that mesenchymal cells accu-

mulate and excessive production of ECM leads to fibrotic remod-

eling [11 , 12] . Further understanding of the cellular and molecular

mechanisms underlying fibrosis in CF should be a priority as the

development of therapies that can inhibit or delay the onset of fi-

brosis and subsequent organ failure in CF could be essential in ex-

tending the life and/or delaying the need for lung transplantation. 

Several fibrotic lung diseases are characterized by the progres-

sive accumulation of lung mesenchymal cells, the subsequent ex-

pansion of fibrotic lesions and the ultimate loss of lung function

[13] . In CF, the cellular sources of the lung fibroblasts in fibrotic le-

sions remain unknown. Fibrocytes are bone marrow (BM)-derived

stromal cells that express a variety of cell-surface markers related

to leukocytes, hematopoietic progenitor cells, and fibroblasts [14] .

In tissues, fibrocytes have been shown to become alpha-smooth

muscle actin ( αSMA)-positive myofibroblasts, but this occurs in

limited numbers [15] . In patients with interstitial lung disease, the

number of circulating fibrocytes has been shown to correlate with

lung remodeling [16] . Modulating the mechanisms that drive fibro-

cyte recruitment to the lung, and targeting chemokines involved in

fibrocyte migration, have been shown to reduce fibrotic burden in

mice [17] . Studies from our laboratory and others have identified

a specific, endogenous mechanism of pronounced and progressive

pulmonary fibrosis driven by fibrocytes in the lung [15 , 18] . Specif-

ically, we have found that fibrocytes are tissue invasive and suf-

ficient to augment the proliferative expansion of lung-resident fi-

broblasts of the fibrotic lesions in the lung [15] . 

Currently, it is not clear whether fibrocytes accumulate in the

pathogenesis of fibrotic lung disease in humans with defective

CFTR. In this study, we tested whether fibrocytes accumulate in ex-

planted CF lungs with the F508del mutation from patients who un-

derwent lung transplantation. We performed systematic validation

of fibrocyte presence in the lungs and identified fibrocyte-specific

gene networks that may involve in fibrotic lung remodeling. 

2. Materials and methods

2.1. Human tissue samples 

Cells from BAL fluid were collected according to the Cincinnati

Children’s Hospital Medical Center (CCHMC) Institutional Review

Board (IRB) approved protocol (IRB # 2014–3309). In addition, de-

identified explanted lung tissue specimens collected from the dis-

tal areas of lung were acquired using research protocols approved

by the University of North Carolina and CCHMC (IRB # 2017–6850).
Please cite this article as: R.K. Kasam, P.R. Gajjala and A.G. Jegga et a
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F was diagnosed according to clinical standards with an elevated

weat chloride test and two copies of a CFTR-deficient mutation.

ung tissue samples were obtained from CF patients with F508del

FTR homozygous mutation who had undergone lung transplan-

ation. In addition, lung tissue was acquired from donors with no

istory of prior chronic lung disease (control group) (age range 16–

9 years, attempting to match the CF cohort). 

.2. Lung mesenchymal cell culture 

Human lung stromal cell culture was performed as described

reviously [19] . We performed a detailed macroscopic evaluation

f the explanted lung that was cut sagittally resulting in two

ross sections to identify normal or remodeled areas in the dis-

al lung. From the normal donor lungs, we selected distal lung

issue with a soft consistency to finger palpation, appeared red

n color due to normal tissue perfusion and had no mucus plug-

ing or cyst formation. We used the CF lung tissues with moder-

te to severe damage that had a firm consistency to finger pal-

ation, appeared pale in color (due to scar) and that had air-

ays filled with mucus. Thus, the distal lung parenchyma selected

ith small airways was cut into 2X2 cm pieces. Each piece was

nely minced and digested in DMEM media containing collage-

ase (2 mg/ml) by incubating at 37 °C for 1hr. Digested tissue was

assed through a 100 μm filter, washed twice by centrifugation at

00 X g for 5 min. After the digestion, ten million cells were cul-

ured onto 100-mm tissue-culture plates in 10 ml DMEM supple-

ented with 10% bovine calf serum, 2 mM l -glutamine and a cock-

ail of antibiotics including Ceftazidime (100 μg/ml), Tobramycin

80 μg/ml), Vancomycin (100 μg/ml), Ciprofloxacin (20 μg/ml), Nys-

atin (100 U/ml) and Doxycycline (4 μg/ml). Mesenchymal cells ad-

ered to plates and migrate away from the larger remaining tis-

ue pieces. The lung mesenchymal cells were maintained in culture

ntil they reached 80% confluency, and non-adherent floating cells

nd dead cells were washed away with regular media changes. Fi-

rocytes (CD45 + Col1 + ) from control and CF lung cultures were

solated on day 9 using anti-CD45 magnetic beads and the cell pu-

ity was greater than 94%, as assessed by flow cytometry [15] . 

.3. RNA-sequencing, bioinformatics analysis and RT-PCR 

Total RNA was prepared from fibrocytes purified from distal

ung mesenchymal cell cultures of explanted end-stage CF lungs

nd healthy donor lungs. Total cellular RNA was isolated using

Neasy midi kit (Qiagen, Germantown, MD) and the purity of

he total RNA was assessed using a NanoDrop spectrophotometer

Thermo Scientific, Wilmington, DE). We confirmed the integrity of

NA using an Agilent 2100 Bioanalyzer and performed RNA-seq us-

ng an Illumina HiSeq-10 0 0 sequencer (Illumina, San Diego, CA) as

escribed previously [20] . Using TopHat aligner [21] , reads were

ligned to the reference genome based on the current gene def-

nitions, and those aligned with low confidence were filtered out

sing SAM tools [22] . These processes resulted in approximately

5 million reads on an average per sample. The number of reads

read counts) aligning to the gene’s coding region was summa-

ized using Short Read [23] and various R- Bioconductor [24] pack-

ges (IRanges, GenomicRanges, Biostrings, Rsamtools). The differ-

ntial gene expression analysis between groups was performed us-

ng the negative binomial statistical model of reading counts as

mplemented in the edgeR Bioconductor package [25] . The cluster

nalysis of all genes differentially expressed in individual compar-

sons is performed using the Bayesian infinite mixture models [26] .

ene transcripts were selected based on log2 fold change of ±1.5

up or down) with a P -value cut-off of 0.05, resulting in 2818 genes

n total ( N = 3/group) and a heat map was generated. The ToppFun

pplication of ToppGene Suite [27] was utilized to identify the top
l., Fibrocyte accumulation in the lungs of cystic fibrosis patients, 
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Fig. 1. Presence of fibrocytes in the lungs of cystic fibrosis patients. (A) Frozen lung sections from non-CF ( n = 4) and CF ( n = 6) individuals were co immunostained using 

CD45 and vimentin. Images are representative of each group. Arrows indicating CD45 & vimentin double-positive cells. (60X, Scale bar: 50 μm) (B) Percent of vimentin- 

positive cells were quantified from each group using metamorph imaging software. (C) Percent fibrocytes (CD45 + and Vimentin + ) were calculated using metamorph imaging 

software. DAPI stained cells were quantified for total cell number. ∗P < 0.05, ∗∗P < 0.005. Unpaired t -test. 

Fig. 2. Identification of fibrocytes in BAL cells of cystic fibrosis patients. Representative flow cytometry plots showing the gating strategy used to identify fibrocytes that are

double-positive for CD45 and collagen 1 observed using FACS analysis of total BAL cells isolated from cystic fibrosis patients. For FACS analysis, the gates were set based on

isotype antibody stained controls.
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nriched biological processes regulated by differentially expressed

enes in CF fibrocytes compared to normal fibrocytes. Real-time

CR was performed using the CFX384 Touch Real Time PCR de-

ection system and SYBR select master mix (Bio-Rad, Hercules, CA)

s described previously [19] . We have included human beta actin

ene as an invariant endogenous control to correct sample to sam-

le variations and have avoided errors in the normalization by us-

ng good quality RNA in equal amounts and also performed melt

o  
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urve analysis to exclude primer sets producing non-specific PCR

roducts. Real-Time PCR primer details are provided in table S1. 

.4. Flow cytometry 

The total BAL fluid cells or primary fibroblasts from lung cul-

ures (0.5–1 × 10 6 ) were stained using anti-CD45 (clone HI30 & 30-

11), and collagen I-FITC (clone 5D8-G9) antibodies as described in

ur previous studies [20] . Data were acquired using LSRII flow cy-
l., Fibrocyte accumulation in the lungs of cystic fibrosis patients, 
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Fig. 3. Differential gene expression analysis of CF Fibrocytes shows fibrosis-associated transcriptional changes in CF lungs. Heat map of fibrocyte-specific transcripts isolated

from fibrotic CF lungs compared to normal lungs was analyzed using RNA-sequencing ( N = 3). Gene ontology classification of highly regulated processes and selected example 

genes are listed on the right.
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t  
tometer (BD Biosciences). BAL cells stained with isotype IgG and

single stain control antibodies were used for compensation and

gating. Data were analyzed using FlowJo software (TreeStar, Ash-

land,OR). 

2.5. Immunofluorescence and confocal imaging 

Human lung tissue sections were embedded in OCT medium

and frozen lung sections were prepared as described previ-

ously [20] . Lung section were co-immunostained using antibodies

against CD45 (ab10558, Abcam) and vimentin (sc-7557, Santa Cruz

Biotechnology) followed by secondary antibodies conjugated with

Alexa Fluor 488 and Alexa Fluor 568. Lung sections were stained

with DAPI for nucleus visualization and confocal Z-stack images

were obtained using a Nikon AIR-A1 laser scanning microscope.

3D rendering from confocal Z-stacks was performed using the “an-

imation” tool in Imaris (version 9.2, Bitplane) software. To quan-

tify the vimentin or CD45 and vimentin-positive cells, six random

high magnification images were obtained from each lung section

and quantified using MetaMorph imaging software (Molecular De-

vices, CA, USA) as described [19] . Also, immunostainings were per-

formed on serial lung sections with antibodies against vimentin

(anti-human vimentin, ab137321; Abcam), and CD45 (rabbit anti-

CD45; Ventana, Tucson, AZ, USA) as described previously [15] . Im-

ages were obtained using a Leica DM2700 M bright-field micro-

scope (Leica Microsystems, Buffalo Grove, IL, USA). 

2.6. Statistics 

All data were analyzed using Prism (Version 5; GraphPad, La

Jolla, CA, USA). Student’s t -test was used to compare two experi-
Please cite this article as: R.K. Kasam, P.R. Gajjala and A.G. Jegga et a
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ental groups. Data were considered statistically significant for P

alues less than 0.05. 

. Results

.1. Fibrocytes accumulate in fibrotic lung lesions of CF patients 

In order to identify fibrocytes, we co-immunostained the lung

ections from F508del CFTR homozygous ( n = 6) and non-CF ( n = 4)

onors with antibodies against CD45 and vimentin. We observed

n increased number of mesenchymal cells that are dual positive

or vimentin and CD45 in CF lungs compared to non-CF controls

 Fig. 1 A). Also, we observed a significant increase in the total num-

er of vimentin-positive mesenchymal cells in CF lungs compared

o non-CF controls ( Fig. 1 B). Further, we quantified the number of

brocytes and observed a significantly greater total number of fi-

rocytes in CF lungs compared to non-CF controls ( Fig. 1 C). 3D ren-

ering of confocal images reveals the presence of fibrocytes that

re positive for both CD45 and vimentin in CF lungs (Supplemen-

ary Video 1). In order to further identify an increase in mesenchy-

al cells, we performed immunostaining on serial sections of CF

nd non-CF lungs using antibodies against vimentin and CD45. In

he serial sections, we observed an increase in cells positive for

oth vimentin and CD45 in CF lungs compared to non-CF disease

ontrols (Figure S1). 

.2. Fibrocytes identified in BAL specimens of pediatric CF patients 

To determine whether fibrocytes accumulate in the lower air-

ays of patients, we obtained cryopreserved BAL from CF pa-

ients. CF patients were recruited at the CCHMC CF Center, with
l., Fibrocyte accumulation in the lungs of cystic fibrosis patients, 
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Fig. 4. CF fibrocytes show dysregulated transcriptome. (A) Quantification of genes CFTR, KCNN4 and SPINT1 in fibrocytes isolated from non-CF and CF patient lungs using

RT-PCR. (B) Quantification of genes CDH3 and CTSD in fibrocytes isolated from non-CF and CF patient lungs using RT-PCR. (C) Quantification of genes SERPINA1 and ELN in

fibrocytes isolated from non-CF and CF patient lungs using RT-PCR. (D) Quantification of genes SELP, SERPINB2 and FGF1 in fibrocytes isolated from non-CF and CF patient

lungs using RT-PCR. The relative expression level is expressed as fold induction relative to that in corresponding non-CF fibrocytes following normalization to the expression

of human β-actin. All data are presented as mean ± SEM ( n = 6). ∗P < 0.05, ∗∗P < 0.005, ∗∗∗P < 0.0 0 05, and ∗∗∗∗P < 0.0 0 0 05. Unpaired t -test. 
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Table 1

Clinical parameters of cystic fibrosis patients.

Clinical parameters CF ( N = 11) 

Age (years) median [range] 11 [2.8–16.7]

Sex (male/female) 5/6

FEV1% Predicted 92 ± 6.5 

FEV 1 (L) 1.8 ± 0.15 

FVC (L) 2.3 ± 0.23 

Macrophages (%) 19 ± 0.05 

PMNs (%) 79 ± 0.05 

Lymphocytes (%) 3 ± 0.01 

Fibrocytes (%) 9.5 ± 1.5 
ll patients between 2–16 years of age. The clinical characteristics

f the CF patients are summarized in Table 1 . To identify fibro-

ytes in the BAL fluid of CF patients, cells were stained for CD45,

nd Collagen1 and analyzed using flow cytometry. FACS analy-

is identified that about 10.3% of the population in the total BAL

ells were positive for fibrocyte markers, CD45, and Col1 ( Fig. 2 &

able 1 ). 

.3. Differential expression of fibrosis-associated transcripts by 

brocytes in CF patients 

To identify fibrocyte-specific transcripts involved in CF lung dis-

ase, we isolated fibrocytes from lung stromal cell cultures of non-
Please cite this article as: R.K. Kasam, P.R. Gajjala and A.G. Jegga et al., Fibrocyte accumulation in the lungs of cystic fibrosis patients, 
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CF and F508del CFTR homozygous donor lung tissue and compared

transcripts that were differentially expressed more than 1.5-fold

(Table S2). As shown in Fig. 3 , there was a larger group of genes

subject to change in the fibrocytes of CF lungs compared to non-

CF lungs. The F508del CFTR mutation resulted in up- and down-

regulation of 879 and 1939 transcripts, respectively. Gene ontol-

ogy analysis revealed the upregulation of genes involved in positive

regulation of cell migration, negative regulation of wound healing,

muscle tissue contraction and development, and downregulation

of genes involved in CFTR dependent ion channels, F508del inter-

actome, Nrf2 interactome, and epithelial-stromal cell crosstalk. In

addition, we performed the validation of differentially expressed

genes using RT-PCR. Transcripts of genes involved in CFTR de-

pendent regulation of ion channels such as CFTR, KCNN4, and

SPINT1 are downregulated in CF lung derived fibrocytes ( Fig. 4 A).

Notably, gene transcripts associated with the F508del interac-

tome (CDH3 and CTSD), and Nrf2 interactome (SERPINA1 and

ELN) were significantly downregulated in CF lung fibrocytes com-

pared to control fibrocytes ( Fig. 4 B and 4 C). Conversely, the tran-

scripts of profibrotic genes such as SELP, SERPINB2, and FGF1

are upregulated in CF fibrocytes compared to normal fibrocytes.

These genes have been implicated in increased migration, delayed

wound healing, and muscle tissue development and contraction

( Fig. 4 D). 

4. Discussion

Fibrocytes are a subset of macrophages that originate from bone

marrow and migrate to injured areas to perform pro-fibrotic func-

tions. Fibrocytes have been shown to increase in circulation and

progressively accumulate in injured lungs in multiple chronic lung

diseases including asthma, acute respiratory distress syndrome

(ARDS), systemic sclerosis, and IPF [28–31] . We identified that a

significant number of fibrocytes accumulate in explanted CF lungs

that are extensively remodeled. 

Unremitting inflammation and fibrosis of the lower airways is

a major cause of morbidity and mortality in CF patients. For the

first time, we identified that fibrocytes marked with CD45 + and

Col1 accumulate in the distal areas of the CF lungs. Importantly,

we also identified that fibrocytes are present in the BAL fluid of

younger CF patients. Although we cannot define that fibrocytes are

associated with disease due to our study design, our findings sug-

gest that their presence could be contributing to CF lung disease

as their levels are typically undetectable in BAL fluid of healthy

controls [32] . Therefore, our findings support the need for addi-

tional studies with a larger cohort of CF patients to further inves-

tigate if fibrocytes in BAL fluid or circulation of CF accumulate and

can contribute to lung disease. Multiple studies using chemical-

induced lung injury models demonstrate that circulating fibrocytes

migrate to the lung in response to the local release of cytokine

and chemoattractants such as the C 

–C motif chemokine ligand

CCL2, CCL5 and CXCL12/CXCR4 axis [17 , 33 , 34] . Notably, disruption

of these pathways that drive recruitment of circulating fibrocytes

to the lung, and targeting chemokines involved in fibrocyte migra-

tion, reduce fibrotic burden in mouse models of pulmonary fibrosis

[15 , 17 , 35] . Studies from our laboratory and others show that mul-

tiple factors secreted by fibrocytes act in a paracrine manner to

activate resident fibroblasts, stimulating their proliferation and dif-

ferentiation during the pathogenesis of pulmonary fibrosis [20 , 36] .

In particular, the adoptive transfer of fibrocytes was sufficient to

augment the fibrotic burden in injured lungs but not in uninjured

lungs during bleomycin-induced pulmonary fibrosis [20 , 37] . How-

ever, it is plausible that lung resident macrophages or fibrocytes

expanded locally to contribute to increased fibrocyte numbers in

CF lungs or other fibrotic lung diseases. The lack of CFTR expres-
Please cite this article as: R.K. Kasam, P.R. Gajjala and A.G. Jegga et a
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ion has been shown to cause impaired resolution of inflamma-

ory cells and increased damage in CF airway epithelia and lung

brosis with LPS challenge or naphthalene injury in CF mice com-

ared to wildtype mice [38 , 39] . Therefore, it is important to un-

erstand the mechanisms underlying fibrocyte recruitment or ac-

ivation, and their contribution to the fibrotic burden in the CF

ung. 

Here, starting from the identification of fibrocytes in CF air-

ays, we identified gene networks that were selectively dysreg-

lated in CF fibrocytes compared to control fibrocytes using next-

eneration RNA-seq analysis. The loss of CFTR expression in CF fi-

rocytes suggests that CFTR exerts its regulatory role in fibrocyte-

riven fibrotic lung disease. Specifically, gene ontology analysis re-

ealed the downregulation of CFTR-dependent ion channels, delta-

08 interactome, Nrf2 interactome, and genes involved in stromal-

pithelial crosstalk. The expression of CFTR by fibrocytes is con-

istent with previous reports on CFTR expression by non-epithelial

ells including macrophages, smooth muscle cells, and endothelial

ells [40 , 41] . Zhang et al. showed that macrophages derived from

eripheral blood monocytes of CF patients have low levels of CFTR

xpression compared to non-CF macrophages [42] . Moreover, pre-

ious studies show that during oxidative stress decreased CFTR ex-

ression is due to the transcriptional repression but not due to

ecreased stability [43 , 44] . However, future studies are warranted

o understand the transcriptional regulation and functions of CFTR

n fibrocytes. Detailed transcriptome analysis of CF fibrocytes al-

owed us to hypothesize that the loss of CFTR was associated with

he activation of a pro-fibrotic gene program in CF fibrocytes. Also,

he observed decrease in the expression of genes associated with

elta-508 interactome (CDH3, CTSD), nrf2 interactome (SERPINA1,

LN), and stromal epithelial cross-talk (MMP9, LCN2) suggest that

FTR in fibrocytes might play a role in fibrotic lung remodeling.

herefore, future studies are warranted to identify the potential

ole of CFTR in fibrocyte activity and fibrotic remodeling in the CF

ung. Additionally, various genes involved in positive regulation of

ell migration (SELP, SMOC2, and PTGER3), negative regulation of

ound healing (SERPINB2, AJAP1, GP5), and muscle tissue develop-

ent and contraction (FGF1, MYH13, GATA4) were upregulated in

F fibrocytes. CF fibrocytes display an increase in the transcripts of

GF1, a pro-fibrotic growth factor implicated in muscle tissue de-

elopment and regeneration. Published studies have shown FGF1

o cause growth and migration of both endothelial and smooth

uscle cells. Moreover, vascular abnormalities and smooth muscle

emodeling are significant factors that contribute to lung pathology

n patients with CF [45–47] . 

CF lung disease in humans shares several features of fibrotic

emodeling seen in IPF, including myofibroblast accumulation and

xcessive collagen deposition [48] . Fibrocytes have been impli-

ated in the pathogenesis of several chronic inflammatory diseases

uch as necrotizing enterocolitis (NEC), asthma, Graves’ disease,

nd rheumatoid arthritis [49–52] . Consistent with previous work,

e detected a significant number of fibrocytes in the BAL fluid

f CF patients. In particular, fibrocyte induction in Grave’s disease

nd NEC has been shown to aggravate an inflammatory response.

onetheless, defining the presence and role of fibrocytes in chronic

brotic lung regions and BAL fluid warrants future investigations

nto the contribution of fibrocytes in CF lung fibrosis and inflam-

ation. 

In summary, we found fibrocyte accumulation in the lungs of

atients with endstage CF lung disease. Our data show fibrocyte

resence in the BAL cells of children with CF. Importantly, fibro-

ytes isolated from CF lungs have dysregulated transcriptome and

athways associated with CFTR dysfunction and lung pathology.

urther studies are needed to investigate the mechanistic contri-

ution of fibrocytes to fibrotic lung remodeling in CF. 
l., Fibrocyte accumulation in the lungs of cystic fibrosis patients, 
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