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ABSTRACT 
 

Ashley M. Fuller: Triple-negative breast cancer microenvironments: Molecular and histologic 
portraits 

(Under the direction of Melissa A. Troester) 

  

Triple-negative breast cancer (TNBC), comprised predominantly of the basal-like 

(BBC) and claudin-low (CLBC) intrinsic subtypes, is a proliferative, invasive disease that 

accounts for 15-20% of breast cancer cases. Unlike with other breast cancer subtypes, 

TNBC treatment modalities are generally limited to surgery, radiation, and cytotoxic 

chemotherapy. Therefore, identification of molecular contributors to TNBC initiation and 

progression, including signals with relevance to the tumor microenvironment, is important for 

development of biologically targeted therapies.  

 It is well accepted that the tumor microenvironment, the non-cancerous cells and 

tissues in proximity to the frank cancer cells, plays a critical role in breast cancer initiation 

and progression. However, little is known about the evolution of stromal-epithelial 

communication during breast tumorigenesis, or how specific signaling mediators alter 

subtype-specific tumor behavior. To this end, this work leveraged a suite of model systems 

to better understand how specific components of TNBC microenvironments influence tumor 

phenotypes and stromal-epithelial interactions. Following a literature review in Chapter 1, 

Chapter 2 describes research that used three-dimensional culture models of a pre-invasive 

BBC cell line panel, together with novel imaging technology, to evaluate cancer cell-

fibroblast interactions during early stages of tumor initiation. Relative to wild-type cells, pre-

invasive BBC cells lacking the TP53 tumor suppressor gene exhibited accelerated and 

unique responses to fibroblast co-culture. In Chapter 3, the role of the immune 
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microenvironment in TNBC progression was evaluated using a novel animal model. Myeloid-

specific Glut1 knockout mice were used to demonstrate that alterations in myeloid cell 

metabolism reduced the inflammatory potential of mammary tissue macrophages (MTMs) 

and impeded CLBC progression. Chapter 4 leveraged observational studies of human tissue 

to develop a digital algorithm to identify histologically stained endothelial cells in cancer-

adjacent breast. This algorithm will be used in future studies to quantitatively characterize 

the vascular microenvironment both across breast cancer subtypes, and for TNBCs in 

particular. Finally, Chapter 5 integrates insights from all three investigations to identify future 

directions for studies of TNBC microenvironments. This work reveals previously 

uncharacterized relationships between TNBCs and their associated stromal cells, some of 

which may represent plausible therapeutic targets for this tumor subtype.  
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PREFACE 

Chapter 1 is a previously unpublished overview of breast cancer risk factors, 

molecular features, and microenvironmental constituents, particularly as they relate to triple-

negative breast cancers (TNBCs). All figures have been created for the express purpose of 

this chapter and have not previously appeared elsewhere.  

The study presented in Chapter 2 is a manuscript in preparation that explores how 

gene-microenvironment interactions influence epithelial phenotypes and gene expression 

patterns associated with TNBC carcinogenesis. As lead author, I conceptualized the study, 

designed experiments, and analyzed all data reported in this document. Optical coherence 

tomography was performed in collaboration with Lin Yang, PhD and Xiao Yu, PhD; related 

financial and materials support was provided by Amy Oldenburg, PhD. Microarrays were run 

by the staff of the Lineberger Comprehensive Cancer Center Genomics Core Facility. Jason 

Pirone, PhD assisted with deconvolution of co-culture gene expression data, and Melissa 

Troester, PhD provided additional intellectual input, as well as financial and materials 

support. Finally, Rupninder Sandhu, PhD, designed and performed additional microarray 

experiments that will appear in the final document submitted for publication. 

Chapter 3 discusses how alterations in macrophage glucose metabolism modulate 

mammary gland inflammation and TNBC progression in a murine model. It also identifies 

novel macrophage phenotypes that may be important in TNBC biology. This study is 

approaching re-submission and has been reformatted from its original version in accordance 

with university dissertation formatting requirements. Please note that the text presented 

herein will likely deviate from the final published form. Co-authors include Alyssa J. Cozzo, 
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Alex J. Freemerman, J. Ashley Ezzell, Joseph A. Galanko, Stephen D. Hursting, Melissa A. 

Troester, and Liza Makowski. 

Chapter 4 describes the development of a novel digital algorithm designed to 

quantitate CD31 immunohistochemical staining (vascular endothelial cells) in cancer-

adjacent, histologically benign human breast tissue. This algorithm will ultimately be used to 

investigate how patterns of endothelial cell marker distribution relate to breast cancer 

subtype, known breast cancer risk factors, and other histologic tissue features. Co-authors 

on this manuscript will include Linnea Olsson, Bentley R. Midkiff, Kirk K. McNaughton, J. 

Ashley Ezzell, Erin L. Kirk, and Melissa Troester.  

Chapter 5 is an integrative summary of the data presented in Chapters 2, 3, and 4. It 

also describes ongoing analyses and identifies future directions for studies of TNBC 

microenvironments. Finally, due to substantial redundancy among chapters, a single list of 

references can be found at the end of this dissertation. Please note that ref. 183 is an 

unpublished manuscript from L. Makowski’s group.
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CHAPTER 1 
 

INTRODUCTION TO THE NORMAL BREAST, BREAST CANCER, AND TISSUE 
MICROENVIRONMENTS 

 
 
 

1.1. Normal mammary gland development, anatomy, and histology: a précis 

  

The normal mammary gland is a complex, dynamic structure that undergoes 

numerous anatomic and functional changes throughout life [1]. Initial stages of mammary 

gland development occur during the pre-natal period, wherein ectodermal bud cells 

embedded within the mammary mesenchyme proliferate and invade into the mammary fat 

pad to form a small ductal epithelial tree [2]. Unlike most other organs, remaining stages of 

mammary gland development occur postnatally. During puberty, inductive hormonal and 

growth factor-derived signals stimulate extensive elongation and lateral branching of the 

nascent epithelial tree, and promote the differentiation of contractile myoepithelial cells [3]. 

This mature, adult breast tissue can undergo further differentiation during later life stages 

such as pregnancy and lactation, culminating in the formation of a milk-producing, lobulo-

alveolar compartment [1, 2]. Following the cessation of lactation, the process of involution 

returns the parous mammary gland to a pre-pregnancy-like morphology via the activation of 

highly regulated developmental and wound-healing pathways [4, 5]. 

 In adult women, the breast contains 15-25 secretory lobes that are embedded within 

stromal (connective) tissue and arranged radially around the nipple (Figure 1.1A). Each 

lobe is comprised of 20-40 glandular lobules (also known as terminal ductal lobular units 

[TDLUs]), which constitute the functional (i.e., milk-producing) acinar units of the mammary 
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gland (Figure 1.1A-B). Histologically, the mammary gland is composed of an outer layer of 

contractile myoepithelial cells and an inner layer of cuboidal to columnar luminal epithelium; 

this latter cell type can be further sub-divided into secretory lactocytes and non-secretory 

ductal cells [6, 7]. Importantly, the epithelial and stromal compartments of the breast are 

separated by a laminin-rich basement membrane (Figure 1.1C) [8]. 

 

 

1.2. Overview of breast cancer incidence and mortality 

 

Breast cancer predominantly arises from the luminal ductal epithelial cells of the 

mammary TDLU [8] and is the most common non-cutaneous malignancy among women in 

the United States (US). Breast cancer is also the second-leading cause of cancer-related 

mortality in this population, with an estimated 266,120 new cases and 40,920 deaths 

anticipated in 2018 [9]. According to 2010-2014 Surveillance, Epidemiology, and End 

Results Program (SEER) data, breast cancer in the US is most frequently diagnosed among 

women aged 55-64 (median age at diagnosis: 62 years; seer.cancer.gov), although the 

median age at diagnosis is lower for African American than Caucasian women (59 vs. 63 

years; www.cancer.org). Indeed, race is an important determinant of breast cancer risk and 

mortality. Among all breast cancer cases, breast cancer incidence from 2010-2014 was 

higher in Caucasian and African American women than in any other racial or ethnic group 

(128.7 and 125.5 cases/100,000 women, respectively; www.cancer.org). However, African 

American women have the highest breast cancer incidence rates prior to the age of 40, and 

are more likely to experience breast cancer-associated mortality irrespective of age 

(www.cancer.org).  

 

 

http://www.seer.cancer.gov/
http://www.cancer.org/
http://www.cancer.org/
http://www.cancer.org/
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1.3. Breast cancer subtypes 

 

Beginning in the early 2000s, a molecular taxonomy of “intrinsic” breast cancer 

subtypes (luminal A, luminal B, human epidermal growth factor [HER2]-enriched, basal-like 

[BBC], and claudin-low [CLBC]) was identified on the basis of tumor gene expression 

patterns. These subtypes were found to differ substantially with respect to tumor molecular 

features, risk factors, treatment responses, and patient outcomes [10-16]. A sixth intrinsic 

subtype, normal-like breast cancer, is now believed to reflect contamination of tumor RNA 

with that of surrounding normal breast tissue [17]. Surrogate immunohistochemical (IHC) 

markers, including the estrogen receptor (ER), progesterone receptor (PR), and HER2, are 

routinely used to identify breast cancer subtypes in clinical settings; however, it should be 

noted that IHC-based and intrinsic subtype designations do not completely converge [18]. 

Nevertheless, luminal A and luminal B breast cancers (herein referred to as “luminal” 

cancers unless otherwise specified) are generally ER+/PR+, whereas basal-like and claudin-

low tumors are typically negative for all three IHC-based biomarkers (ER-/PR-/HER2-; so-

called “triple-negative” breast cancers [TNBCs]). Interestingly, recent publications have 

reported that the utilization of additional IHC markers, including HER1, epidermal growth 

factor receptor (EGFR), and/or cytokeratin 5/6 (CK5/6), can facilitate diagnoses of BBC 

more specifically [19-23]. In fact, a five-marker IHC panel consisting of ER, PR, HER2, 

EGFR, and CK5/6 has been shown to predict BBC patient survival more accurately than the 

original triple-negative phenotype [20].  

The focus of this dissertation research is triple-negative breast cancer. As described 

below, TNBC is characterized by poor clinical outcomes relative to other breast cancer 

subtypes, and exhibits molecular features that preclude effective utilization of currently 

available biologically targeted therapies. A better understanding of TNBC biology at all 

stages of disease is critical for improving patient outcomes  
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1.4. Features of triple-negative breast cancers 

 

Triple-negative breast cancers exhibit unique risk factor profiles, molecular features, 

and clinical behaviors in comparison to other breast cancer subtypes. In this section, the 

clinical and molecular properties of human TNBCs (defined by the three-marker IHC profile), 

as well as those of BBCs more specifically, will be described in detail. Features of human 

CLBCs will also be presented in accordance with data availability; however, it should be 

noted that substantially less is known about CLBCs relative to the remaining intrinsic 

subtypes. 

 

1.4.1. Risk factors  

Age and race: Triple-negative breast cancers account for approximately 15-20% of 

all breast cancer cases in the general population, but are more prevalent among pre-

menopausal and African American women [19, 22]. Specifically, compared to luminal A 

cases, patients with BBC (defined as ER-/PR-/HER2-/HER1+, and/or CK5/6+) were 2.1 times 

more likely to be African American [19, 22], and 4.5 times more likely to be younger than 40 

years of age [22]. Moreover, prevalence estimates indicated that BBC was significantly more 

prevalent in pre- compared to post-menopausal African American women (39% and 14%, 

respectively), as well as non-African American women of any age (16%), even after 

adjustment for tumor stage at diagnosis [19]. Similarly, a study of a racially heterogeneous 

population found that, compared to women of any other racial or ethnic group, African 

American women were 3 times more likely to present with TNBCs irrespective of age [24].  

 Obesity status: The relationship between obesity and breast cancer is controversial, 

as positive, negative, and null associations have been reported in the literature [25]. 

However, accumulating evidence indicates that obesity is associated with increased risk of 

TNBC, particularly among young/pre-menopausal women. For example, a pooled analysis 
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of 35,568 cases from the Breast Cancer Association Consortium revealed that, among 

women <50 years of age, obese women (defined as having a body mass index [BMI] >30 

kg/m2) were 1.8 times more likely to present with triple-negative (defined as ER-/PR-/HER2-) 

compared to ER+/HER2- or PR+/HER2- tumors [26]. Similarly, data from the Seattle-Puget 

Sound SEER cancer registry indicated that obesity was associated with a 1.3-fold elevated 

risk of TNBC among women of all ages, and that risk of TNBC, but not non-TNBC, was 

further elevated among younger women aged 41-45 (odds ratio [OR]: 2.2; 95% confidence 

interval [CI]: 0.9-5.24) [27].  

In addition to positive associations between obesity and ER-/PR-/HER2- TNBC, 

relationships between obesity and BBC have also been described. For instance, compared 

to patients with luminal A tumors, BBC patients were 3.75-fold more likely to be highly obese 

(BMI >35 kg/m2) than normal weight (BMI 18.5-24.9 kg/m2) [28]. Additionally, in the Carolina 

Breast Cancer Study (CBCS), a population-based study that oversampled for younger (<50 

years of age) and African American women, an elevated waist-hip ratio (WHR) was strongly 

associated with BBC in both pre- and post-menopausal women [22]. Interestingly, BMI was 

not associated with BBC in this study [22], consistent with views that WHR is a superior 

metric of adiposity given that it better reflects important considerations such as adipose 

tissue distribution (e.g. central/abdominal vs. peripheral) [29, 30]. 

 Reproductive history: It is well established that early menarche, nulliparity, late age 

at first birth, and never having breastfed are associated with an increased risk of breast 

cancer. As such, recent studies have sought to establish whether these reproductive 

variables are also associated with increased TNBC risk. Increased duration of breastfeeding 

is the single reproductive factor most consistently associated with reduced risk of both 

TNBC and BBCs more specifically [22, 31, 32]. Interestingly, this association has been 

shown to be modified by age and race, as parous African American women between 20 and 

44 years of age who breastfed for at least 6 months had an 82% lower TNBC risk than 
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parous African American women who had never breastfed [32]. In addition, an inverse 

association between age at menarche and TNBC/BBC risk has been reported in a small 

number of studies [22, 33, 34]. However, both parity and younger age at first birth have 

been inconsistently associated with TNBC risk, with certain studies reporting positive 

associations [22, 33, 35, 36], and others failing to reach statistical significance [reviewed in 

31].  

 

1.4.2. Clinical presentation 

 Triple-negative breast cancers present as palpable tumors in the majority of patients, 

likely due to the reduced rates of mammographic screening in younger and African 

American women compared to older and Caucasian women, respectively [37]. These 

cancers also frequently present as high grade, high stage, and highly mitotic lesions; are 

poorly differentiated in approximately 90% of cases [19, 37]; and are characterized by 

geographic patterns of necrosis, strongly demarcated “pushing borders” of invasion, and 

conspicuous lymphocytic infiltrates [21]. 

 

1.4.3. Molecular features 

 Basal-like subtype: Basal-like breast cancers are more molecularly homogeneous 

than TNBCs classified according to the three-marker IHC panel (i.e., ER-/PR-/HER2- 

tumors), and were first described in the late 1980s using IHC data collected from benign and 

malignant breast tissue specimens [38, 39]. These tumors were designated “basal-like” due 

to their expression of cytoskeletal proteins associated with the basal (myoepithelial) layer of 

the normal mammary gland, including CK5/6, CK14, and vimentin [21, 23, 38-40]. At the 

genomic level, BBCs are also enriched for a “basal-like” gene cluster, consisting of growth 

factor receptors such as MET (cMET), EGFR, and KIT (cKIT); cytoskeletal elements such as 

CAV1 and CAV2 (caveolins 1 and 2) and CDH3 (p-cadherin); and the gene encoding the 
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small heat shock protein, αB-crystallin (CRYAB), among others [41]. However, it is important 

to note that BBCs do not originate from the myoepithelium despite their similarities to this 

cell type. Instead, elegant genetic studies in murine models have suggested that these 

tumors, or at least a subset thereof, are derived from mammary luminal epithelial 

progenitors [42]. 

In accordance with their highly mitotic behavior, BBCs exhibit genetic defects that 

accelerate cellular proliferation and undermine cell stress responses. Most notably, >80% of 

these tumors harbor mutations in TP53 (tumor protein 53; p53) [19, 43], a master regulator 

of genome stability. Importantly, compared to luminal breast cancers wherein missense 

TP53 mutations predominate in approximately 12-35% of cases, BBCs are substantially 

enriched for deleterious nonsense (truncation), frameshift, and splice-site mutations that 

severely impair p53 protein function [43, 44]. In fact, although p53-wild-type (WT) BBCs 

have been reported in the literature, an analysis of genetic signatures of inferred p53 

pathway activity in 506 breast tumors revealed that loss of p53 pathway function may be a 

feature of most, if not all, BBCs [43]. Future research should address the impact of specific 

TP53 mutation types on therapeutic responses and patient survival, particularly in 

association with tumor subtype and other prognostic clinicopathologic characteristics.  

In addition to exhibiting unique TP53 mutation profiles, BBCs are also strongly 

associated with germline mutations in the tumor suppressor gene BRCA1, a critical 

component of the DNA double-strand break (DSB) repair pathway. Indeed, Foulkes et al. 

demonstrated that tumor-specific expression of CK5/6 (i.e., a “basal-like” epithelial 

phenotype) was significantly associated with the presence of BRCA1 germline mutations 

[45], whereas Sorlie et al. found that 100% of tumors from BRCA1 mutation carriers fell 

within the basal-like intrinsic subtype [46]. Interestingly, with the recent development of 

experimental poly(ADP-ribose) polymerase (PARP) inhibitors, the association between 

germline BRCA1 mutations and BBCs now has important clinical implications, with the 
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combination of BRCA1 loss-of-function and PARP inhibition inducing synthetic lethality in 

cancer cells [47]. 

 Claudin-low subtype: First reported in 2007, CLBC is the most recently identified 

intrinsic breast cancer subtype. Early genomic studies of 13 human claudin-low tumors, 12 

of which were ER-, indicated that these lesions exhibited low expression levels of tight 

junction proteins such as CLDN3, CLDN4, and CLDN7 (hence, “claudin-low”), and high 

expression levels of lymphocyte and endothelial cell markers [48]. Further work has 

revealed both similarities and differences between claudin-low and basal-like tumors. For 

example, like BBCs, CLBCs are more likely to present as large (>2 cm), high-grade, 

undifferentiated lesions with circumscribed borders [49]. In contrast to basal-like tumors, 

however, CLBCs are characterized by a mesenchymal morphology and are genomically 

enriched for markers of cancer stem cells and the epithelial-mesenchymal transition [12, 50]. 

CLBCs are also more likely than BBCs to be ER+ or non-triple-negative [50, 51], indicating 

the potential for greater heterogeneity among claudin-low relative to basal-like tumors [51]. 

 

1.4.4. Prognosis and clinically available treatment modalities 

Due in part to the highly proliferative nature of TNBCs, these tumors exhibit more 

favorable responses to cytotoxic chemotherapy than ER+ and HER2+ cancers, particularly in 

the neoadjuvant (pre-operative) setting [52-54]. Indeed, the cytotoxic agents used in the 

treatment of TNBCs, such as fluorouracil, alkylating agents (e.g., cyclophosphamide), 

anthracyclines (e.g., doxorubicin; epirubicin), and taxanes (e.g., paclitaxel; docetaxel) non-

specifically target actively dividing cells; hence, it follows that highly mitotic TNBC cells 

would exhibit greater susceptibility to these drugs than more indolent (i.e., luminal) cancers. 

Accordingly, significantly higher rates of pathologic complete response (pCR; defined as a 

lack of histologic evidence of residual invasive cancer cells following neoadjuvant 

chemotherapy) have been observed in TNBC compared to non-TNBC patients [53, 55]. 
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Further, among cases achieving pCR, no survival differences have been reported in 

association with tumor subtype within the first ~5-6 years of follow-up [53, 56]. Interestingly, 

in one study of 5447 clinically annotated breast cancers, expression of a proliferation-related 

metagene in claudin-low tumors was significantly lower than in BBCs, but significantly higher 

than in luminal A tumors [51]. Thus, although this study did not detect significant differences 

in disease-free survival between CLBC and BBC patients within the first 10 years of follow-

up [51], more comprehensive evaluations of long-term CLBC patient survival is an important 

avenue of future research.  

Despite their relatively increased neoadjuvant chemosensitivity, TNBCs for which 

pCR is not achieved are paradoxically more likely than other breast cancer subtypes to 

locally recur and/or distantly metastasize – particularly to visceral organs and the central 

nervous system – within the first 3 to 5 years of patient follow-up [52, 53, 57, 58]. These 

observations illustrate the need to develop novel treatments that improve the progression-

free and overall survival of TNBC patients, particularly for those with residual disease (i.e., 

non-pathologically complete responders) following neoadjuvant therapy. 

 

 

1.5. The tumor microenvironment: Concepts, model systems, and constituents 

 

One possible explanation for the relatively increased rates of TNBC recurrence 

pertains to the concept of the “tumor microenvironment” or “tumor stroma,” the collection of 

non-cancerous cell and tissue types within (intratumoral microenvironment) and surrounding 

(extratumoral or cancer-adjacent microenvironment) a frank cancer. While the normal tissue 

microenvironment is indispensable for maintenance of tissue homeostasis and repression of 

tumorigenesis, evolving stromal-epithelial interactions in the context of cancer exert 

profound tumor-promoting effects [59]. In this section, experimental model systems used to 
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study stromal-epithelial interactions in breast cancer, as well as the advantages and 

disadvantages thereof, will be discussed. Specific constituents of the tumor 

microenvironment germane to this dissertation research, including fibroblasts, macrophages, 

and endothelial cells, will also be described as they relate to TNBCs. 

  

1.5.1. Model systems for studies of the tumor microenvironment 

 In vitro co-culture models: Cancer cell lines cultured in vitro on plastic dishes 

(“monocultures”) are perhaps the most ubiquitous models used to study genetic and 

molecular aberrations associated with tumor initiation and progression. Indeed, extensive 

work has been undertaken to comprehensively characterize the molecular features, 

including intrinsic subtypes, of over 50 breast cancer cell lines [60]. However, these models 

are only informative of cancer cell-intrinsic defects, and cannot be used to explore 

microenvironmental influences on cancer cell biology.  

In response to the limitations of cancer cell monocultures, two-dimensional (2D) co-

culture models have been developed to enable studies of stromal-epithelial interactions. 

These highly tractable model systems consist of two (or more) cell types grown either in 

direct physical contact (“direct” co-cultures; Figure 1.2A) or separated by a “transwell,” a 

porous physical barrier that enables cellular communication exclusively via soluble signaling 

mediators (Figure 1.2B). Although both types of 2D co-culture models have shown utility in 

gene expression studies [reviewed in 61], transwell cultures are particularly useful for 

evaluating the influence of the microenvironment on cancer cell phenotypes such as 

proliferation, migration, and invasion [62]. Importantly, however, 2D co-culture models 

exhibit limited physiological relevance, because: 1) rigid culture substrates, such as plastic 

and glass, exhibit substantially greater mechanical stiffness than even the stiffest living 

tissue [63]; and 2) the morphologic and organizational features of cells in 2D culture do not 

emulate in vivo conditions due to the loss of important contextual signals [64].  
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 To study stromal-epithelial interactions in a more tissue-relevant environment, three-

dimensional (3D) co-cultures can be used. Several variations of this model have been 

reported in the literature [reviewed in 62]; however, one of the most widely used variations is 

the “spheroid” or “organoid” culture, wherein breast epithelial cells suspended in a 3D 

collagen- and laminin-rich extracellular matrix (ECM) form polarized, multi-cellular structures 

that closely recapitulate the in vivo architecture of mammary gland secretory acini [65, 66] 

(Figure 1.2C-D). Over the last 3 decades, pioneering work has demonstrated that the ECM 

plays a critical role in maintaining tissue integrity by imparting both structural support and 

mechanosignaling cues to surrounding epithelia (for an excellent comprehensive review that 

provides a historical perspective on the utility of 3D cultures to studies of the tumor 

microenvironment, refer to ref. [67]). Thus, 3D co-cultures represent powerful tools with 

which to study normal stromal-epithelial communication patterns “in context”, and to 

understand how these interactions change in the setting of malignancy. However, one 

challenge associated with the use of 3D co-cultures is the limited number of techniques that 

can quantitatively assess alterations in organoid phenotypes. Development of novel 

analytical approaches, particularly in the realm of biomedical imaging, is an active area of 

current research [68-71] (see also, Chapter 2). 

In vivo murine models: Utilization of murine models facilitates a comparative biology 

approach to studies of the tumor microenvironment. Two of the most widely used types of 

murine models include orthotopic models, wherein murine cancer cells are orthotopically 

injected into syngeneic mice, and xenograft models, in which human cancer cells are 

heterotopically implanted into immunocompromised animals. However, these models 

possess certain limitations: Orthotopic tumors do not mimic many of the etiologic and/or 

molecular features of human tumors, whereas xenograft tumors do not develop in the 

context of an immunocompetent human microenvironment, precluding analyses of how 

stromal-epithelial interactions influence the course of human disease [72]. In contrast, 
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genetically engineered mouse models (GEMMs), wherein expression of a given gene can 

be spatially and/or temporally controlled, can more closely recapitulate specific aberrations 

found in human tumors. In fact, recent genomic expression analyses have identified GEMM 

“counterparts” to human breast cancer intrinsic subtypes [73]. For example, mammary 

tumors from three mouse lines, including the Tg (transgenic) C3(1)-Tag, TgWAP-Myc, and 

Trp53-/-
 (p53-null) lines, cluster with human BBCs [73], suggesting that these models may be 

particularly useful for studies of basal-like microenvironments. Interestingly, a single GEMM 

analogous to human CLBC was not identified in this study; instead, the gene expression 

patterns of unique tumors from multiple GEMMs converged to form a claudin-low expression 

class [73]. Nevertheless, two additional GEMMs that closely mimic the genomic expression 

patterns of human CLBC have been described, including: 1) orthotopic, syngeneic, 

transplantable tumors from a Trp53-/- mouse (T11 model) [73, 74]; and 2) transgenic 

mammary-specific Met-overexpressing mice harboring a conditional loss of Trp53, also in 

the mammary epithelium [75].  

Cancer-adjacent normal tissue: Studies of cancer-adjacent normal (CAN) breast 

tissue can reveal important associations between tumor biology and features of extra-

tumoral microenvironments as they relate to breast cancer subtypes. In particular, given that 

TNBCs are more likely than other subtypes to locally recur within the first 3 to 5 years of 

patient follow-up [52, 53, 57, 58], these studies may yield important insights into 

microenvironmental factors that contribute to subtype-specific differences in disease 

recurrence. Accordingly, recent work has shown that the genomic expression patterns of 

CAN breast tissue differ in association with the intrinsic subtype [76] or ER status [77] of the 

corresponding tumor. Studies of CAN tissue have also identified extra-tumoral gene 

signatures that predict mortality among ER+ cases [78], as well as in “whole tumor” datasets 

independent of subtype [79], or ER or HER2 status [80]. However, given that these studies 

have primarily focused on global CAN tissue gene expression patterns, future work should 
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examine associations between tumor clinicopathologic factors and specific components of 

the extra-tumoral microenvironment, particularly in the context of TNBCs (see also, Chapter 

4). 

 

1.5.2. Cellular constituents of TNBC microenvironments 

Fibroblasts: Fibroblasts are a major stromal cell component of many normal tissue 

types, including breast, and primarily function in the production and secretion of ECM, as 

well as the regulation of epithelial cell differentiation and polarity [81]. In the setting of 

cancer, however, numerous studies suggest that dysregulated fibroblasts (also known as 

cancer-associated fibroblasts [CAFs]) facilitate tumor progression by promoting ECM 

remodeling, inflammation, angiogenesis, and tumor cell proliferation [reviewed in 81]. 

Indeed, both high mammographic density (a radiologic metric of fibroglandular breast 

content) and a high histologic stroma-tumor ratio are negative prognostic indicators in breast 

cancer, particularly among TNBCs and ER- tumors, respectively [82-84]. 

Little is known about fibroblast-epithelial interactions as they relate to breast cancer 

subtypes. However, one study by Camp et al. [85] revealed that stromal-epithelial 

communication patterns are distinct in co-culture models of basal-like vs. luminal breast 

cancer. Specifically, fibroblast-luminal co-cultures upregulated genes involved in a number 

of cellular proliferation pathways, whereas fibroblast-BBC co-cultures upregulated genes 

associated with immune signaling and wound healing responses. Consistent with this gene 

expression data, basal-like, but not luminal, breast cancer cells also exhibited enhanced 

migratory and wound-healing capacities in response to fibroblast co-culture [85]. 

Interestingly, primary fibroblasts isolated from the interface zone of human TNBCs were also 

shown to induce the epithelial-mesenchymal transition (EMT) in a TNBC cell line [86]. 

However, as this study did not evaluate the effect of fibroblasts on luminal breast cancer 

cells phenotypes [86], it is unclear whether the observed induction of EMT in TNBC cells is a 
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subtype-specific phenomenon, or rather a general cellular response to interface-zone 

fibroblasts from triple-negative tumors. 

In addition to enhancing the invasive potential of TNBC cells, a growing body of work 

indicates that CAFs may also influence the therapeutic responses of this tumor subtype. For 

example, fibroblast-specific secretion of the pleiotropic signaling molecule hepatocyte 

growth factor (HGF) has been recently shown to mediate TNBC cell resistance to EGFR 

tyrosine kinase inhibitors; these data offer a possible explanation as to why EGFR-over-

expressing TNBCs fail to respond to drugs in this class [87]. Interactions between CAFs and 

stromal immune cells may also facilitate TNBC progression and impede therapeutic 

responses by fostering an immunosuppressive microenvironment. One study of CAF 

heterogeneity determined that a specific subset of CAFs (“CAF-S1,” defined as CD29Med 

FAPHi [fibroblast activation protein] FSP-1Low-Hi [fibroblast-specific protein-1] αSMAHi [alpha-

smooth muscle actin] PDGFRβMed-Hi [platelet-derived growth factor receptor beta] CAV1Low) 

were enriched in the microenvironment of human TNBCs relative to other tumor subtypes, 

and were associated with the stromal infiltration of immunosuppressive, regulatory FOXP3+ 

(forkhead box P3) T cells [88]. The CAF-S1 subpopulation also promoted the differentiation 

of FOXP3+ T cells in the tumor microenvironment, and enhanced their capacity to inhibit the 

proliferation of pro-inflammatory effector T cells [88]. Additionally, xenograft models in which 

primary human monocytes were co-transplanted with TNBC or luminal cell lines revealed 

that CAFs in triple-negative microenvironments produce CXCL16 (chemokine C-X-C motif 

ligand 16), in turn recruiting both additional CAFs and immunosuppressive myeloid cells 

[89]. Taken together, these studies suggest that CAFs may be a viable therapeutic target in 

triple-negative tumors, as well as a potential biomarker of therapeutic responses. 

Accordingly, targeting of CAFs with the anti-fibrotic agent Perfenidone inhibited CAF-

induced TNBC morphogenesis in 3D culture models, and synergistically blocked tumor 

growth and lung metastasis when administered in combination with doxorubicin [90]. 
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Macrophages: Macrophages are a highly heterogeneous class of myeloid-lineage 

cells that function in both developmental and immune response processes [91-94]. In the 

context of breast cancer, however, these cells have been implicated in numerous facets of 

tumor progression, including the induction of angiogenesis (see below) [95, 96]; 

immunosuppression and tumor immune evasion [97]; and local invasion and metastasis [98-

100]. Accordingly, it is unsurprising that tumor-associated macrophage (TAM) infiltration into 

the breast cancer microenvironment is associated with triple-negativity [101-103], and 

correlates with an increased risk of metastasis and reduced recurrence-free survival among 

these patients [101-104]. Elucidation of specific TAM-TNBC interactions that promote tumor 

progression warrants further study. 

In addition to the effects of TAM infiltration on tumor biology, reciprocal interactions 

between macrophages and breast cancer cells can also exert striking alterations in 

macrophage phenotypes. Historically, macrophages have been classified as either M1 (pro-

inflammatory, classically activated) or M2 (anti-inflammatory/immunosuppressive, 

alternatively activated) cells; however, this dichotomy is insufficient to account for the 

diversity and plasticity of macrophages in vivo [reviewed in 25]. In the setting of breast 

cancer, TAMs exhibit properties of both M1 and M2 cells, and molecularly distinct 

subpopulations have been identified in association with their locations relative to the frank 

tumor. For example, migratory, pro-metastatic “M1-like” TAMs are generally observed in 

perivascular regions, whereas sessile, pro-angiogenic, “M2-like” TAMs are more prevalent in 

hypoxic regions and at the tumor-stroma interface [105]. Interestingly, breast cancer 

subtypes exhibit differential abilities to “educate” macrophages toward TAM phenotypes. For 

example, exposure to conditioned culture medium from claudin-low, but not luminal, breast 

cancer cells facilitated the differentiation of peripheral blood mononuclear cells into 

immunosuppressive M2-like macrophages, in a mechanism dependent upon CLBC-

mediated secretion of macrophage colony-stimulating factor (M-CSF) [106]. Similarly, basal-
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like, but not luminal, breast cancer cells stimulated the differentiation of THP-1 monocytes 

into a “mixed” population of M1- and M2-like macrophages, with some cells displaying dual 

positivity for both M1 and M2 markers, and others exclusively expressing markers 

associated with a single subpopulation [107]. Further refinement of TAM phenotypes in 

TNBC microenvironments, as well as the prognostic and potential therapeutic implications 

thereof, is an important avenue for future research. 

Endothelial cells: The process of angiogenesis, or the formation of new blood 

vessels from existing vasculature, is a critical, rate-limiting step of tumor growth and 

metastasis. Establishment of a tumor vascular supply occurs in a discrete step known as the 

“angiogenic switch,” wherein the net balance of pro- and anti-angiogenic signaling mediators 

favors blood vessel development [108]. Recent reports have shown that high microvessel 

density (number of vessels per unit area) and microvessel proliferation (number of vessels 

containing Ki67+ endothelial cells) are associated with both BBCs [109, 110] and specific 

molecular features of basal-like tumors (e.g., CK5/6, p-cadherin, or EGFR protein 

expression). These data indicate that a specific subset of TNBC patients may have strong 

potential to benefit from anti-angiogenic therapies [109, 110].  

Examination of cancer cell-endothelial interactions is crucial for better understanding 

how the vasculature contributes to the growth, invasion, and metastasis of TNBCs. For 

example, Ingthorsson and colleagues [111] recently demonstrated that primary endothelial 

cells derived from reduction mammoplasty tissue stimulated the growth and 3D 

morphogenesis of both pre-invasive and malignant TNBC organoids. Two-dimensional co-

culture models were subsequently used to show that the endothelial-derived proliferative 

signals were soluble in nature; however, specific signaling mediators responsible for the 

observed phenotypes were not identified [111]. Using a similar model system, this same 

group also showed that reduction mammoplasty-derived endothelium could induce the 

epithelial-mesenchymal transition (EMT) in “stem-like” (CD44hi/CD24low) BBC cells, and that 
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this process could be partially reversed via inhibition of HGF signaling [112]. With respect to 

TNBC metastasis, Di Modica et al. [113] demonstrated that TNBC cells release exosomes 

containing miR-939, a microRNA molecule that inhibits translation of the endothelial cell 

adherens junction protein, vascular endothelial (VE)-cadherin. Notably, miR-939-mediated 

targeting of VE-cadherin compromised the integrity of endothelial cell-cell contacts, and 

facilitated TNBC cell trans-endothelial migration, a critical step in the metastatic cascade. 

CLBC cells have been further shown to secrete plasminogen activator inhibitor-1 (PAI-1), a 

mesenchymal marker of EMT that stimulates the production of chemokine (C-C motif) ligand 

5 (CCL5) by endothelial cells [114]. In turn, endothelial-derived CCL5 accelerates TNBC-

mediated PAI-1 secretion, and promotes CLBC cell migration, invasion, and metastasis 

through the formation of a positive feedback signaling loop [114]. Taken together, in light of 

the fact that currently available angiogenesis inhibitors do not confer a significant survival 

advantage to TNBC patients [115], this body of work suggests that the study of cancer cell-

endothelial communication patterns may be a powerful means by which to identify novel 

anti-angiogenic targets for TNBC.  

Little is known about the endothelium of TNBC-adjacent breast. Moreover, very little 

work has examined the vascular properties of normal (i.e., non-cancer-associated) 

mammary tissue. One study of an unspecified number of reduction mammoplasty tissue 

samples revealed that CD31+, VE-cadherin+, and CD34+ microvessels are prominent 

features of TDLUs [116]. In another study of reduction mammoplasty tissue from 9 pre-

menopausal women, Naccarato et al. [117] described different patterns of microvascular 

distribution and morphology in breast ducts vs. TDLUs: whereas ducts were surrounded by 

a relatively higher number of small, prototypical capillaries, TDLUs were encompassed by a 

relatively smaller number of large microvessels that were sinusoidal in shape. The functional 

significance of these findings in normal tissue, as well as whether similar features are also 

apparent in TNBC-adjacent breast, is currently unknown.  
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1.6. Benign and pre-malignant breast lesions: Role of microenvironment in 

progression to invasive disease 

  

Over the last several decades, a spectrum of benign and pre-malignant breast 

disorders with varying pre-cancerous potentials have been identified and characterized. By 

definition, these lesions are distinct from frank breast cancers, in that the former are 

confined to the mammary gland proper and do not breach the epithelial basement 

membrane. In this section, the features of benign and pre-malignant growths germane to 

this dissertation will be briefly discussed, with emphases on: 1) their associations with 

invasive breast cancer risk; and 2) mechanisms by which tissue microenvironments regulate 

the transition from pre-invasive to malignant disease. 

 

1.6.1. Clinical and histologic features and associated breast cancer risk 

Fibrocystic change: Formerly known as “fibrocystic disease,” fibrocystic change is a 

heterogeneous class of common, benign disorders that are most prevalent in pre-

menopausal women under the age of 50 [118]. These lesions may be proliferative (e.g., 

hyperplasia without atypia; intraductal papilloma) or non-proliferative (e.g., cysts) [6, 118], 

and are thereby associated with differential risks of invasive breast cancer. For example, two 

large cohort studies with median follow-up times of 15 and 17 years, respectively, 

demonstrated that women with non-proliferative findings were not at increased risk of breast 

cancer [119, 120]. In contrast, women presenting with hyperplasia without atypia had a 1.9-

fold increased breast cancer risk compared to women with non-proliferative lesions [120], 

and a 1.88-fold increased risk relative to the expected number of breast cancer cases on the 

basis of Iowa SEER registry data [119]. Moreover, given that invasive breast cancer can 

occur co-incidentally with a benign lesion (for example, fibrocystic changes may occur 
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secondary to a proximal malignancy), mammographic and histopathologic evaluation of 

benign disorders is critical for an exclusionary diagnosis [6]. 

 Atypical ductal hyperplasia: Atypical ductal hyperplasia (ADH) is a proliferative 

epithelial abnormality that is typically diagnosed as an incidental finding, accounting for only 

~4% of symptomatic, non-malignant biopsies [121]. This disorder is characterized by the 

filling and distention of mammary ducts by a homogenous, proliferative population of 

dysplastic epithelial cells [119, 121], and is considered a bona fide pre-malignant condition 

because it exhibits some, but not all, features of invasive breast cancer [122]. Beginning in 

the mid-1980s, several studies have demonstrated that ADH is associated with an increased 

risk of subsequent invasive breast cancer, with a cumulative breast cancer incidence of 

approximately 30% after 25 years of follow-up [119-125]. However, with the exception of 

young age [119, 122, 126, 127], specific, uncontested demographic factors that predispose 

ADH patients to malignant disease have not been identified.  

Ductal carcinoma in situ: Pure ductal carcinoma in situ (DCIS) (i.e., DCIS in the 

absence of coincident invasive breast cancer) accounts for 20-25% of all newly diagnosed 

breast cancer cases in the US, and the incidence in women under 50 years of age only 

continues to rise in association with screening [128]. Similar to ADH, DCIS lesions are 

characterized by a homogeneous-appearing population of proliferative malignant epithelial 

cells, with no evidence of invasion beyond the basement membrane [121]. Accordingly, 

there is currently no clear consensus on the specific histologic criteria that should be 

employed to distinguish between ADH and DCIS: some clinicians apply a 2-mm size cutoff 

(<2 mm and >2 mm indicating ADH and DCIS, respectively), whereas others enumerate the 

number of involved ducts apparent on biopsy sampling (involvement of <2 acinar spaces 

indicative of ADH) [6, 129]. Interestingly, molecular studies have revealed that both IHC-

based and intrinsic subtype definitions of invasive breast cancer can also be applied to 
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DCIS [130-134]. However, subtype frequencies may differ between DCIS and invasive 

cases [130-133]. 

DCIS is a known risk factor for invasive breast cancer; however, knowledge 

regarding the extent of this risk has shifted over time. For much of the 20th century, women 

diagnosed with DCIS were nearly universally treated with mastectomy [135]. However, given 

reports that lumpectomy and radiation were equally effective treatment strategies for 

invasive breast cancers, mastectomy rates for DCIS began to slowly decline beginning in 

~1980 [135]. According to current estimates, 25-50% of DCIS cases will recur as invasive 

cancers even in the absence of treatment (i.e., with biopsy alone), with latency periods of up 

to or greater than 40 years [136, 137]. However, clinically validated biomarkers and 

clinicopathologic features that predict DCIS progression to malignant disease remain elusive 

[138-140], indicating that the regulation of the invasive transition is an important area of 

future research (see below).  

 

1.6.2. Natural history and progression to invasive disease 

 The prevailing model of the pre-malignant to invasive breast cancer transition 

describes a stepwise, evolutionary continuum that was first conceptualized over 100 years 

ago [reviewed in 141]. First, initiating mutations within a luminal epithelial cell are believed to 

give rise to flat epithelial atypia, a disorder in which minimally proliferative, cytologically 

atypical luminal cells dilate the walls of the affected TDLU. The acquisition of growth-

promoting mutations, together with molecular alterations such as loss of heterozygosity 

(LOH) at hotspot tumor suppressor loci [141], is then believed to promote the development 

of ADH. In turn, a series of additional genetic and molecular changes (e.g., gene 

amplification [142]; further LOH events [143]) enables progression to DCIS, and potentially 

ultimately to invasive disease [141]. This clonal, linear model is supported by substantial 

evidence demonstrating that specific gene expression, histologic, and mutation patterns can 
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be detected in both pre-invasive and malignant breast tissue specimens from the same 

individual [144-148]. Several studies have similarly reported that transcriptional signatures 

unique to each stage of tumor progression are lacking, suggesting that the gene expression 

patterns required in the setting of malignancy are established at early stages of tumor 

development [139-141]. These observations, coupled with the inability to use molecular 

tumor data to identify DCIS lesions at risk of progression to malignant breast cancer, 

suggest that other factors, such as tissue microenvironments, are important regulators of the 

benign-to-invasive transition.  

No published reports have described microenvironmental features of flat epithelial 

atypia, and very little is known about those of ADH tissue. One study revealed that activated 

fibroblasts (defined as positive for both α-SMA and FSP-1) are present in the 

microenvironment of human ADH tissue (ADH-associated fibroblasts; AHFs), and possess 

an intermediate phenotype between that of normal- and cancer-associated fibroblasts [149]. 

These cells were also shown to enhance the proliferation of MCF-7 luminal breast cancer 

cells in transwell co-culture and tumor xenograft assays, in a mechanism dependent upon 

down-regulation of miR-200/c [149]. Whether AHFs can also promote growth of ADH 

epithelium and/or TNBC cells should be explored. Interestingly, an additional study 

demonstrated that HGF secretion was significantly up-regulated in co-culture models of 

basal-like ADH epithelium and fibroblasts, suggesting that HGF/cMET signaling is important 

in both pre-malignant [150] and invasive (see above) stages of BBC progression. 

In contrast, the role of the microenvironment in the regulation of the DCIS-to-invasive 

breast cancer transition has been more extensively evaluated. Broadly, recent studies have 

identified substantial genomic, phenotypic, and epigenetic changes between normal 

microenvironmental cells and their DCIS- and/or invasive cancer-associated counterparts, 

suggesting that these molecular alterations may promote progression to malignant disease 

[151-154]. Current research in this area has focused predominantly on fibroblasts and 
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myoepithelial cells, which have been shown to promote and inhibit the invasive transition, 

respectively. For example, Hu et al. used xenograft models to demonstrate that co-injection 

of a human DCIS cell line with either normal or cancer-associated fibroblasts promoted 

progression to invasive disease [155], potentially due to activation of cyclooxygenase-2 

(COX-2), a negative prognostic indicator in breast cancer [156]. Remarkably, the stimulatory 

effect of fibroblasts on DCIS xenograft invasion was abrogated by the additional injection of 

human myoepithelial cells [155]. Interestingly, the tumor-suppressive functions of this cell 

type have also been reported in other studies. For instance, normal myoepithelium 

constitutively expresses a number of proteinase inhibitors that both suppress cancer cell 

proliferation and prevent epithelial cell-mediated degradation of the basement membrane 

[152, 154, 157]. In fact, downregulation of these markers in DCIS-associated myoepithelium 

may promote the invasive transition by a variety of mechanisms, including: 1) activation of 

transforming growth factor beta (TGFβ) signaling; 2) reduced adhesion of myoepithelial cells 

to ECM proteins; and 3) increased secretion of matrix-degrading enzymes such as matrix 

metalloproteinases (MMPs) [154, 158, 159]. In sum, this body of work indicates that 

molecular studies of myoepithelial cells and/or fibroblasts in DCIS tissue samples may aid in 

the identification of patients at risk of progression from benign to invasive breast cancer. 

Future efforts to identify specific microenvironmental signaling mediators that may be 

relevant to this transition are paramount (see also, Chapter 2. 

 

 

1.7. Objectives and significance of this dissertation research 

 

 The diverse components of the breast cancer microenvironment are critical 

mediators of tumor initiation and progression. However, the molecular and histologic 

characteristics of tumor microenvironments as they relate to breast cancer subtypes remain 
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understudied. Therefore, the overarching goal of this research was to establish a foundation 

for understanding how tissue microenvironments vary in association with the subtype of the 

corresponding tumor, with a focus on clinically intractable TNBCs. In vitro, murine, and 

human tissue models were leveraged to profile diverse stromal-epithelial interactions in both 

pre-invasive and malignant TNBCs. Utilization of different models highlights the strengths of 

each system for studying particular endpoints relevant to TNBC microenvironments. 

Moreover, studying a variety of stromal cell types (fibroblasts, macrophages, and endothelial 

cells) underscores the complexity of the breast microenvironment. 

The primary objective of this work was to identify specific, microenvironmental 

signaling mediators with potential to influence TNBC initiation and progression (Chapters 2 

[fibroblasts] and 3 [macrophages]). In addition, to directly address the paucity of work 

relating to the vascular features of extra-tumoral microenvironments, Chapter 4 describes a 

novel digital algorithm that can be used to link vascular content and patterns of endothelial 

cell marker distribution in cancer-adjacent, histologically benign human breast tissue to 

epidemiologic data such as tumor subtype and known breast cancer risk factors. This work 

is significant because it reveals novel stromal-epithelial interactions in TNBCs. Molecular 

and histologic features unique to TNBC microenvironments may ultimately be leveraged as 

therapeutic targets for this tumor subtype. 
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1.8. Figures 

Figure 1.1. Normal adult mammary gland anatomy and histology 

  
 
 

A) Schematic representation of mammary gland gross anatomy in adult women. The 

mammary gland consists of secretory lobes that are connected to the nipple (grey arrow) via 

lactiferous ducts (black arrow). Lobes are further composed of 20-40 lobules (TDLUs), in 

which the majority of breast cancers develop. B) Human TDLU stained with hematoxylin and 

eosin (H&E). Star indicates connective tissue stromal component. Scale bar = 400 μm. C) 

Cross-section of human mammary epithelium stained with H&E. White arrow indicates 

luminal epithelial cells; black arrow indicates myoepithelial cells. Star indicates location of 

lumen. Scale bar = 100 μm. Not pictured: basement membrane. 
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Figure 1.2. In vitro culture models for studies of stromal-epithelial interactions in 
breast 

 

A) Schematic of “direct” co-culture model wherein two cell types are grown together in the 

same tissue culture well. B) Schematic of “transwell” co-culture model. Although the two cell 

types are not in direct physical contact, they are separated by a porous physical barrier and 

can still communicate via soluble signaling mediators. C) Schematic of “organoid” culture. 

Epithelial cells are suspended in a three-dimensional matrix and differentiate into multi-

cellular structures that recapitulate in vivo properties of the mammary gland. D) Cross-

sections of mammary epithelial organoids. Organoids begin as small, multi-cellular 

structures without a visible lumen (left). As they mature, organoids increase in size and 

begin to undergo apoptosis-mediated cavitation (lumen formation; middle). Cell proliferation 

will cease once the organoid reaches its mature, final size (right). Additionally, all cells in the 

center of the organoid will apoptose (contained within the black line), leaving only a single 

outer layer of epithelial cells. Scale bar = 200 μm.
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CHAPTER 2 
 

p53-DEPENDENT STROMAL-EPITHELIAL INTERACTIONS INDUCE MORPHOLOGIC 
CHANGES IN PRE-MALIGNANT BREAST THAT CORRELATE WITH UNIQUE 

PATTERNS OF GENE EXPRESSION 
 

 
 
2.1. Overview 

 

Basal-like and luminal breast cancers exhibit subtype-specific transcriptional and 

phenotypic responses to stroma, but little is known about how stromal-epithelial interactions 

evolve during carcinogenesis. The vast majority of basal-like breast cancers (BBCs) also 

harbor loss-of-function mutations in the tumor suppressor gene, TP53 (p53), but the manner 

in which p53 deficiency per se alters stromal-epithelial interactions in BBC remains 

unexplored. To address these knowledge gaps, we leveraged the MCF10 progression 

series of breast cell lines to engineer a longitudinal, tissue-contextualized model of p53-

deficient, pre-malignant breast. An optical coherence tomography-based imaging platform, 

together with gene expression microarray data, identified novel p53-dependent 

morphogenetic responses to stroma that correlated with unique transcriptional changes. 

p53-dependent stromal-epithelial interactions in benign and pre-malignant BBC may hold 

promise as biomarkers of invasive cancer risk and/or targets for BBC prevention. 
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2.2. Introduction 

  

Breast carcinogenesis occurs in a step-wise fashion, with flat epithelial atypia (FEA), 

atypical ductal hyperplasia (ADH), and ductal carcinoma in situ (DCIS) recognized as bona 

fide, non-obligate precursors to invasive and metastatic disease [141, 160]. However, 

decades of work have failed to identify tumor-intrinsic features that robustly predict 

progression to invasive cancer, suggesting a strong role for the tumor microenvironment in 

mediating the benign to malignant transition [134, 138-142, 160]. However, due to: 1) the 

cross-sectional nature of previous epidemiologic studies of stromal tissue; 2) the reliance of 

these studies on samples from patients with concurrent DCIS and invasive breast cancer; 

and 3) the extensive genomic similarities between in situ and invasive microenvironments 

[151, 152, 155, 161], little is known about the evolution of stromal-epithelial interactions 

during carcinogenesis, particularly during early stages of disease. 

Breast cancer subtypes exhibit distinct interactions with their microenvironments, 

with stroma inducing more extensive gene expression changes in basal-like (BBC) relative 

to luminal breast cancers [85]. BBCs also exhibit unique tumor-intrinsic features, including 

nearly universal loss-of-function (nonsense and frameshift) mutations in the tumor 

suppressor gene, TP53 (p53) [19, 43, 162]. As many previous studies of BBC 

microenvironments have utilized a mix of p53-wild-type and -mutant/deficient cell lines [85, 

150], characterizing stromal-epithelial interactions in the context of this important genetic 

defect is crucial for better understanding the biology of this tumor subtype. 

 We hypothesized that epithelial p53 status modifies stromal-epithelial interactions 

during BBC carcinogenesis. To test this hypothesis, we utilized RNA interference to 

engineer p53-deficient MCF10 series cell lines. The MCF10 progression series is an 

isogenic collection of cell lines that recapitulates features of pre-invasive, basal-like breast 

lesions, including benign fibrocystic change (MCF10A), ADH (MCF10AT1), and DCIS 
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(MCF10DCIS.com, herein referred to as MCF10DCIS), in xenograft models. These isogenic 

lines were utilized in three-dimensional (3D) co-culture assays, and evaluated with both 

gene expression microarrays and an innovative quantitative imaging platform. The resulting 

longitudinal, tissue-contextualized models demonstrate that p53-dependent stromal-

epithelial interactions during BBC carcinogenesis evoke differential morphogenetic 

phenotypes in pre-malignant breast cells that correlate with unique transcriptional 

responses. 

 

 

2.3. Materials and methods 

 

2.3.1. Cell lines  

 The isogenic MCF10 progression series of pre-malignant breast cell lines was 

obtained from the Barbara Ann Karmanos Cancer Institute (Detroit, MI). Cells were 

maintained in Dulbecco’s modified Eagle’s medium/F12 nutrient mix (DMEM/F12, Gibco, 

Life Technologies, Carlsbad, CA), supplemented with 5% horse serum (Gibco), 20 ng/mL 

epidermal growth factor (Invitrogen, Life Technologies), 0.5 μg/mL hydrocortisone (Sigma-

Aldrich, St. Louis, MO), 10 μg/mL insulin (Gibco), and 0.1 μg/mL cholera toxin (Millipore 

Sigma, Burlington MA). Similar to previous studies, we also utilized an hTERT-immortalized 

reduction mammoplasty fibroblast (RMF) cell line, a kind gift from Charlotte Kuperwasser, 

PhD (Tufts University Medical Center, Boston, MA), to circumvent the technical challenges 

(e.g., cell senescence) and substantial genomic heterogeneity associated with the use of 

primary human fibroblasts [85, 150]. RMFs were maintained in RPMI1640 medium 

supplemented with 10% FBS prior to use in 3D cultures (see below). All cells were grown in 

a humidified incubator at 37°C and 5% CO2, and were propagated for <6 months (breast 

cells) or <1 month (RMFs) prior to use in experiments.  
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2.3.2. Endogenous TP53 sequencing and generation of p53-deficient MCF10 

cell line series 

The endogenous TP53 coding sequence in parent MCF10A, MCF10AT1, and 

MCF10DCIS lines was sequenced prior to generation of p53-deficient and control lines. 

RNA was reverse-transcribed (RT2 Reverse Transcription Kit, QIAGEN, Valencia, CA), and 

the resulting cDNA was used to PCR-amplify (Phusion Polymerase, New England BioLabs, 

Ipswich, MA) the TP53 coding sequence with primers specific to canonical human TP53 (F: 

5’-ATGGAGGAGCCGCAGTCAGATC-3’; R: 5’-TCAGTCTGAGTCAGGCCCTTCTG-3’; 

Eurofins Genomics, Louisville, KY). Samples were electrophoresed on and excised from a 

0.8% agarose gel (QIAquick Gel Extraction Kit, QIAGEN), and an A-tailing reaction was 

performed on the purified blunt-ended products (Taq DNA polymerase with ThermoPol 

Buffer, New England Biolabs). The resulting DNA was ligated into the pGEM-T Easy TA 

cloning vector and transformed into JM109 competent cells (Promega, Madison, WI) 

according to the manufacturer’s instructions. Following blue-white colony selection, plasmid 

DNA from 4-5 colonies per cell line was purified (QIAprep Plasmid Miniprep Kit, QIAGEN) 

and sequenced by GeneWiz using SP7 and U6 primers. Sequences were analyzed with 

ApE software. 

shRNA plasmids used to construct the p53-deficient MCF10 cell line series were 

generated by Masutomi and colleagues [163] and purchased from Addgene (p53 knock-

down [-sh:p53] lines: pMKO.1-puro-p53 shRNA 2 [Addgene #10672]; GFP knock-down [-

sh:GFP] control lines: pMKO.1-puro-GFP shRNA [Addgene #10675]). Plasmids were 

transfected into the Phoenix-AMPHO packaging cell line (ATCC, Manassas, VA) using 

Lipofectamine LTX (Invitrogen, Carlsbad, CA) according to the manufacturers’ instructions, 

and the virus-containing supernatants were harvested and directly applied to each of the 3 

parent lines in the MCF10 series. Stable cell populations were established by selection in 1 

μg/mL puromycin for 14 days.  



 

 30 

2.3.3. Calculation of population doubling time 

Cells were plated at a density of 1 x 105 cells per 60-mm dish and were harvested 

and enumerated every 24 hours for 4 days. Log-phase cell growth was with the regression 

equation, ln(At) = ln(A0) + kt, wherein “At” represents the number of cells present at time “t”; 

“A0” represents the initial number of cells; and “k” represents the first-order rate constant of 

cell growth with units of time-1 [150]. For each cell line, k was computed in each of 3 

independent experiments, and population doubling time (PDT) was calculated as follows: 

PDT = 
ln(2)

k
. 

 

 2.3.4. 2D culture RNA isolation and quantitative PCR (qRT-PCR) 

 Total RNA was extracted (RNeasy Mini kit, QIAGEN) and reverse-transcribed (RT2 

Reverse Transcription Kit, QIAGEN) according to the manufacturers’ instructions. Gene 

expression was quantitated with exon-spanning TaqMan Gene Expression Assays (Applied 

Biosystems, Foster City, CA) using an ABI 7900HT Fast real-time PCR machine (Invitrogen) 

using the SsoAdvanced Universal Probes Supermix (Bio-Rad, Hercules, CA). Normalization 

to GAPDH was performed using the ΔΔCt method.  

 

2.3.5. 3D culture conditions 

 Cells were suspended in a biologically derived matrix comprised of 50% phenol red-

free Matrigel (#356237; Corning, Corning, NY) and 50% rat-tail collagen I (#354236; 

Corning) diluted to a final concentration of 1 mg/mL as previously described [68, 71, 150, 

164]. Suspended cells were then seeded into tissue culture plates pre-coated with the same 

matrix, and growth medium was dispensed to the apical side of each culture after 30-60 

minutes. Co-cultures were maintained in MCF10 series growth medium (DMEM/F12), as we 

have previously demonstrated that RMF doubling times in this medium are similar to those 
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observed in RPMI1640 [85, 150]. RMF mono-cultures maintained in DMEM/F12 were used 

as normalization controls for gene expression microarray analyses (see below). 

Corresponding mono- and co-cultures were constructed with the same total starting cell 

number (rather than the same starting number of breast cells) to reduce the potential for 

nutrient deprivation in co-cultures (Table 2.1). Cultures were refreshed every 2-3 days and 

were maintained for 14 days, as both MCF10A and MCF10DCIS organoids cease log-phase 

growth by this time point [68]. 

 

2.3.6. Optical coherence tomography (OCT)-based morphology assay  

 Organoid morphology was quantitated using optical coherence tomography (OCT), a 

method of “optical histology” sensitive to changes in signaling mediator activity, toxicant 

exposure, and cell-cell and cell-matrix interactions [68, 69, 71, 150]. We particularly focused 

on organoid “asphericity,” a unitless morphologic metric defined as the ratio of the volume of 

a perfect sphere with the same surface area as a given organoid to the volume of the 

organoid; a value of 1 is indicative of a perfectly spherical structure [68]. This metric has 

been described to reflect cell invasive potential (i.e., local invasion) [68], and the asphericity 

of MCF10 series control organoids increases with progression to malignancy (Figure 2.1A). 

The OCT system used in the present study has been described in detail previously, 

and consists of a titanium-sapphire laser with a central wavelength and bandwidth of 800 

nm and 120 nm, respectively [68]. Spectral images (200 frames per sample) were collected 

using a custom spectrometer with a Dalsa Piranha line scan CCD camera operated at 2-4 

kHz. As described in previous studies, we used custom MATLAB scripts to quantitate 

organoid asphericity [68, 150]. Briefly, individual organoids were manually identified within 

each image stack, and an intensity threshold was selected for each region of interest to 

distinguish the included organoid from the surrounding matrix (background). Computation of 

organoid morphology was then performed in an automated fashion. To avoid selection bias, 
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organoids that 1) did not overlap with adjacent structures; 2) were not in close proximity to 

the edge of an image frame or the apical surface of the culture; and 3) could be adequately 

distinguished from background were analyzed. For each independent experiment, all 

cultures were grown, imaged, and analyzed simultaneously. An average of ~30-45 

organoids across 2-3 independent experiments was analyzed for each culture condition, and 

all 3D organoid renderings shown in this document are representative. Organoids generated 

for OCT imaging were not utilized in microarray experiments (see below) to circumvent the 

possible transient effects of imaging on gene expression. 

 

2.3.7. 3D culture RNA isolation 

Cultures were rinsed with cold PBS and technical replicates (2 cultures for each of 2 

independent experiments) were transferred into a single tube containing 800 μL of Cell 

Recovery Solution (#354253; Corning) on ice. Each well was rinsed with an additional 1.0 

mL of Cell Recovery Solution to ensure complete transfer of the sample. Phenol-chloroform 

RNA extraction was then performed using QIAzol lysis reagent (QIAGEN) according to the 

manufacturer’s instructions, with modifications: following centrifugal separation of the 

organic and aqueous phases, the aqueous phase was mixed with 100% ethanol at a ratio of 

1:1 and applied to a QIAGEN RNeasy column according to the manufacturer’s instructions. 

RNA concentrations were determined using a NanoDrop 2000 Spectrophotometer (Thermo 

Fisher Scientific, Waltham, MA). Samples were further purified with the RNA Clean and 

Concentrator Kit (Zymo Research, Irvine, CA) as needed. 

 

 

2.3.8. Whole genome microarrays 

RNA from 3D cultures was isolated and quantified as described above, and sample 

quality was determined using the Agilent Tape Station (Santa Clara, CA). All samples had 
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RNA integrity numbers of >7. RNA samples were labeled and amplified using the Agilent 

Low Input Two-Color, QuickAmp Labeling kit (#5190-2306) according to the manufacturer’s 

instructions. Cy-5-labeled cDNAs were generated from all experimental samples, and 

reference RNA (Stratagene Universal Human Reference spiked 1:1000 with MCF-7 RNA 

and 1:1000 ME16C RNA to increase expression of breast cancer genes) was labeled with 

Cy-3. All samples were run on Agilent human 4x44K v2 whole genome microarrays 

(#G4845A). For RMF-only samples, RNA from 4 wells (2 wells from each of 2 independent 

experiments) was pooled, concentrated, and applied to 4 microarrays due to low sample 

concentrations.  

 

2.3.9. Microarray data normalization and analysis  

Microarray data were Lowess-normalized and probes with >80% good data (signal 

>10 dpi in both channels) were selected for further analysis. During data pre-processing, we: 

1) eliminated probes without corresponding ENTREZ Gene IDs; 2) collapsed duplicate 

probes corresponding to the same ENTREZ Gene ID by averaging; and 3) imputed missing 

data using the k-nearest neighbors’ imputation with k = 10. Unless otherwise specified, we 

also excluded genes that did not have at least a two-fold deviation from the mean 

expression in at least one sample. For mono-culture analysis, a pre-processed dataset 

consisting only of epithelial mono-culture samples was constructed; RMF mono-cultures 

were excluded from this dataset because they were only utilized for co-culture data 

normalization (see below). Mono-culture gene expression analysis was conducted using 

significance analysis of microarrays (SAM) procedures as indicated in the text.  

For co-culture data, we first used the method of Buess et al. [165] to normalize co-

cultures to the corresponding mono-cultures grown under identical conditions [85, 150]. This 

expression deconvolution approach estimates the percentage of cancer cells and fibroblasts 

in each co-culture, normalizes the resulting data for additive effects in the mixed-
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composition co-culture sample, and calculates a coefficient of interaction (“I”) for each gene 

by determining the ratio of observed to expected co-culture gene expression. We used this 

approach to generate an I-matrix consisting of interaction coefficients for each gene in all 

co-cultures, which can be analyzed in an identical manner to “conventional” (i.e., non-co-

culture-normalized) microarray data. Estimation of the proportion of breast epithelial cells 

revealed that breast epithelial cells comprised >90% of cells in each co-culture (data not 

shown), indicating that RMF contributions to signaling were ostensibly null at sample 

harvest. We confirmed this result by correlating co-culture gene expression data with that of 

the corresponding breast epithelial monoculture (data not shown). Therefore, co-culture 

gene expression data were analyzed in a manner analogous to that of mono-culture data: A 

pre-processed dataset was created containing only gene expression data from co-culture 

samples. The expression of each gene in replicate knock-down co-culture samples was 

normalized to the average expression of that gene across the corresponding control co-

culture samples, and the resulting dataset was median centered and analyzed via SAM as 

indicated in the text. Gene lists were functionally annotated with DAVID Bioinformatics 

Resources, version 6.8 (https://david.ncifcrf.gov).  

 

2.3.10. Statistics 

All statistical analyses were performed with GraphPad Prism version 6.0 (GraphPad 

Inc., La Jolla, CA). Data were analyzed using the two-tailed unpaired student’s t-test or two-

way ANOVA with Tukey’s multiple comparison test as appropriate. Error bars indicate the 

mean + standard error of the mean (SEM), and p<0.05 was considered statistically 

significant. 

 

 

 

https://david.ncifcrf.gov/
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2.4. Results 

  

2.4.1. Phenotypic characterization of p53-deficient MCF10 series 

To study the effects of p53 deficiency in pre-malignant BBC cells, a p53-targeting 

shRNA construct (herein referred to as, “-sh:p53”) was stably expressed in MCF10A, 

MCF10AT1, and MCF10DCIS cells; the 3 parent lines were confirmed by our laboratory to 

express wild-type TP53 (data not shown). Stable lines expressing a GFP-targeting shRNA 

construct (“-sh:GFP”) were also generated as negative controls. qRT-PCR analysis 

indicated that a >80% reduction in p53 expression was achieved for each knock-down cell 

line in our panel (Figure 2.1B; p<0.0001 sh:p53 vs. sh:GFP for each isogenic cell line pair). 

Additionally, growth curve analyses of cells grown on plastic revealed that population 

doubling times did not significantly differ between the corresponding -sh:GFP and -sh:p53 

isogenic pairs (e.g., MCF10A-sh:GFP vs. MCF10A-sh:p53; data not shown). Moreover, -

sh:p53, but not –sh:GFP, cells exhibited the ability to survive and grow in the absence of 

serum (data not shown), consistent with expected results. 

  

2.4.2. Contextual responses of pre-malignant BBC cells to p53 deficiency  

We employed 3D morphogenesis assays to track the evolution of epithelial 

morphogenesis with pre-invasive BBC progression and in response to epithelial p53 

deficiency. Epithelial cells grown in a 1:1 mixture of Matrigel and collagen I differentiate into 

3D, multicellular organoids that recapitulate the in vivo structure of mammary gland acini, 

enabling studies of both physiologic and pathologic processes in a tissue-relevant context 

[65, 150]. Organoid morphogenesis, which requires coordination of cell proliferation, 

apoptosis, and migration [166], was quantitated with OCT imaging. To characterize the 

morphogenetic responses of pre-invasive BBC cells to p53 deficiency, OCT-based 

quantitation of asphericity was performed on mono-cultures after 2 weeks of culture (Figure 
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2.2A-C). We observed that benign MCF10A organoids exhibited significantly increased 

asphericity in response to p53 expression deficits (p = 0.0023), but that the morphologic 

characteristics of MCF10AT1 and MCF10DCIS organoids were independent of p53 status.  

We next determined whether the morphologic responses (or lack thereof) of each 

cell line to p53-knock-down correlated with unique patterns of gene expression. First, a 2-

class SAM analysis of the top ~10% most variable genes across mono-culture samples (all 

3 -sh:p53 samples vs. all 3 -sh:GFP controls) revealed that p53 deficiency did not elicit a 

common transcriptional response; in fact, gene expression patterns across the 6 cell lines 

were highly variable (data not shown). In light of this result, we next sought to understand 

how transcriptional responses to p53 deficiency varied across cell lines. The expression of 

each gene in replicate -sh:p53 mono-culture samples was normalized to the average 

expression of that gene across the corresponding -sh:GFP control samples, and a multi-

class SAM analysis on the resulting data set identified 47 genes that were significantly 

differentially regulated among the three p53-knock-down cell lines (FDR = 10.02%).  

Previous work in our laboratory has demonstrated that stromal cells induce broad 

transcriptional changes in cancer cells [85, 150]. Therefore, we considered that cell-line 

specific responses to p53 deficiency may also depend upon microenvironmental context. 

Each line in the MCF10 series was co-cultured with fibroblasts (RMFs) at a ratio of 1:1, and 

microarray analyses were performed after 2 weeks. To facilitate comparisons with mono-

cultures, each gene in replicate -sh:p53 co-culture samples was normalized to the average 

expression of that gene across the corresponding -sh:GFP co-culture controls. A multi-class 

SAM on the resulting normalized data set identified 69 genes that were significantly 

differentially regulated among p53-deficient co-cultures (FDR = 9.50%). The 69 genes from 

this list, as well as the 47 genes differentially expressed among p53-knock-down 

monocultures, are presented in a single heat map (Figure 2.3). This expression map shows 

that transcriptional responses to p53 deficiency are contextual, differing both by cell line 
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(stage of disease) and according to the presence or absence of paracrine signals from 

stroma.  

One group of genes in which we were particularly interested was up-regulated in 

MCF10A-sh:p53 mono-cultures relative to the remaining culture conditions (grey bar in 

Figure 2.3). These genes are nearly uniformly down-regulated with progression both in the 

presence and absence of stroma; hence, their dysregulation may have potent effects on 

charting the natural history of a p53-deficient BBC. In particular, we noted that ATF7IP, a 

binding partner of the transcriptional repressor MBD1, was present in this cluster, potentially 

indicating that a more transcriptionally primed or active state is induced with progression 

and in response to fibroblasts.  

A second gene cluster of interest was that for which expression was generally 

highest in MCF10DCIS-sh:p53 co-cultures compared to the remaining culture conditions 

(black bar in Figure 2.3). In the context of p53 deficiency, these genes may promote the 

pre-malignant to invasive BBC transition [151]. Three chaperone or DNA repair genes were 

present in this cluster (DNAJ4B, C1GALT1C1, and IPPK), suggesting that a general stress 

response may be induced in p53-deficient MCF10DCIS co-cultures. Up-regulation of IPPK 

may also confer a survival advantage in these cells [167]. In addition, two genes in this 

cluster, including MMP23 and DOCK1, have been previously implicated as poor prognostic 

markers in different cancers: MMP23 expression in melanoma is associated with deficits in 

anti-tumor immune function and poor responses to immunotherapies [168], whereas high 

DOCK1 expression correlates with poor survival in BBC and mediates HER2+ breast cancer 

metastatic progression [169]. Finally, we identified the pseudogene CRYBB2PS1 

immediately outside this cluster. This pseudogene is homologous to the protein-coding gene 

CRYBB2, the latter of which is linked to race-associated disparities in breast cancer 

outcomes [170-172]. This gene was strongly down-regulated in MCF10A-sh:p53 cells 
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relative to nearly all other culture conditions, but was less robustly upregulated in 

MCF10DCIS-sh:p53 cells in response to stroma.  

 

2.4.3. p53 deficiency accelerates morphologic responses of pre-invasive BBC 

cells to fibroblast co-culture 

 Having established that the genomic responses of benign breast cells to p53 

deficiency change according to the presence of microenvironmental signals, we next 

explored whether stromal context also elicits phenotypic changes in cells. OCT-based 

asphericity analyses were performed on co-cultures after 2 weeks of culture. Asphericity of 

acini in co-culture was compared to that of organoids in the corresponding epithelial mono-

culture. Organoid asphericity in response to co-culture is presented in Figure 2.4. The 

morphologies of both p53-deficient and -sufficient MCF10DCIS organoids were independent 

of stroma-derived signals (Figure 2.4, right), but fibroblasts did exert morphologic effects on 

acini at earlier stages of pre-malignancy. Among the control cell lines, fibroblasts 

significantly increased the asphericity of MCF10AT1-sh:GFP organoids (p = 0.0144 vs. 

MCF10AT1-sh:GFP mono-culture; Figure 2.4, center). In p53 deficient cells, in contrast, 

fibroblast-induced increases in organoid asphericity were observed in both MCF10A-sh:p53 

(p = 0.0070 vs. MCF10A-sh:p53 mono-culture; Figure 2.4, left) and MCF10AT1-sh:p53 

(p<0.0001 vs. MCF10AT1-sh:p53 mono-culture; Figure 2.4, center) cultures. These data 

indicate that stromal fibroblasts alter the morphologic features of both p53-sufficient and -

deficient breast epithelial cells at early stages of pre-malignancy, but that morphogenetic 

changes are accelerated in the setting of p53 deficiency.  

 

 2.4.4. p53-dependent stromal-epithelial interactions are cell line-specific  

 Given that the timing of morphologic responses to co-culture was dependent upon 

epithelial p53 status, we sought to further characterize p53-dependent stromal-epithelial 
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interactions across the three cell lines. Each gene in replicate -sh:p53 mono-culture samples 

was normalized to the average expression of that gene across the corresponding mono-

culture controls, and each gene in replicate -sh:p53 co-culture samples was normalized to 

the average expression of that gene across the corresponding co-culture controls. A 2-class 

SAM on the resulting normalized dataset (normalized knock-down mono-cultures vs. 

normalized knock-down co-cultures) identified only 7 genes that were significantly changed 

in p53-deficient cells in response to co-culture; these genes represent a common response 

to stroma shared by all p53-deficient cell lines (FDR = 12.2%; data not shown). Using the 

same method, we performed this analysis for each isogenic cell line pair in isolation and 

visualized the 3 resulting lists of significant genes with a single heat map (Figure 2.5). This 

heat map represents the unique p53-dependent responses of each cell line to co-culture. 

The broadest range of expression differences was observed in co-cultured vs. mono-

cultured MCF10DCIS-sh:p53 organoids. Notably, 21 genes associated with phosphoprotein 

signaling were upregulated in MCF10DCIS-sh:p53 co-cultures (Table 2.2; black bar in 

Figure 2.5 shows all genes upregulated in co-cultured MCF10DCIS-sh:p53 cells), 

suggesting activation of a diverse array of pathways in response to stroma. Additionally, 

consistent with previous reports demonstrating that fibroblasts promote the in situ to 

invasive breast cancer transition [155], three genes associated with metalloproteinase 

activity (MMP23B, YME1L1, TMEM27) were upregulated in MCF10DCIS-sh:p53 co-cultures 

compared to mono-cultures. Furthermore, in agreement with our previous finding that 

stroma up-regulates inflammatory and immune response genes in invasive BBCs [85], we 

noted that the pro-inflammatory interleukin receptor IL12RB1 was also induced in 

MCF10DCIS-sh:p53 co-cultures. Down-regulated genes in p53-deficient MCF10DCIS co-

cultures (grey bar in Figure 2.5) included those associated with cell proliferation, 

differentiation, and apoptosis (POLI, MRPS30, ETS2, ETV4, NKAP, GDF7, MAP2K7, and 
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MEGF8). Taken together, these results imply that p53 deficiency in DCIS may accelerate 

the stroma-induced transition from benign to malignant disease. 

 

 

2.5. Discussion 

  

 Mutations in epithelial cells undoubtedly play indispensible roles in breast 

carcinogenesis, but the importance of stroma in tumor development is increasingly 

recognized. Dramatic gene expression changes occur in numerous stromal cell populations 

during progression to malignant disease [151], and pre-invasive breast stroma exhibits 

extensive genomic overlap with the microenvironment of malignant carcinomas [161, 173]. 

However, carcinogenesis is an evolutionary process that requires complementary input from 

both epithelium and stroma [85, 150], and it is important to understand how specific 

communication patterns change throughout the course of tumor development, particularly in 

the context of breast cancer subtypes. We previously used co-culture models to 

demonstrate that coordinated signaling responses occur in both stromal and epithelial cells 

during malignant BBC progression [150]. Herein, we build upon this work by elucidating how 

tissue-contextualized stromal-epithelial interactions are altered in the context of a genetic 

defect (p53 loss) with clinical relevance to this tumor subtype. 

 Three-dimensional organoid morphogenesis requires a coordinated balance of cell 

proliferation, apoptosis, and migration [166]. Previous 3D culture-based studies have relied 

upon integration of multiple histologic assays (e.g., BrdU, TUNEL, and immunohistochemical 

staining) to characterize these processes [64, 174, 175]. However, a general limitation to 

this approach is that histology is subject to selection bias, and multiple sections or 

microscopic fields must be analyzed per sample to confidently assess changes in phenotype 

or protein expression. In contrast, our OCT-based asphericity assay was able to capture the 
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net result of multiple cellular processes across individual organoids in a single metric. 

Organoid volume was also measured in this study as a more direct proxy of cell proliferation 

(data not shown), and changes in volume tracked closely with trends in asphericity. 

Moreover, we have previously used OCT to quantitate the intracellular dynamics of organoid 

cultures in response to toxicants, exogenous signaling mediators, and tissue culture 

composition [68, 69, 71, 150]; hence, in the present study, we probed novel, contextual cell-

cell interactions with a well-validated system. In our mono-culture experiments, benign 

breast epithelium (MCF10A) was the only cell type to exhibit morphologic responses to p53 

deficiency; in contrast, the increasingly aspherical morphologies of MCF10AT1 and 

MCF10DCIS organoids were independent of p53 status. Nevertheless, the transcriptional 

responses to p53 loss did vary among all 3 cell types, suggesting that the specific point at 

which p53 is mutated/lost in human BBCs has potential to influence the natural history of a 

given tumor.  

More diverse changes in organoid asphericity were seen in co-culture, which further 

depended upon epithelial p53 status. Fibroblast-induced morphologic changes initially 

observed in p53-sufficient ADH acini (MCF10AT1-sh:GFP) were accelerated in the context 

of p53 deficiency, first manifesting at the benign stage (MCF10A-sh:p53). Although prior 

research in this area has not considered the p53 status of epithelial cells, our results differ 

from those in previous reports. Sadlonova et al. demonstrated that normal breast-associated 

fibroblasts, but not cancer-associated breast fibroblasts, inhibited the proliferation of 

MCF10AT1 organoids [174, 175]. However, the discrepancies between these studies and 

the present report may reflect methodologic differences, highlighting that co-culture 

conditions such as cell ratios; matrix composition and culture construction (cells grown on 

top of a matrix layer vs. embedded within); and the character and source of fibroblasts 

(immortalized vs. primary; normal vs. cancer-associated) are important considerations for 

future research. 
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Compared to a previous study of fibroblast-MCF10 series interactions [150], the 

present study identified far fewer transcriptional changes in epithelial cells in response to 

stroma. The relatively limited gene expression changes identified herein may have arisen 

due to the generally inhibitory effect of basement membrane proteins on cell signaling in 3D 

cultures [176, 177]. Alternatively, methodologic consequences may be considered. Herein, 

cells were embedded within a semi-solid matrix that almost certainly limited the diffusion 

range of soluble factors. In ref. [150], however, stromal and epithelial cells were cultured 

together on plastic (in the same culture well), enabling both physical cell-cell contacts and 

reduced dependence on the stability of signaling mediators. Finally, RMFs had low 

prevalence (<10% of total cell content) in each 3D culture studied here. This result was 

surprising, because, at least in two-dimensional cultures, fibroblasts and MCF10 series cells 

exhibit similar population doubling times. Therefore, the most dramatic stroma-induced gene 

expression changes in our model likely occur during the first few days of culture when the 

proportions of each cell type are roughly equivalent. Transcriptional patterns at later time 

points, such as those analyzed here, reflect long-term, steady-state responses to co-culture 

and/or morphologic changes induced therein.  

The aim of this study was to explore how p53-dependent stromal-epithelial 

communication patterns in breast tissue models evolve during progression from pre-

malignant to invasive disease. Some of the identified genes have been previously studied in 

invasive breast cancer, whereas others have only been reported in other tumor types. While 

certain stroma-modified genes may be targets for BBC prevention, the factors identified 

herein must be studied mechanistically in greater detail to evaluate their translational 

relevance. Nevertheless, our results indicate that 3D culture models of pre-invasive breast 

can recapitulate previously described aspects of invasive breast cancer biology, consistent 

with reports that in situ and invasive breast cancers share certain genomic characteristics 
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[143-148]. Simultaneously, these models can also generate new insight into how stroma 

modifies epithelial behavior and signaling patterns during early stages of disease.
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2.6. Figures 

Figure 2.1. Development of a methodology to study p53-dependent stromal-epithelial 
interactions in 3D cultures  
 

 
 

A) Top: Optical coherence tomography (OCT)-based analyses of organoid asphericity. ***p< 

0.001. Bottom: Representative organoid renderings showing increased asphericity with 

progression. B) qRT-PCR analysis of TP53 expression in p53-deficient (-sh:p53) and control 

(-sh:GFP) MCF10 series cell lines. ****p< 0.0001 -sh:GFP vs. -sh:p53. 

 

 

 

 

 

 

 

 

 

Invasive	poten al	

A) B) 

MCF10A-sh:GFP MCF10AT1-sh:GFP MCF10DCIS-sh:GFP 
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Figure 2.2. p53 deficiency increases the asphericity of benign MCF10A organoids 

 

 

A) Top: OCT-based asphericity measurements of MCF10 series organoids in monoculture. -

sh:p53 organoids were compared to their respective -sh:GFP controls. **p<0.01. n = 3 

independent experiments. Error bars indicate mean + SEM. Bottom: Representative 

MCF10A organoid renderings. B) Photomicrographs of MCF10A-sh:GFP and MCF10A-

sh:p53 organoids. Note how some MCF10A organoids have small projections invading the 

3D matrix (arrows).  
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Figure 2.3. Contextual transcriptional responses of MCF10 series organoids to p53 
deficiency 
 

 
 
This heat map demonstrates that transcriptional responses to p53 deficiency vary among 

the MCF10 cell lines, both in mono-culture and co-culture. For mono-cultures (blue bar), the 

expression of each gene in replicate -sh:p53 samples was normalized to the average 

expression of that gene across the corresponding -sh:GFP control samples, and data were 

analyzed by multi-class SAM. Co-culture data (gold bar) was analyzed in a similar manner, 

and both lists of significant genes (116 genes in total) are included in this heat map. Gene 
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clusters marked by bars are described in detail in the text. The grey bar indicates genes that 

were up-regulated in MCF10A-sh:p53 mono-cultures relative to the remaining culture 

conditions. The black bar indicates genes for which expression was generally highest in 

MCF10DCIS-sh:p53 co-cultures relative to the remaining culture conditions. Fold change 

(log[2R/G]) is relative to median expression. 
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Figure 2.4. p53 deficiency accelerates morphogenetic responses to co-culture 

 

 
 
OCT-based asphericity measurements of MCF10 series organoids. For each cell line, co-

cultures were compared to their mono-culture controls. *p<0.05; **p<0.01; ****p<0.0001. n = 

2 independent experiments. Error bars indicate mean + SEM. 
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Figure 2.5. p53-dependent stromal-epithelial interactions are cell line-specific  

 

This gene expression heat map depicts the unique p53-dependent responses of each cell 

line to co-culture. For each cell line, each gene in replicate -sh:p53 mono-culture samples 

was normalized to the average expression of that gene across the corresponding mono-

culture controls, and each gene in replicate -sh:p53 co-culture samples was normalized to 

the average expression of that gene across the corresponding co-culture controls. A 2-class 

SAM on each resulting normalized dataset (normalized knock-down mono-culture vs. 

normalized knock-down co-culture) identified genes that were significantly altered in p53-
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deficient cells in response to co-culture. All 3 lists were visualized with a single heat map. 

Each cell line is indicated with a different color: blue, gold, and magenta bars depict 

MCF10A-sh:p53, MCF10AT1-sh:p53, and MCF10DCIS-sh:p53 cultures, respectively. Gene 

clusters marked by black and grey bars are discussed in the text; these clusters contain 

genes that were up- and down-regulated, respectively, in MCF10DCIS-sh:p53 cultures in 

response to stroma. Fold change (log[2R/G]) is relative to median expression. 
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2.7. Tables 
 
Table 2.1. 3D culture seeding densities (cells/mL) 
 

Isogenic pair 
Culture 
medium 

Mono-culture 
Co-culture 

Breast cells RMFs 

MCF10A DMEM/F12 30,000/mL 15,000/mL 15,000/mL 

MCF10AT1 DMEM/F12 30,000/mL 15,000/mL 15,000/mL 

MCF10DCIS DMEM/F12 30,000/mL 15,000/mL 15,000/mL 

     

RMFs only 
 

DMEM/F12 
 

30,000/mL as controls for microarray analysis 
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Table 2.2. Phosphoprotein-associated genes induced by co-culture in MCF10DCIS-
sh:p53 organoids 
 

ENTREZ Gene ID Gene name symbol) 

25966 C2 calcium dependent domain containing 2(C2CD2)   

56474 CTP synthase 2(CTPS2)      

84444 DOT1 like histone lysine methyltransferase(DOT1L)    

11080 DnaJ heat shock protein family (Hsp40) member B4(DNAJB4) 

2733 GLE1, RNA export mediator(GLE1)     

9778 KIAA0232(KIAA0232)        

56950 SET and MYND domain containing 2(SMYD2)   

23480 Sec61 translocon gamma subunit(SEC61G)     

10629 TATA-box binding protein associated factor 6 like(TAF6L)  

4904 Y-box binding protein 1(YBX1)     

8091 high mobility group AT-hook 2(HMGA2)    

10525 hypoxia up-regulated 1(HYOU1)      

3710 inositol 1,4,5-trisphosphate receptor type 3(ITPR3)    

64768 inositol-pentakisphosphate 2-kinase(IPPK)       

55154 
misato 1, mitochondrial distribution and morphology 

regulator(MSTO1)  

8079 myeloid leukemia factor 2(MLF2)     

399687 myosin XVIIIA(MYO18A)       

79834 pseudopodium enriched atypical kinase 1(PEAK1)    

80346 receptor accessory protein 4(REEP4)     

57393 transmembrane protein 27(TMEM27)      

54877 zinc finger CCHC-type containing 2(ZCCHC2)    
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CHAPTER 3 
 

MYELOID-SPECIFIC GLUT1 KNOCKOUT ATTENUATES CLAUDIN-LOW BREAST 
CANCER PROGRESSION 

 
 
 
3.1. Overview 

 

Claudin-low breast cancer (CLBC) is an invasive triple-negative subtype 

characterized by the presence of a growth-permissive, inflammatory microenvironment, to 

which myeloid-lineage macrophages are a major contributor. Macrophage Glut1 (Slc2a1)-

mediated glucose metabolism is a critical regulator of the inflammatory responsiveness of 

this cell type; thus, the goal of this study was to evaluate the effect of myeloid lineage Glut1 

loss on CLBC progression. Myeloid-specific Glut1 knockout (Glut1M-/-) mice and littermate 

controls (Glut1MFl/Fl) were orthotopically injected with syngeneic M-Wnt cells, a model of 

CLBC that recapitulates genomic and molecular features of human disease. We show 

herein that mammary tissue macrophages (MTMs) of Glut1M-/- compared to Glut1MFl/Fl 

animals were skewed toward an anti-inflammatory phenotype, and that M-Wnt tumor 

progression was impeded in Glut1M-/- animals. Collectively, our results indicate that myeloid 

Glut1 regulates the inflammatory microenvironment of both normal mammary and breast 

cancer, with consequences for CLBC progression. 
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3.2. Introduction 

  

Claudin-low breast cancers (CLBCs) are invasive triple-negative tumors 

characterized in part by steady-state up-regulation of immune response genes and the 

presence of histologically conspicuous leukocytic infiltrates [12, 49, 51]. In particular, 

myeloid-lineage tumor-associated macrophages (TAMs) are highly prevalent in triple-

negative breast cancers (TNBCs), and possess a diverse array of recognized roles in 

promoting inflammation in the tumor microenvironment [98, 100, 101, 103, 104, 178, 179]. 

Given the growth-permissive, mutagenic nature of chronic inflammation [100, 180], 

processes or interactions that reduce macrophage inflammatory responsiveness may 

represent promising targets for novel CLBC therapies.  

Energy metabolism is an important component of macrophage inflammatory 

responsiveness. Pro-inflammatory macrophages preferentially metabolize glucose as an 

energy substrate [181] in a mechanism reliant upon the glucose transporter, Glut1 (encoded 

by Slc2a1) [182, 183 [submitted manuscript]]. Indeed, Glut1 overexpression was sufficient to 

confer a pro-inflammatory phenotype in ex vivo bone marrow-derived macrophages 

(BMDMs) even in the absence of exogenous pro-inflammatory stimuli, suggesting that 

macrophage metabolic and inflammatory states are tightly linked [182]. Similarly, BMDMs 

from myeloid-specific Glut1 knockout mice demonstrated reduced expression of pro-

inflammatory and oxidative stress markers, as well as an enhanced capacity to buffer 

against oxidative stressors [183]. Taken together, these results suggest that modulation of 

macrophage metabolism is a powerful means by which to alter the inflammatory 

responsiveness of this cell type, with potential to prevent or delay inflammation-associated 

mechanisms linked to breast cancer. 

In this paper, we explored the consequences of myeloid Glut1 deficiency on CLBC 

progression, with a particular emphasis on macrophage-associated features of the tumor 
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microenvironment. Myeloid-specific Glut1 knockout mice (LysM-Cre; Slc2a1Fl/Fl [“Glut1M-/-”]) 

and floxed littermate controls (“Glut1MFl/Fl”) [183] were orthotopically injected with M-Wnt 

cells, a model of CLBC that recapitulates key genomic and histologic features of human 

disease [184]. Our results underscore a need to comprehensively evaluate the role of the 

tumor immune microenvironment in CLBC progression, and to further define potentially 

unique macrophage phenotypes in normal mammary and breast cancer. 

 

 

3.3. Materials and methods 

 

3.3.1. Animal model 

All animal studies were approved by the Institutional Animal Care and Use 

Committee of the University of North Carolina at Chapel Hill and were performed in 

accordance with the recommendations of the Panel on Euthanasia of the American 

Veterinary Medical Association. Animal facilities at UNC are accredited by the Association 

for Assessment and Accreditation of Laboratory Animal Care (AAALAC), and veterinary care 

meets National Institutes of Health standards set forth in the Guide for the Care and Use of 

Laboratory Animals (DHHS Publication No. (NIH) 85-23 Revised 1985). UNC also accepts 

as mandatory the Public Health Service Policy on Humane Care and Use of Laboratory 

Animals by Awardee Institutions, as well as NIH Principles for the Utilization and Care of 

Vertebrate Animals Used in Testing, Research, and Training. Mice were housed in a 

climate-controlled facility with a 12-hour light-dark cycle, and were given ad libitum access to 

water and diet. Glut1M-/- and Glut1MFl/Fl on the C57BL/6J background have been described 

previously [183]. Glut1Fl/Fl mice used for breeding were a kind gift from Dr. E. Dale Abel. At 

three weeks of age, female mice were weaned onto a purified diet delivering 10% kcal from 

fat (#D12450J). Animals were weighed weekly from 3 weeks of age until euthanasia (see 
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below) to monitor the impact of experimental procedures on overall health. Expected trends 

in mouse growth rates were observed, and body weights did not significantly differ by 

genotype at any time point (data not shown). 

  

3.3.2. Flow cytometric analysis of mammary tissue macrophages (MTMs)  

Female mice were euthanized via CO2 asphyxiation and cervical dislocation at 18 

weeks of age (n = 3 per genotype group). The left and right abdominal (4th and 7th) MFPs 

were removed and the intramammary lymph nodes excised. Fat pads were transferred to ice 

cold high-glucose Dulbecco’s Modified Eagle Medium (DMEM, Corning, Corning, NY) 

containing 20 mM HEPES buffer (Cellgro, Manassas, VA), and were minced with surgical 

scissors. Both MFPs from each mouse were then digested in 2 mg/mL Type I collagenase 

(Worthington, Lakewood, NJ) on a rotating incubator for 45-60 min. A single-cell suspension 

was generated via mechanical dissociation with a Stomacher® 80 Biomaster small tissue 

lab paddle blender (Seward, Worthing, West Sussex, United Kingdom). Suspensions were 

diluted with an equal volume of HEPES-buffered DMEM and filtered through a 100-µm cell 

strainer, followed by centrifugation at 200 x g for 10 min at 4°C to generate an immune cell-

enriched stromal-vascular fraction (SVF). The resulting SVF pellet was resuspended in 

HEPES-buffered DMEM and digested with DNase I (Sigma, St. Louis, MO). Red blood cells 

incubated in ACK lysis buffer (Gibco, Gaithersburg, MD) for 3-5 min at RT. The resulting 

SVF cells from each mouse were transferred to separate low-adhesion microcentrifuge 

tubes, blocked with Fc Block (CD16/32) (Biolegend, San Diego, CA), and stained with pre-

titrated antibodies (Table 3.1 for antibody information and dilutions). MTMs were defined as 

CD45+CD11b+CD64+, as CD64 has been reported as a reliable marker to distinguish 

adipose tissue macrophages from CD64- myeloid lineage dendritic cells [185, 186]. Viability 

staining was conducted using Zombie GreenTM fixable viability dye (Biolegend) in DPBS as 

directed. Extracellular antigen staining was conducted using antibodies diluted in DPBS 
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containing 1% FBS and 5 mM EDTA. Cells were then washed and fixed/permeabilized using 

Cytofix/Cytoperm™ Fixation/Permeabilization solution (BD Biosciences, San Jose, CA), and 

incubated with antibodies to intracellular antigens (Table 3.1) diluted in BD Perm/Wash™ 

Buffer overnight at 4°C with gentle agitation. SVF cells were then washed twice with 1X 

Perm/Wash™ solution, re-suspended in DPBS, and filtered through a 30-µm filter. SVF cells 

were analyzed on a BD™ LSR II flow cytometer. Compensation was set using single-stained 

cellular controls and gating was determined based on fluorescence-minus-one (FMO) 

controls. Data were analyzed with FlowJo (FlowJo, LLC, Ashland, OR). 

 

3.3.3. Orthotopic tumor model and tissue collection 

At 13 weeks of age, female mice (n = 15-20 per group) received an ipsilateral 

orthotopic injection of 5x104 viable M-Wnt tumor cells (derived from syngeneic C57BL/6J 

mice) into the 4th mammary gland as previously described [184] (Figure 3.1). Mice were 

palpated three times weekly to monitor tumor growth. Tumors were measured with 

electronic calipers and ellipsoid tumor volume was calculated as in ref. [187]. Mice were 

euthanized via CO2 asphyxiation and cervical dislocation at tumor maximum size (1 cm. in 

the largest dimension). Tumors and contralateral (un-injected) 9th mammary glands were 

collected at sacrifice, and samples were divided in half for both snap freezing and formalin 

fixation. Contralateral mammary glands from 18-week-old tumor-bearing mice (euthanized 

5.0 weeks after M-Wnt cell injection) were used in further molecular analyses to facilitate 

direct comparisons with flow cytometric profiling of MTMs (see above). Molecular tumor 

analyses were conducted on size-matched specimens measuring 1.0 + 0.25 cm in the 

largest dimension ex vivo to account for minor variations between in situ and ex vivo 

maximum size. 
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3.3.4. Quantitative RT-PCR (qRT-PCR) 

 Snap-frozen tumor specimens and un-injected contralateral mammary glands from 

tumor-bearing mice were pulverized under liquid nitrogen. Total RNA was extracted 

(RNeasy Mini Plus kit, QIAGEN, Valencia, CA) and reverse-transcribed (500 ng per sample; 

iScript Reverse Transcription Supermix, Bio-Rad) according to the manufacturers’ 

instructions. Gene expression was quantitated using TaqMan Gene Expression Assays 

(Applied Biosystems, Foster City, CA), except for Il10, Ccl2, and Nos2 which were 

measured using Roche Universal Probe Library Assays (Roche Diagnostics US, 

Indianapolis, IN) with the following oligonucleotide pairs: Il10: F: 5’-

CAGAGCCACATGCTCCTAGA-3’; R: 5’-GTCCAGCTGGTCCTTTGTTT-3’; Ccl2: F: 5’-

AGCACCAGCCAACTCTCACT-3’; R: 5’-GTGGGGCGTTAACTGCAT-3’; and Nos2: F: 5’-

TGACACACAGCGCTACAACA-3’; R: 5’-GCCAGTGTGTGGGTCTCC-3’. All samples were 

run on an ABI 7900HT Fast real-time PCR machine (Invitrogen, Carlsbad, CA) using the 

SsoAdvanced Universal Probes Supermix (Bio-Rad). Genes of interest were normalized to 

18S rRNA using the ΔΔCt method.  

  

3.3.5. Digital histology  

Staining: Formalin-fixed, paraffin-embedded (FFPE) tumor and contralateral 

mammary tissue specimens were sectioned at 5 μm and mounted on positively charged 

glass slides. Immunohistochemical (IHC) staining was conducted using pre-titrated 

antibodies (Table 3.2) according to previously described procedures [188], and no-primary 

controls were employed for each stain. Hematoxylin and eosin staining was also performed 

on FFPE tumor sections according to standard protocols. 

Tissue annotation: Stained slides were scanned into digital images using the Aperio 

ScanScope CS system (Aperio Technologies, Vista, CA). Aberrations in the tissue, as well 

as areas of non-mammary or non-tumor tissue (e.g., skin, lymph nodes, muscle) were 
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excluded from digital analyses. All annotations were made by an investigator blinded to 

mouse genotype.  

Quantitative histology: Diaminobenzidine (DAB) staining in IHC-stained slides was 

analyzed quantitatively using Aperio ImageScope algorithms (“IHC Nuclear” algorithm for 

Ki67 staining; “Color Deconvolution” algorithm for remaining IHC markers except for cleaved 

caspase-3) [188]. Cleaved caspase-3 expression was quantitated using the “positive pixel 

count” algorithm; only cells with “strong positive” staining, which exhibited a rounded-up 

apoptotic morphology, were analyzed. Positive DAB staining in negative control (no primary 

antibody) slides was subtracted from the corresponding stained samples as non-specific 

background. For all analyses, tissue sections were examined in their entirety. All images 

shown herein are representative of a given tissue section and genotype group. 

 

3.3.6. Luminex assays 

 Tumor cytokines and chemokines were measured using the Bio-Plex Multiplex 

Immunoassay System with Luminex xMAP Technology (Bio-Rad, Hercules, CA) according 

to the manufacturer’s instructions. Tumors were pulverized under liquid nitrogen and 100 mg 

of each sample was diluted in 500 μL of RIPA buffer containing 1x Halt Protease Inhibitor 

Cocktail (Thermo Scientific, Waltham, MA). Samples were homogenized and centrifuged at 

16000 x g for 20 minutes at 4°C, and a bicinchoninic acid (BCA) assay (Pierce, Waltham, 

MA) was performed on sample supernatants. Supernatants were then diluted to 450 μg/mL, 

and 50 μL of each sample was used in the Bio-Plex assays. Samples were analyzed in 

duplicate. 

 

3.3.7. Statistics 

Statistical analyses were performed using GraphPad Prism version 7.0 (GraphPad 

Inc., La Jolla, CA). For flow cytometric analyses of marker distribution between Glut1M-/- and 
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Glut1MFl/Fl mice, statistical significance was determined with multiple t-tests (1 per row [cell 

subpopulation/quadrant]) correcting for multiple comparisons using the Holm-Sidak method 

with alpha = 0.05. As each cell subpopulation originated from the same sample, 

computations assumed that all rows were sampled from a population with the same 

standard deviation. All other data were analyzed using the two-tailed unpaired student’s t-

test or log-rank test as appropriate. Unless otherwise specified, error bars represent the 

mean + standard error of the mean (SEM), and statistical outliers were identified using the 

robust non-linear regression with outlier removal (ROUT) method with Q = 1%. For all 

analyses, p-values less than 0.05 were considered significant. 

 

 

3.4. Results 

 

3.4.1. Myeloid Glut1 loss reduced MTM inducible nitric oxide synthase (iNOS) 

expression  

As a first step to elucidating the effect of myeloid Glut1 loss on CLBC progression, 

we used flow cytometry to characterize the immune microenvironment of the normal 

mammary gland, with a particular emphasis on mammary tissue macrophages (MTMs). 

Macrophages are the most highly represented immune cell type in the mouse and human 

mammary gland, and are crucial regulators of initiation, invasion, and metastasis in breast 

cancer [25]. To determine whether myeloid-specific Glut1 knockout altered mammary 

immune cell proportions, we quantitated total leukocyte (CD45+), myeloid cell 

(CD45+CD11b+), and MTM (CD45+CD11b+CD64+) content in freshly isolated MFP 

specimens of 18-week-old mice (see gating strategy in Figure 3.2). The proportions of each 

cell type did not vary by genotype (data not shown). 
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We next sought to characterize specific immunophenotypes of MTMs in Glut1M-/- and 

Glut1MFl/Fl mice. Based on recent work in mice and humans suggesting that macrophages in 

adipose-rich tissues exhibit “mixed” expression of pro- and anti-inflammatory markers [189-

195], we quantitated the expression of iNOS and arginase 1 (ARG1), canonical pro- and 

anti-inflammatory markers, respectively, among macrophages in the mammary fat pad. 

There were no significant Glut1-driven differences in the proportions of classically defined 

M1 (ARG1-iNOS+) or M2 (ARG1+iNOS-) macrophages (Figure 3.3A). Interestingly, however, 

the proportion of ARG1+iNOS+ MTMs was diminished in Glut1M-/- relative to Glut1MFl/Fl mice 

(Figure 3.3A; p = 0.0086 Glut1M-/- vs. Glut1MFl/Fl LFD). In sum, the percentage of iNOS+ 

MTMs (irrespective of ARG1 positivity) was reduced in the absence of myeloid Glut1.  

To determine whether select MTM subpopulation(s) were driving observed 

differences in ARG1/iNOS distribution, we stratified MTMs based on MHCII expression level 

(hi vs. lo/-). A significantly increased proportion of MHCIIhi MTMs was detected in MFP of 

Glut1M-/- vs. Glut1MFl/Fl mice (p = 0.0034) (Figure 3.3B), but no significant Glut1-mediated 

differences in ARG1 or iNOS expression in MHCIIhi MTMs were observed by analysis of 

median fluorescence intensities (MFIs) (data not shown). In contrast, the proportion of 

MTMs negative for or expressing low levels of MHCII (MHCIIlo/-) did not significantly differ 

between Glut1M-/- and Glut1MFl/Fl mice (Figure 3.3B). Interestingly, however, in this MHCIIlo/- 

population, the proportion of ARG1+iNOS+ MTMs was significantly reduced in Glut1M-/- 

compared to Glut1MFl/Fl mice (p = 0.0216; Figure 3.3C). This finding suggests that the 

observed reductions in ARG1+iNOS+ cells among total MTMs (Figure 3.3A) was driven by 

differential expression of ARG1 and/or iNOS within the MHCIIlo/- subpopulation.  

To gain insight into the cellular and molecular basis for the observed Glut1-driven 

shifts in ARG1/iNOS expression distribution among MHCIIlo/- MTMs, we next analyzed 

expression of ARG1 and iNOS within this subpopulation. Quantification of ARG1 and iNOS 

MFIs in MHCIIlo/- MTMs revealed reduced iNOS expression, with no significant change in 
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ARG1 expression (Figure 3.3D p = 0.0229 Glut1M-/- vs. Glut1MFl/Fl). In sum, compared to 

those in Glut1MFl/Fl MFP, MTMs of Glut1M-/- mice exhibited diminished pro-inflammatory iNOS 

expression, with the MHCIIlo/- subpopulation predominately driving this reduction.  

 

3.4.2. Myeloid-specific Glut1 knockout did not alter markers of mammary gland 

inflammation  

As MTMs in Glut1M-/- mice exhibited diminished pro-inflammatory iNOS expression, 

we reasoned that Glut1M-/- MFP would also display attenuated inflammatory mediator 

expression. To facilitate temporal comparisons with flow cytometry data, we quantitated the 

expression of cytokines and chemokines with recognized roles in breast cancer onset and 

progression [25] in MFP tissue from 18-week-old mice. None of the factors in our panel (Il6, 

Il10, Il12, Tnf, Ccl2, Il1b) were differentially regulated between Glut1M-/- and Glut1MFl/Fl MFP 

(data not shown), perhaps reflecting the status of macrophages as minority components of 

the normal mammary gland.   

 

3.4.3. Myeloid-specific Glut1 knockout delayed CLBC growth  

 Having profiled select inflammatory characteristics of the mammary gland with 

particular relevance to breast cancer, we next examined the impact of myeloid-specific Glut1 

deficiency on CLBC progression. Glut1M-/- mice and Glut1MFl/Fl controls were orthotopically 

injected with M-Wnt CLBC cells at 13 weeks of age. Similar to previous reports [184], M-Wnt 

tumors in our study were poorly differentiated, contained abundant intratumoral adipocytes 

(Figure 3.4A), and exhibited microvascular proliferation (CD31 positivity) (Figure 3.4B). 

Quantitation of CD31 staining indicated that tumor angiogenesis did not dramatically vary by 

genotype (Figure 3.4B), and in both groups, blood vessels were most prevalent proximal to 

the tumor margins.  
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Tumor progression was tracked to a pre-determined maximum size (1 cm. in the 

largest dimension). Tumors in Glut1M-/- mice were substantially smaller than those in 

Glut1MFl/Fl controls after 5.5 weeks of growth (p = 0.0593; Figure 3.5A). We also noticed that 

Glut1M-/- tumors appeared to grow for a longer period of time before reaching the 1-cm cutoff, 

which was confirmed by Kaplan-Meier analysis (Figure 3.5B; p = 0.0137 Glut1M-/- vs. 

Glut1MFl/Fl). This differential tumor progression could not be attributed to significant 

differences in time to palpation of detectable lesions (data not shown), or tumor cell 

proliferation (Ki67 staining; Figure 3.4C) or apoptosis (cleaved caspase-3 staining; Figure 

3.4D). 

 

3.4.4. Glut1M-/- immune microenvironments may suppress tumor growth  

Heterotypic cancer-stroma interactions, together with tissue remodeling induced by 

tumor immune infiltrates, foster a growth-permissive microenvironment characterized in part 

by chronic, low-grade inflammation [100, 188, 196]. Given the known role of Glut1 in the 

regulation of macrophage inflammatory character [182, 183], as well as the high prevalence 

of TAMs in TNBCs [103, 178], we reasoned that delayed tumor growth in Glut1M-/- mice 

would correlate with reduced expression of inflammatory cytokines and chemokines in the 

tumor microenvironment. Consistent with our hypothesis, we observed striking reductions in 

the protein concentrations of MCP-1 (CCL2), IL-12β, TNFα, and IL-10 in Glut1M-/- relative to 

Glut1MFl/Fl tumors (Figures 3.6A-D; p = 0.0064, p = 0.0171, p = 0.0050, and p = 0.0003, 

respectively), even in the absence of significant genotype-driven differences in TAM content 

(Figure 3.6E). This result suggests that the inflammatory potential of TAMs, like MTMs, may 

be reduced in Glut1M-/- mice. As the inflammatory properties of macrophages are intimately 

linked to cell behavior [105], we began to explore whether loss of myeloid Glut1 elicited 

alterations in macrophage function. Antigen presentation to T cells is an important general 

function of macrophages, particularly in the context of T cell-mediated anti-tumor immunity. 
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Hence, we quantitated the expression of select antigen presenting cell (APC) markers [197] 

in CLBC tumors. While Cd74 did not significantly differ by genotype, we observed a 

significant up-regulation of Cd80 (p = 0.0026) and Cd86 (p = 0.0073) in Glut1M-/- compared 

to Glut1MFl/Fl tumors (Figures 3.6F-G). Taken together, these data indicate that Glut1M-/- 

CLBCs are characterized by unique inflammatory microenvironments with potential to 

influence the course of disease.  

 

 

3.5. Discussion 

 

Specific roles of the tumor microenvironment in promoting breast cancer progression 

are increasingly understood. However, as the most recently recognized breast cancer 

subtype [48], tumor-microenvironment interactions in CLBC are poorly defined. Steady-state 

up-regulation of inflammatory and immune response genes is one well-documented 

molecular feature of CLBCs [12, 49, 51, 103]. While these gene expression patterns may 

represent cancer cell-intrinsic features, they also reflect the presence of a wide array of 

infiltrating leukocytes, particularly pro-inflammatory macrophages. Due to associations 

among CLBC, inflammation, and macrophage energy metabolism [26, 100, 101, 104, 179, 

182, 183, 198-200], we used a pre-clinical model to determine whether suppression of 

myeloid cell glucose metabolism modulated CLBC progression and immunologic features of 

the tumor microenvironment linked to breast cancer.  

Previous cell-based assays in our laboratory have shown that Glut1 expression and 

glucose utilization are intimately tied to macrophage pro-inflammatory character [182]. 

Herein, we built upon our previous data by describing relationships between myeloid Glut1 

and the regulation of inflammation in vivo. This whole-animal context is important because it 

demonstrates that myeloid Glut1 regulates tissue-level inflammation with functional 
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implications for disease. Although our study did not identify specific mechanisms by which 

myeloid Glut1 represses CLBC progression, our data offer several clues. First, chronic 

inflammation per se is growth-permissive, but we did not observe genotype-driven 

differences in tumor Ki67 expression. Second, both Glut1M-/- BMDMs [183] and MTMs 

express lower levels of oxidative stress markers (e.g., iNOS/Nos2), so the reactive oxygen 

species burden associated with chronic inflammation may be relatively lower in Glut1M-/- 

tissues. Third, upregulation of APC markers (Cd80 and Cd86) in Glut1M-/- relative to 

Glut1MFl/Fl cancers may indicate a direct role for myeloid Glut1 in the control of tumor 

immune tolerance [201, 202]. Future studies should more closely examine the potential role 

of myeloid Glut1 in the regulation of tumor immunogenicity. 

Our data suggest that Glut1M-/- macrophages are skewed toward an anti-

inflammatory phenotype, but are associated with attenuated tumor progression. This pattern 

contrasts sharply with much of the available literature pertaining to TAM biology. Although 

little research has characterized the metabolic properties of TAMs, many studies have 

indicated that TAMs in advanced tumors possess anti-inflammatory character, and are 

therefore likely to exhibit an oxidative, rather than a glycolytic, metabolic signature [203]. 

TAMs have also been widely demonstrated to facilitate tumor progression, mediate 

development of therapeutic resistance, and promote relapse [203]. However, one recent 

study [204] found that macrophages exposed to secretions from pancreatic ductal 

adenocarcinoma cells (PDAC-TAMs) exhibited a pronounced glycolytic signature. PDAC-

TAMs also promoted tumor behaviors associated with invasion and metastasis, but these 

phenotypes were blocked upon inhibition of TAM glycolysis. This study [204] provided the 

first direct evidence that alterations in macrophage metabolism could promote cancer cell 

metastasis, and that reduced macrophage glycolysis – a previously reported feature of 

Glut1M-/- BMDMs [183] – could suppress metastatic spread. Although the CLBC cells used in 

the present study only invade locally, macrophage glycolysis-dependent tumor metastasis 
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may be applicable to this tumor type. Future work should establish whether CLBC-

associated TAMs also exhibit a glycolytic signature, and if inhibition of glycolysis in 

metastatic TNBC can prevent tumor cell dissemination. 

An additional intriguing finding of the present study is that myeloid Glut1 regulated 

the inflammatory character of normal mammary macrophages. To our knowledge, our study 

is the first to characterize specific immunophenotypes of MTMs; hence elucidating specific 

functions of individual MTM populations identified herein is an important area of future 

research. We were interested to observe a significantly increased proportion of MHCIIhi 

MTMs in Glut1M-/- relative to Glut1MFl/Fl mice, as MHCII expression in tumor immune cells 

inversely correlates with cancer progression [205-209]. Accordingly, our study could be 

strengthened by immunophenotypic analyses of TAMs in Glut1M-/- vs. Glut1MFl/Fl CLBCs.  

Although Glut1 expression in myeloid lineage neutrophils and dendritic cells is also 

targeted by LysM-Cre-mediated excision in our mouse model [210], we primarily focused our 

studies on macrophages because they are the most prevalent immune cell type in both 

normal and tumor mammary tissue, and play crucial roles in all phases of breast cancer 

development [25, 100]. Nevertheless, ongoing experiments in M-Wnt tumor tissue are 

further exploring how other myeloid cell types may contribute to the Glut1-dependent cancer 

progression phenotype. Ultimately, our study underscores a need to comprehensively 

evaluate the role of the tumor immune microenvironment in CLBC progression, and to 

further define potentially unique macrophage phenotypes in normal mammary and breast 

cancer.
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3.6. Figures 

Figure 3.1. Study schematic 

 

 

Study design. Mice were fed a purified diet at weaning and were orthotopically injected with 

M-Wnt CLBC cells at 13 weeks of age. Contralateral mammary and tumor tissues were 

harvested at tumor maximum size (1 cm in the largest dimension). Body weights were 

measured weekly.  
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Figure 3.2. Gating strategy for flow cytometric analysis of mammary tissue 
macrophages 
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Figure 3.3. Myeloid Glut1 deletion reduced MTM iNOS expression 

 

 

A) Distribution of ARG1 and iNOS expression among total mammary tissue macrophages 

(MTMs). B) Distribution of CD64 and MHCII expression among myeloid cells. C) Distribution 

of ARG1 and iNOS expression among CD64+MHCIIlo/- MTMs. D) ARG1 and iNOS MFIs 

among CD64+MHCIIlo/- MTMs. For all graphs, *p<0.05; **p<0.01, ***p<0.001. Exact 

significance levels are reported in the text. Error bars indicate mean + SEM. 
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Figure 3.4. Histologic features of M-Wnt tumors 

 

 

A) Representative tumor H&E staining. Scale bar = 300 μm. B) Representative images and 

digital quantitation of tumor CD31 staining. Scale bar = 100 μm. C) Representative images 

and digital quantitation of Ki67 staining. Scale bar = 100 μm. D) Top: Representative images 

of tumor cleaved caspase-3 (CC3) staining. Arrowheads indicate “strong CC3-positive” 

apoptotic cells with a rounded-up morphology. Scale bar = 100 μm. Bottom: Positive pixel 

count algorithm output. Only “strong positive” staining (red), corresponding to apoptotic cells 

in top panels (arrowheads), was quantitated. Scale bar = 100 μm. Right: Digital 

quantification of tumor CC3 staining. 
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Figure 3.5. Myeloid-specific Glut1 knockout delays tumor growth 

 

A) Analysis of tumor growth over time. Tumors were palpated three times weekly and 

tracked to a pre-determined size cutoff (1 cm in the largest dimension). B) Kaplan-Meier 

analysis showing that M-Wnt tumor growth to 1 cm progressed significantly more slowly in 

Glut1M-/-
 compared to Glut1MFl/Fl mice.  
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Figure 3.6. Glut1M-/- immune microenvironments may suppress tumor growth 

 

A-D) Protein concentrations of the inflammatory cytokines MCP1 (**p=0.0064), IL-12β 

(*p=0.0171), TNFα (**p=0.0050), and IL-10 (***p=0.0003) in tumor lysates were quantitated 

with Luminex assays. E) Representative images and digital quantitation of tumor F4/80 

staining. Scale bar = 100 μm. F-G) qRT-PCR analysis of F) Cd80 and G) Cd80 in tumor 

lysates. 
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3.7. Tables 
 
Table 3.1: Antibodies used for flow cytometry studies 
 

Antigen Fluorophore Company; cat. # Dilution Lot # 

Fc block 
(CD16/32) 

N/A Biolegend; 101320 1:50 B200134 

Live/dead dye Zombie Green 
BioLegend; 

423111 
1:400 N/A 

CD45 BV605 
BioLegend; 

103140 
1:200 B211813 

CD11b BUV395 
BD Biosciences; 

563553 
1:00 6028814 

Ly6C BV421 
BD Biosciences; 

562727 
1:100 5357529 

MHC II BV711 
eBioscience; 
  17-5321-81 

1:200 6167935 

CD64 PE-Cy7 
BioLegend;  

139313 
1:200 B197402 

ARG1 PE 
R&D Systems; 

IC5868P 
1:40 ADBB0415041 

iNOS APC 
Affymetrix 

(eBioscience);  17-
5920-80 

1:40 4318613 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 



 

 74 

Table 3.2: Antibodies and analysis parameters for quantitative histology 
 

Antigen Company; cat. # Dilution Lot # 
Algorithm: 

metric 

CD31 
Abcam;  
ab28364 

1:2500 GR212364-5 

Color 
Deconvolution: 

OD x % 
positivity 

Ki67 
Vector 

Laboratories; 
VPRM04 

1: 250 ZA0731 
IHC Nuclear:  

% positive 
nuclei 

Cleaved 
caspase-3 

Cell Signaling; 
9661 

1:1500 43 

Positive pixel 
count: % 

strong-positive 
pixels 

F4/80 
AbD Serotec; 

MCA-497 
1:2000 0413 

Color 
Deconvolution: 

OD x % 
positivity 

 
Abbreviations: OD: optical density; Y: tyrosine 
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CHAPTER 4 
 

DEVELOPMENT OF A DIGITAL ALGORITHM TO QUANTITATE CD31+ VASCULATURE 
IN CANCER-ADJACENT NORMAL HUMAN BREAST 

 
 
 

4.1. Overview 

  

Studies of histologically benign-appearing, cancer-adjacent tissue may yield 

important insights into factors that influence locoregional disease recurrence after therapy. 

Triple-negative breast cancers are more likely than other breast cancer subtypes to recur 

locally and to metastasize within the first three to five years of patient follow-up, but 

microenvironmental factors underlying differential recurrence rates among breast cancer 

subtypes are poorly understood. Given the essential nature of tumor angiogenesis in cancer 

invasion and metastatic progression, we hypothesized that the vascular content of cancer-

adjacent breast tissue differs in association with the subtype of the corresponding tumor. To 

this end, we developed a novel digital algorithm to quantitate CD31+ vasculature in 

histologically benign tissue from women with breast cancer. We found that the digital 

algorithm was highly correlated with manual assessment, suggesting that high-throughput, 

quantitative estimates of vascular content and phenotypes could be provided.  This 

algorithm will ultimately be used to determine how parameters such as vascular density and 

median vessel size vary with respect to tumor subtype, established breast cancer risk 

factors, and other tissue histologic features. 
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4.2. Introduction 

  

Triple-negative breast cancer (TNBC) exhibits higher rates of locoregional 

recurrence relative to other breast cancer subtypes, particularly within the first three to five 

years of follow-up [52, 53, 57, 58]. Tumor biological characteristics are a key factor that may 

contribute to observed differential recurrence rates, but we and others have demonstrated 

that gene expression profiles of and cell-cell interactions within cancer-adjacent breast also 

vary according to the subtype of the corresponding tumor [76, 77]. For example, fibroblasts 

are key contributors to the inflammatory gene expression and cytokine production 

associated with TNBC-adjacent tissue environments [76]; however, it is unknown whether 

the content and/or phenotypes of other stromal cell types in benign-appearing, cancer-

adjacent tissue also differ in association with breast cancer subtype.  

The vasculature is a particularly understudied component of the breast cancer 

microenvironment. A small number of reports [111-114] have profiled cancer cell-endothelial 

interactions in the setting of frank breast tumors, but very little work has examined the 

vascular properties of normal or tumor-adjacent breast. Given that the induction of 

angiogenesis is a requisite step for progression to metastatic disease, it is plausible that 

subtype-specific differences in cancer-adjacent vascular properties may play a role in 

observed variations in local recurrence rates. We hypothesized that cancer-adjacent 

vascular content and phenotypes differ in association with the intrinsic subtype of the 

corresponding tumor. To this end, we developed a novel digital algorithm designed to 

quantitate immunohistochemical (IHC) staining of CD31, a cell-surface marker greatly 

enriched in endothelial cells, in histologically benign tissue from women with breast cancer. 

This algorithm will be used to determine how vascular features in cancer-adjacent tissue 

relate to tumor subtype, established breast cancer risk factors, and other histologic features 

of cancer-adjacent breast.  



 

 77 

4.3. Materials and methods 

  

4.3.1. Study population  

 A subset of patients from the University of North Carolina Normal Breast Study (UNC 

NBS), a study previously described [211, 212], was included in this report. Briefly, the UNC 

NBS is a hospital-based study of normal breast tissue and breast cancer microenvironments 

conducted in association with UNC Hospitals. Women undergoing breast surgeries 

(excisional biopsy, lumpectomy, mastectomy, reduction mammoplasty, or other cosmetic 

procedure) between October 2009 and April 2013 were eligible to participate if they were at 

least 18 years of age, English-speaking, and consented to donate tissue during their 

surgery. As described in [211, 212], all participants donated grossly normal-appearing tissue 

as assessed by pathology assistants at UNC. Tissue was snap-frozen in liquid nitrogen. 

Patients also provided demographic, lifestyle, and breast cancer risk factor exposure data 

through a telephone interview, and medical records abstraction was performed to obtain 

anthropometric and medical history data. Medical records follow-up is continuing, to be 

conducted annually for 10 years following a patient’s surgery. Protocols were approved by 

the University of North Carolina School of Medicine Institutional Review Board. 

 The full UNC NBS study population consisted of 474 women, including 399 women 

with ipsilateral invasive breast cancer and 75 women with a benign breast condition [211]. 

Hematoxylin and eosin-stained tissue slides were created for each patient and manually 

reviewed. Specimens from 16 women were excessively folded and unsuitable for further 

analysis, whereas those from 4 women were found to have histologically abnormal tissue 

with >50% epithelial cell content. After excluding these 20 patients, the final NBS study 

population consisted of 454 women, including 387 women with ipsilateral invasive breast 

cancer and 67 women with a benign condition [211]. In the present analysis, cases with 

pathologically confirmed invasive, in situ, or benign breast disease, as well as those with a 
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prior history of breast cancer, were selected, excluding women undergoing prophylactic or 

cosmetic procedures. Since some participants in the NBS had a prior breast surgery, 

patients undergoing a second breast surgery were also excluded to avoid quantitating 

vasculature within granulation or fibrotic tissue induced by a previous breast surgery. These 

exclusions resulted in a total of 410 patients, of which 235 were randomly selected, equating 

to approximately half (51.8%) of all NBS study participants. We analyzed one sample per 

woman, using second specimens to assess intra-individual variation for approximately 20% 

of our population (n = 52 women; 22.1%). Slides were manually reviewed after IHC staining 

(see below), and 8 samples were excluded due to high levels of non-specific staining. 

Therefore, the total study population consisted of 228 women (50.2% of NBS participants) 

and 279 unique tissue samples. The demographic characteristics of our population are 

presented in Table 4.1. The majority of women in our study (91.7%) had invasive or in situ 

breast cancer at the time of their surgery, whereas the remaining patients had either a 

benign condition (7.5%) or a previous history of treated breast cancer at least one year prior 

to their consented surgery (0.9%). Average age at surgery was highest among breast 

cancer patients, and lowest among women presenting with benign conditions. Body mass 

index (BMI) did not differ substantially among groups.  

Given the high percentage of breast cancer patients in our study, the 

clinicopathologic characteristics of the corresponding tumors are presented in Table 4.2. 

Consistent with expectations, the majority of tumors were ER+, PR+, and HER2-. Tumors 

also tended to be small (<2.0 cm.) and low stage, with 85.2% of patients presenting with 

stage 0-2 disease. 

 

4.3.2. Immunohistochemical CD31 staining 

As described in [211], snap-frozen tissue was cut over dry ice and 20-μm sections 

were cut and mounted on positively charged glass slides. Slides were then randomized to 
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batches of 24, and IHC staining was performed according to standard protocols. Briefly, 

slides were fixed in zinc formalin for 10 minutes, and heat-induced epitope retrieval was 

performed using Lab Vision HIER Buffer (Thermo Fisher Scientific, Waltham, MA). Slides 

were then incubated with 3% hydrogen peroxide to block endogenous peroxidases, blocked 

with 10% normal goat serum for 1 hour at room temperature, and incubated with pre-titrated 

mouse anti-CD31 antibodies (0.25 μg/mL; #3528, lot #4; Cell Signaling Technologies, 

Danvers, MA) overnight at 4°C. Slides were then incubated with biotinylated goat anti-

mouse IgG secondary antibodies (#115-065-166, lot #89998; Jackson ImmunoResearch, 

West Grove, PA) for 1 hour at room temperature, and staining was visualized using ABC 

Elite (#PK-6100; Vector Laboratories, Burlingame, CA) and diaminobenzidine (DAB; #TA-

125-QHDX; Thermo Fisher Scientific) reagents. Antibodies were diluted in Thermo Antibody 

diluent (#TA-125-ADQ), and all washes were performed with 0.05M Tris + 0.05% TWEEN-

20. All sections were counterstained with hematoxylin. 

A negative control (no-primary antibody) slide consisting of human umbilical vein 

endothelial cells (HUVECs) grown on chamber slides was included in each batch of stained 

breast tissue to control for non-specific binding of the secondary antibody. HUVECs (ATCC, 

Manassas, VA) maintained in EGM-2 culture medium supplemented with BulletKit reagents 

(Lonza, Walkersville, MD) were seeded at a density of 50,000 cells/well in 1 well of a 4-well 

chamber slide (BD Falcon, Franklin Lakes, NJ), and permitted to grow for 3 days. Slides 

were then fixed with 4% paraformaldehyde, and stained (1 slide per batch of tissue) 

according to the protocol described above.  

 

4.3.3. Development of digital algorithm 

Stained slides were scanned into high-resolution digital images using the Aperio 

ScanScope CS system (Aperio Technologies, Vista, CA) at a magnification of 20x. Tissue 

aberrations (e.g., large folds, surgical ink) and areas of extensive non-specific staining were 
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excluded via annotation with Aperio ImageScope software. All annotations were made by an 

investigator blinded to patient demographic information and other tissue characteristics. 

Annotated images were then imported into Definiens Architect XD version 2.7.0 for analysis 

with Definiens Tissue Studio version 4.4.2 (Cambridge, MA). Briefly, a training set consisting 

of 30 randomly selected slides was constructed, and the tissue and glass components of 

each specimen were segmented (Figure 4.1A-B). A Tissue Studio Cellular Analysis 

Solution capable of detecting and classifying IHC-stained vasculature was then tuned to 

identify DAB+ (i.e., CD31+) regions. Importantly, given reports that capillaries average 8 μm 

in diameter [213], we trained the algorithm to exclude stained objects with cross-sectional 

areas of <50 μm2. High-magnification views of the tissue area outlined in Figure 4.1A are 

shown in Figures 4.1C-E to illustrate vascular detection. The algorithm first detects “entire” 

blood vessels without regard to underlying vascular structure, which can be classified 

according to user-defined or software-default size categories if desired (Figure 4.1D). The 

algorithm then partitions each vascular object into “wall” and “lumen” components as 

applicable (Figure 4.1E).  

 

4.3.4. Algorithm validation 

After the trained algorithm was applied to the entire slide set, digital images were 

manually reviewed for gross irregularities. Visual inspection suggested high accuracy in 

identifying vascular areas. However, we identified 75, predominantly stroma-rich and mixed-

histology slides with faint staining for which the tissue and glass components were not 

reliably partitioned. Thus, the tissue vs. glass parameter was re-tuned for this subset of 

slides, leaving all vascular parameters unchanged. However, misclassification persisted in 

42.7% of slides from this subset (11.5% of all study specimens), and deficits in vessel 

quantitation were detected during validation (see below; data not shown). Therefore, the 

original algorithm was utilized for all 279 slides, and future molecular epidemiologic 
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assessment of vessel histology will incorporate sensitivity analyses excluding these 75 

slides with areas of problematic classification. 

Vessel density and average vessel size were computed by the algorithm in an 

automated fashion. Custom SAS software scripts (version 9.4; SAS Institute, Cary, NC) 

were also generated to compute median vessel area, percent vessel area (
total vessel area

tissue area
 * 

100), and percent endothelial area (
total vessel area - lumen area

tissue area
 * 100) using data exported from 

Definiens Tissue Studio “Image Object Tables,” which contain quantitative data 

corresponding to every stained object in a given slide. Data obtained from these automated 

approaches were compared to results acquired from manual slide annotation. A validation 

set consisting of 33 randomly selected slides with 1-2 serial sections each was constructed 

and each slide was manually annotated at high magnification using Aperio ImageScope 

software, with each annotation layer representing a different tissue component (Figure 4.2). 

Only structures with 2 or more nuclei were annotated to minimize the inclusion of CD31+ 

leukocytes, and structures with cross-sectional areas of <50 μm2 were excluded to facilitate 

agreement with the algorithm. Vessel density (
number of vessels

net tissue area
), median vessel area, average 

vessel area, percent vessel area (
total vessel area

net tissue area
 * 100), and percent endothelial area 

(
total vessel area - lumen area

net tissue area
 * 100) were then computed for each slide, with net tissue area 

equivalent to tissue area - (glass area + artifacts area) for all metrics. The agreement 

between automated and manually calculated values was evaluated with Pearson’s 

correlation, percentage agreement, and Cohen’s quadratic weighted kappa analyses using 

SAS and GraphPad Prism version 6.0 (GraphPad Inc, La Jolla, CA). 
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4.4. Results 

 

4.4.1. Evaluation of algorithm performance: comparison to manual annotation  

To evaluate algorithm performance, we first conducted correlation analyses wherein 

automated data from 33 randomly selected slides was compared to that acquired from 

manual annotation. Correlation analyses for each vascularity metric, as well as tissue area, 

are presented in Figures 4.3. Automated and manually derived tissue areas were strongly 

correlated (Pearson’s correlation coefficient, r = 0.8936) despite the presence of tissue-glass 

misclassifications in 15.2% (5/33) of slides in the validation set (Figure 4.3A). In addition, 

moderate associations were observed between automated and manually computed vessel 

density (r = 0.5559), median vessel size (r = 0.4894), and average vessel size (r = 0.5626) 

(Figure 4.3B-D). Automated and manually derived percent vascular area (r = 0.2697) and 

percent endothelial area (r = 0.2397) were weakly correlated (data not shown) and will be 

excluded from future studies. Moreover, the dynamic range of these latter parameters was 

generally limited (range: 0-4), indicating that they are unlikely to be biologically meaningful.  

To explore possible explanations for the observed variability between automated and 

manually computed vascular metrics, we considered that algorithm performance may vary in 

association with tissue histology and classified each slide in the validation set as “fibrous,” 

“fatty,” or “mixed”. However, these adjustments for tissue composition did not uniformly 

improve overall agreement between automated and manually calculated vascularity metrics 

(data not shown). 

We further assessed algorithm performance by dividing the automated and manual 

measurements for each vascular metric (vessel density, and median and average vessel 

size) into quartiles, and calculating the percent agreement between quartile assignments 

(Tables 4.3-4.5). When perfect agreement was required (grey cells in Tables 4.3-4.5), the 

percent agreement between automated and manual metrics equaled 48.5% for all 3 
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vascular parameters. Due to the heterogeneity of our datasets, we then calculated percent 

agreement after dichotomizing the data for each metric above and below the median (thick 

cell outlines in Tables 4.3-4.5). Percent agreement between quartile assignments increased 

to 70.0% for vessel density (quadratic-weighted Cohen’s κ: 0.4748), and to 75.8% for both 

median and average vessel size (quadratic-weighted Cohen’s κ: 0.4878 and 0.5022, 

respectively). 

 

4.4.2. Distributions of tissue vascularity metrics 

Having gained a comprehensive understanding of algorithm performance vs. manual 

annotation, we sought to characterize the biologic variability of each metric across the entire 

study slide set (n = 279 specimens). Histograms depicting the distribution of each metric are 

presented in Figure 4.4. The vessel density distribution exhibited a leftward skew, with the 

majority of data points residing between 0 and 125 vessels/mm2 (Figure 4.4A). Data 

pertaining to median vessel size approximated a normal distribution (Figure 4.4B); however, 

that of average vessel size exhibited a leftward skew and substantially larger range (~100-

700 μm2 [average] vs. 75-150 μm2 [median]; Figure 4.4C). We also plotted the distribution of 

percent vessel area and percent endothelial area, and confirmed the limited dynamic range 

of these metrics across the entire slide set (~0-8; data not shown). 

 

 

4.5. Discussion 

  

A small number of previous studies [116, 117] has characterized the vascular 

features of normal breast tissue. However, these studies only reported data from a small or 

unspecified number of women, and one study [117] only consented women aged 18-29 

years. Therefore, little is known about: 1) whether vascular characteristics of normal human 



 

 84 

breast tissue vary in association with diverse demographic factors; and 2) how the vascular 

features of histologically normal tissue adjacent to breast cancers may vary in accordance 

with corresponding tumor subtypes and in association with established breast cancer risk 

factors. To address these knowledge gaps, we generated a novel, high-throughput algorithm 

tuned to quantitate CD31+ vasculature in histologically normal breast tissue from women 

with breast cancer. This algorithm was applied to a set of 279 specimens from 228 women, 

and, to our knowledge, represents the largest, most comprehensive analysis of normal 

breast vascular content reported to-date.  

Our method was developed via integration of high-throughput digital technology and 

manual review. First, prior to tuning the algorithm, we minimized the inclusion of tissue 

aberrations and artifacts with potential to substantially misrepresent vascular content and 

phenotypes. In the second cycle of manual review, performed after applying the algorithm to 

all 279 specimens, we examined each digitally annotated slide for gross irregularities. 

Finally, automated and manually computed vessel parameters were directly compared. 

Evaluation of vascular characteristics in the 33-slide validation set revealed that, compared 

to manual annotation, the algorithm tended to overestimate vessel density and 

underestimate both median and average vessel size. However, these estimates were 

quantitatively highly correlated with the manual estimates and can be objectively and 

reproducibly estimated, and visual inspection suggested high accuracy in identifying 

vascular regions. The observed discrepancies appeared to primarily arise from the inability 

of the algorithm to discern objects with staining intensities below a certain threshold. Large 

vessels, particularly those sectioned in an oblique fashion, exhibited areas of faint and/or 

non-continuous endothelial cell staining and were partitioned by the algorithm into multiple 

smaller structures. In contrast, overarching vessel structure was more faithfully captured 

during manual annotation, leading to relative reductions in vessel density and increases in 

vessel size. Despite these differences, automated and manually computed parameters 
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exhibited moderate concordance according to widely accepted benchmarks for 

interpretation of the Cohen’s κ statistic [214]. Nevertheless, future molecular epidemiologic 

assessment of this dataset (see below) will include sensitivity analyses excluding samples 

with areas of problematic classification.  

The data obtained from this method will be applied in the context of a molecular 

epidemiologic study to characterize vascular content (vessel density) and phenotypes 

(median vessel size) in cancer-adjacent normal breast. Median, as opposed to average, 

vessel size was selected for use in future analyses because the data for this parameter 

across all study specimens approached a normal distribution. Samples from NBS are well 

annotated with respect to clinical features and patient demographic data, enabling studies of 

how vascular features vary with the intrinsic subtype of the corresponding tumor, as well as 

in association with tissue histology and established breast cancer risk factors. Ultimately, we 

anticipate that this work will reveal subtype-specific differences in the vascular properties of 

cancer-adjacent breast, and provide insight into factors that may contribute to observed 

differences in local tumor recurrence rates.
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4.6. Figures 

Figure 4.1. Example of vascular algorithm output 

 
 

A) Histologic section of adipose-rich cancer-adjacent breast immunohistochemically stained 

for CD31. The black rectangle indicates the location presented at high magnification in C-E. 

Scale bar = 500 μm. B) Digital rendering of tissue (blue) vs. glass (grey) components. Scale 

bar = 500 μm. C) High-magnification image of the location outlined in A. Brown indicates 

areas of CD31-positivity. D) Digital rendering of vessel identification algorithm; in this output, 

no distinction is made between vessel lumena and walls. Vessel size categories (e.g., 

medium [orange]; large [red]) are shown here for illustration purposes only. E. Digital 

rendering of vessel identification algorithm; this output can distinguish between vessel walls 

(purple) and vessel lumena (green). Scale bar for C-E = 50 μm. 
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Figure 4.2. Representative manual annotations for algorithm validation slide set 
 

 
 
Digital images of adipose- (top) and stroma-rich (bottom) tissue specimens overlaid with the 

layers denoting the algorithm analysis area (green layer) and manually segmented tissue 

compartments. The blue, magenta, red, and yellow layers denote manually annotated tissue 

area, glass and artifacts, vessels, and vessel lumina, respectively. In the top slide, air 

bubbles outlined in dashed green lines (indicated with arrows) were excluded from the 

algorithm analysis area. Scale bar for both panels  = 3 mm. 
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Figure 4.3. Correlations between automated and manually computed vessel metrics 
across the 33-slide validation set 
 

 
Pearson’s correlation coefficients and lines of best fit comparing automated and manually 

computed tissue and vascular parameters for the 33-slide validation set, including A) tissue 

area; B) vessel density; and C) median and D) average vessel size. 

 
 
 
 
 
 
 
 

A) B) 

r = 0.8936 r = 0.5559 

r = 0.4894 

C) D) 

r = 0.5626 
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Figure 4.4. Distribution of tissue vascularity metrics across the entire 279-slide set  
  

 
 
 

Distribution (sample proportion and count) of A) vessel density (1/mm2 of tissue), B) median 

vessel size, and C) average vessel size across the entire study slide set (n = 279 slides). 
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4.7. Tables 
 
Table 4.1. Distribution of patient demographic factors (n = 228) 
 

 
Breast cancer diagnosis 

No cancer 
history 

  
Invasive 
disease 

 
No active 
disease* 

 
In situ  

disease 

 
Benign 

condition 
 

     
Total n (%) 180 (78.9) 2 (0.9) 29 (12.7) 17 (7.5) 

     

Age at surgery + SD 53.8 + 12.3 49.5 + 7.7 57.3 + 12.0 46.7 + 15.4 
     

Race     

    White 110 (61.1) 2 (100.0) 21 (72.4) 9 (52.9) 

    Black 56 (31.1) 0 (0.0) 3 (10.3) 7 (41.2) 
    Other/Not reported 14 (7.8) 0 (0.0) 5 (17.2) 1 (5.9) 

     

BMI + SD (kg/m2)  29.4 + 6.9 33.8 + 7.7 25.7 + 5.7 28.4 + 8.3 

 
*Patients with a prior breast cancer history were diagnosed and treated with complete 
response at least one year prior to the consented surgery, and had no active disease at the 
time of surgery. 
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Table 4.2. Distribution of tumor characteristics among breast cancer patients (n = 
209)  
 

 
n % 

   
Stage   

    0 29 13.9 

    1 93 44.5 
    2 56 26.8 

    3 22 10.5 

    4 6 2.9 

    Missing 3 1.4 
   
Grade   

    1 40 19.1 

    2 81 38.8 

    3 85 40.7 

    Missing 3 1.4 

   

Tumor size   

    <2 cm. 113 54.1 

    >2-5 cm. 68 32.5 

    >5 cm. 28 13.4 

   

Lymph node status   

    Positive 70 33.5 

    Negative 116 55.5 

    Missing 23 11.0 

   

ER status   

    Positive 146 69.9 

    Borderline 4 1.9 

    Negative 54 25.8 

    Missing 5 2.4 

   

PR status   

    Positive 121 57.9 

    Borderline 6 2.9 

    Negative 76 36.4 

    Missing 6 2.9 

   

HER2 status*   

    Positive 34 18.9 

    Negative 138 76.7 

    Missing 8 4.4 

 
*Among invasive cases only. 
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Table 4.3. Agreement between automated and manually computed vessel density in 
the 33-slide validation set  
 

 Automated 

Q1 Q2 Q3 Q4 Totals 

Manual 

Q1 4 3 2 0 9 

Q2 2 3 0 3 8 

Q3 3 1 4 0 8 

Q4 0 1 2 5 8 

Totals 9 8 8 8  

 
Quadratic-weighted Cohen’s κ: 0.4748 (95% CI: 0.1738 - 0.7830) 
 
Percent agreement (perfect agreement): 48.5% 
 
Percent agreement (dichotomization above and below the mean): 70.0% 
 
Q: quartile; CI: confidence interval. Shaded cells indicate perfect agreement between 
automated and manually calculated metrics, whereas cells outlined with thick gridlines 
demonstrate dichotomization above and below the median. 
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Table 4.4. Agreement between automated and manually computed median vessel size 
in the 33-slide validation set  
 

 Automated 

Q1 Q2 Q3 Q4 Totals 

Manual 

Q1 5 2 2 0 9 

Q2 2 4 1 1 8 

Q3 2 0 3 3 8 

Q4 0 2 2 4 8 

Totals 9 8 8 8  

 
Quadratic-weighted κ: 0.4878 (95% CI: 0.1832 - 0.7924) 
 
Percent agreement (perfect agreement): 48.5% 
 
Percent agreement (dichotomization above and below the mean): 75.8% 
 
Q: quartile; CI: confidence interval. Shaded cells indicate perfect agreement between 
automated and manually calculated metrics, whereas cells outlined with thick gridlines 
demonstrate dichotomization above and below the median. 
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Table 4.5. Agreement between automated and manually computed average vessel 
size in the 33-slide validation set  
 

 Automated 

Q1 Q2 Q3 Q4 Totals 

Manual 

Q1 5 3 0 1 9 

Q2 2 3 3 0 8 

Q3 1 0 4 3 8 

Q4 1 2 1 4 8 

Totals 9 8 8 8  

 
Quadratic-weighted κ: 0.5022 (95% CI: 0.1960 - 0.8084) 
 
Percent agreement (perfect agreement): 48.5% 
 
Percent agreement (dichotomization above and below the mean): 75.8% 
 
Q: quartile; CI: confidence interval. Shaded cells indicate perfect agreement between 
automated and manually calculated metrics, whereas cells outlined with thick gridlines 
demonstrate dichotomization above and below the median. 
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CHAPTER 5 
 

INTEGRATIVE SUMMARY AND FUTURE DIRECTIONS 
 
 

 
5.1. Summary 

 

With a focus on characterizing the unique features of TNBC microenvironments, this 

body of work laid a strong, broad foundation for understanding how breast tissue stroma 

varies in association with the intrinsic subtype of the corresponding tumor. Our studies 

highlight the complexity of TNBC microenvironments by profiling three distinct stromal cell 

constituents (fibroblasts, myeloid cells, and vasculature), and have relevance to multiple 

stages of disease (pre-malignant, invasive, and recurrent TNBC). In Chapter 2, profiling of 

cell-cell interactions in pre-malignant BBC revealed that fibroblasts induced p53-dependent 

morphologic changes in benign and atypical hyperplastic epithelium that correlated with 

distinct patterns of transcription. In Chapter 3, we demonstrated that suppression of 

glycolysis in myeloid cells impeded CLBC progression, potentially through the regulation of 

inflammation in both normal and tumor microenvironments. Finally, in Chapter 4, we 

developed a digital algorithm designed to quantitate CD31+ vasculature in histologically 

benign tissue from breast cancer patients, with the long-term goal of understanding how 

cancer-adjacent vascular content and phenotypes relate to differential recurrence rates 

among tumor subtypes. Collectively, this work addressed important questions relating to 

stromal-epithelial interactions in TNBC, identifying previously uncharacterized phenotypic, 

transcriptional, and proteomic responses of cancer cells to their microenvironments. 

Additional studies to uncover epidemiologic associations that directly relate to stromal-
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epithelial interactions in human tissue are also underway (see section 5.4). The goal of the 

present Chapter is to describe the overarching translational relevance of this dissertation, 

and to broadly demonstrate how the complementary experimental models used herein can 

be integrated in future work (Figure 5.1).  

 

 

5.2. Importance and translational implications of studying pre-invasive and malignant 

stromal-epithelial interactions  

 

The tissue microenvironment been described as a contextual double-edged sword.  

Physiologic microenvironments can restrain or even revert malignant phenotypes, whereas 

aberrant, permissive microenvironmental signals destabilize tissue architecture to promote 

carcinogenesis and malignant progression [59]. That the normal microenvironment acts as a 

barrier to carcinogenesis implies that tumorigenic cells must acquire, and that normal 

microenvironments select for, mutations and associated adaptive phenotypes (e.g., 

enhanced proliferation and/or invasion) that improve biologic fitness [215].  

Studies of heterotypic interactions during early stages of tumor development are 

important for understanding how pre-malignant cells overcome microenvironmental 

constraints. In Chapter 2, we characterized the evolution of stromal-epithelial interactions 

during progression to malignancy and identified novel morphogenetic responses of pre-

invasive breast epithelium to fibroblast co-culture. Responses to co-culture were dependent 

upon genetic context (i.e., epithelial p53 status), with p53-deficient cells displaying 

accelerated adaptive changes (increased asphericity/local invasion) relative to p53-sufficient 

controls. Furthermore, identification of gene expression patterns correlating with morphology 

provides insight into signals that induce or sustain adaptive epithelial phenotypes, and may 
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lead to the identification of targetable interactions for BBC prevention in susceptible 

populations.  

Invasive cancer cells possess an array of adaptive phenotypes that have enabled 

them to successfully overcome stromal barriers to carcinogenesis. In turn, aberrant 

paracrine communication patterns between cancer cells and the surrounding tissue facilitate 

development of a permissive stroma that further perpetuates tumor progression [215]. 

Elucidation of stromal-epithelial interactions in established TNBCs, such as those described 

in Chapter 3, is crucial for the development of novel therapeutic targets for this clinically 

intractable tumor subtype. Similarly, although the M-Wnt cells used in our study only invade 

locally within the mammary fat pad, studies of heterotypic interactions can also provide 

important insights into the biology of metastatic tumors: identification of stromal factors that 

retain metastatic cancer cells in a latent state, as well as signals enabling them to emerge 

from dormancy, will be crucial for preventing disease relapse [59, 216, 217]. Whether or not 

contextual metastatic cues vary across breast cancer subtypes is an important area for 

future study. 

 

 

5.3. Limitations  

 

5.3.1. 3D cultures  

Although 3D co-cultures facilitate contextually relevant studies of tissue biology, 

particularly compared to cells cultured in a monolayer on plastic, the inclusion of a limited 

number of cell types (e.g., cancer cells and one stromal cell constituent) implies that these 

models fail to recapitulate the full dynamic complexity of living tissues. Similarly, we also 

acknowledge that immortalized stromal cells, such as the hTERT-immortalized fibroblasts 

used herein, do not reflect the full spectrum of biologic variability associated with primary 
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human cells. Primary fibroblasts from each stage of pre-malignant breast disease 

represented in our study would offer the greatest degree of physiologic relevance; however, 

tissue of suitable quality for live-cell isolation is not readily available. Thus, co-cultures are 

amenable to the study of a single or small number of signaling pathways in relative isolation 

and under relatively homogeneous conditions, but more complex model systems and related 

analytical approaches are required to understand how cell-cell interactions are altered in 

more heterogeneous environments. While OCT may be technically amenable to analyses of 

this nature, the non-high-throughput nature and complex technologic requirements of this 

method currently preclude its widespread use in the field. Therefore, development of more 

streamlined OCT analysis procedures and novel bioinformatic tools for increasingly complex 

models of TNBC microenvironments is critical. 

 

5.3.2. Orthotopic tumor model 

A limitation of orthotopic tumor models in general is that the natural history of these 

cancers is substantially different from that of human disease. Injection of mice with tumor 

cells represents an “artificial” etiology, whereas human carcinogenesis occurs in part due to 

genetic predisposition and/or acquisition of somatic mutations from environmental 

exposures. Orthotopic models also typically require greater technical skill, particularly 

compared to subcutaneous models, as cells must be precisely injected or even surgically 

implanted into the desired tissue [218]. Despite these limitations, orthotopic models afford 

many advantages to studies of tumor microenvironments, including: 1) the ability to inject 

the same number of cancer cells into each animal, thus enabling experimental control; 2) 

relatively rapid tumor development (typically days to weeks vs. weeks to months for 

spontaneous cancer models); and 3) physiologic relevance with respect to site of tumor 

growth; i.e., tumors develop in the stroma context of the tissue from which they were 

originally derived. 
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Given that CLBC was only recently recognized [48], there is an urgent need to better 

characterize the mutational profiles of human cancers to enable more physiologically 

relevant studies of tumor-stromal interactions, particularly in in vivo settings. Previous 

studies in animal models suggest that loss-of-function mutations in TP53 may be important 

in the biology of this subtype. For example, Knight et al. recently reported a GEMM of 

spontaneous breast cancer wherein both cMET overexpression and p53 loss in the 

mammary epithelium synergize to promote tumors that pathologically resemble human 

CLBCs [75]. In addition, overexpression of prolactin in the mammary epithelium of TP53-null 

mice accelerated the formation of tumors with claudin-low histopathology [219]. However, as 

the M-Wnt cells used in Chapter 3 are TP53-wild-type, additional genetic factors are likely to 

play a role in CLBC development and progression. Data pertaining to BBCs may provide 

additional clues; however, we must caution that the documented molecular differences 

between BBCs and CLBCs [12, 49, 51] imply that results from studies of one subtype may 

not be broadly applicable to the other.  

 

5.3.3. Human tissue model 

Results from the NBS must be interpreted in light of its hospital-based nature. 

Participants are more likely to reflect the population of Chapel Hill, NC and surrounding 

areas, with overall higher socioeconomic status and better access to healthcare than the 

general US population. However, given the limited number of previous studies pertaining to 

normal and cancer-adjacent breast vasculature, as well as the qualitative nature thereof and 

small number of patients therein, our study is an important step to understanding how 

tumor-adjacent vasculature varies in association with tumor subtype and associated risk 

factors. Nevertheless, it will be important to validate our results in additional populations. We 

must also acknowledge that a general limitation of digital histology algorithms is that they 

must often be tuned to individual slide sets due to variability in tissue preservation methods 
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(frozen vs. FFPE), tissue topologies, colorimetric substrates, and staining intensities, 

potentially precluding their use in clinical settings where rapid specimen assessment is 

required. Furthermore, algorithms also exhibit limited flexibility and analyses are bound by a 

finite set of parameters. To circumvent these constraints, novel machine/deep learning 

modalities are being developed for a variety of biologic applications, including using digital 

histology images to diagnose, subtype, and prognose breast cancers [220-223]. Ultimately, 

there is much to be learned from molecular research of human tissue, to which 

advancements in a wide range of digital histopathology techniques will undoubtedly 

contribute. 

 

 

5.4. Avenues for future research: methodologic complementarity 

 

A natural extension of the work presented in Chapter 2 is to characterize p53-

dependent fibroblast-epithelial interactions in the context of malignant BBC. To this end, 

similar 3D morphogenesis and gene expression assays to those described herein are 

currently ongoing, leveraging a panel of well-characterized isogenic (p53-sufficient and -

deficient) invasive breast cancer cell lines. Incorporation of both BBC (HME-CC, SUM102) 

and luminal (MCF-7, ZR-75-1) cell line pairs in this study will also facilitate identification of 

subtype-specific microenvironmental interactions, as opposed to generalized, stereotypic 

responses of breast cancer cells to fibroblast co-culture. Interestingly, an invasive MCF10 

line (MCF10CA1a) with a spontaneous activating mutation in PIK3CA has also been 

reported [224], and creation of a p53-deficient line could enable investigations of malignant 

stromal-epithelial crosstalk on an otherwise isogenic background.  

Pathway-focused analyses of co-cultures can be further tested in the context of 

human studies. In particular, the rapid proliferation of publically available datasets facilitates 
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validation of gene signatures (specific groups of genes that vary in response to a given 

biologic stimulus) or other transcriptional findings in human patients at minimal cost. 

Integration of these techniques is critical for the identification and validation of novel risk 

factor, diagnostic, prognostic, and predictive biomarkers in breast cancer.  

The predominant question raised in Chapter 3 is mechanistic in nature: how 

precisely does loss of myeloid Glut1 impair CLBC progression? Our study points to a role for 

myeloid Glut1-mediated modulation of inflammatory processes, but these interactions must 

be further evaluated in a mechanistic setting. Integration of additional animal models and 

cell-based assays will have utility for exploring these novel hypotheses. As one example, to 

test the hypothesis that increased immunosurveillance (i.e., altered effector T cell function) 

underlies the delayed tumor progression observed in Glut1M-/- compared to Glut1MFl/Fl mice, 

Glut1M-/- animals could be crossed to syngeneic C57BL/6J Rag1 null mice; the resulting 

animals would harbor Glut1-/- myeloid cells and would lack mature T (and B) cells 

(https://www.jax.org/strain/002216). Normalization of M-Wnt tumor progression patterns in 

Glut1M-/-; Rag1-/- mice to Glut1MFl/Fl or near-Glut1MFl/Fl levels would implicate a role for Glut1-

dependent myeloid cell-T cell interactions in regulating CLBC progression. In vitro T cell-

stimulation assays could also be performed to test this hypothesis in the context of a smaller 

scale, more tractable experimental unit. Incubation of cytotoxic T-cells with tumor-associated 

macrophages from mice of both genotypes, followed by incubation of primed T-cells with 

cultured M-Wnt cells, could enable direct assessment of T cell cytotoxicity in the context of 

Glut1M-/- and Glut1MFl/Fl microenvironments. Importantly, however, these cell-based assays 

would necessitate extensive study of primary cell phenotypes to facilitate experimental 

reproducibility, as well as a careful evaluation of culture conditions to ensure primary cell 

survival for the duration of the assay. 

An additional area for future research with relevance to Chapter 3 relates to the 

concept of reverse Warburg metabolism. In this model, activated CAFs undergo Glut1-

https://www.jax.org/strain/002216
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dependent aerobic glycolysis and secrete lactate into the tumor microenvironment, in turn 

“feeding” cancer cells and enabling cancer cell oxidative mitochondrial metabolism [225, 226]. 

This stromal-epithelial “lactate shuttle” has been reported to facilitate prostate tumor growth 

[227] and protect breast cancer cells from hypoxia-mediated apoptosis [226], and may 

underlie tumor-promoting effects of CAFs in colon cancer and melanoma models [228]. 

Evidence of the reverse Warburg effect has also been detected in human breast and prostate 

tumors, wherein it is associated with increased recurrence rates and high tumor stage, 

respectively [226, 229]. Interestingly, our laboratory has previously demonstrated that BMDMs 

from Glut1M-/- relative to Glut1MFl/Fl mice produce lower concentrations of lactate in response 

to pro-inflammatory lipopolysaccharide/interferon gamma (LPS/IFNγ) stimulation [183]. 

Accordingly, important avenues for future research are to determine if Glut1M-/- MFP 

macrophages also produce less lactate in response to pro-inflammatory stimuli, and to 

address whether macrophages in tumor stroma also contribute to the growth-promoting 

effects of reverse Warburg metabolism in cancer. 

Finally, as aforementioned, the algorithm described in Chapter 4 will be applied to 

molecular epidemiologic studies of human tissue. Samples in the NBS are clinically 

annotated with respect to both demographic and life exposure data, enabling thorough 

assessment of how vascular content and phenotypes vary in association with TNBC tumor 

characteristics (e.g., grade, stage, size, and lymph node status) and risk factors (e.g., young 

age/premenopausal status, African American race, obesity, parity, and never having 

breastfed) [19, 22, 31, 32, 41]. Furthermore, as molecular characteristics of frank breast 

tumors are strongly reflected in histologically normal tissue located within 1 cm of the 

primary lesion, but are attenuated or absent at distances of 3 and 5 cm [230-232], it will also 

be important to consider the distance of each cancer-adjacent tissue sample from the tumor.  

In future work, mechanisms by which the vasculature influences both primary and 

metastatic tumor behavior should be characterized. Animal tumor models will be particularly 
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important to contextualizing these studies to epidemiologic associations identified with the 

vascular algorithm, particularly those that are challenging or even impossible to model in 

cell-based systems (e.g., parity). Interactions identified in tissue-level studies can be further 

dissected in vitro, wherein utilization of breast-specific endothelial cells will be crucial to 

maintaining the physiologic relevance of the system [111, 112, 116]. 

In conclusion, the work presented herein used a broad range of molecular tools to 

identify novel phenotypic, transcriptional, and tissue-level responses of TNBC cells to a 

diverse array of microenvironmental constituents. Continued, integrated use of these 

complementary model systems is vital to further enhancing our understanding of stromal-

epithelial interactions in TNBC, and to conclusively identifying novel therapeutic targets for 

this intractable tumor subtype. 
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5.5. Figures 
 
Figure 5.1. Integration of complementary model systems furthers knowledge of TNBC 
microenvironments 
 

A number of complementary model systems are available for the study of tissue 

microenvironments. Epidemiologic associations revealed by human studies can be 

mechanistically probed “in-context” with animal models, or in cell-based assays that afford a 

highly controlled setting. In vitro assays that identify novel stromal-epithelial communication 

patterns or improve mechanistic understanding of previously described interactions can be 

further examined in the setting of a complex living tissue, whereas tissue-level phenomena 

in animals can be dissected into smaller, more tractable experimental units in vitro. 

Moreover, hypothesis-generating work in animals can be supplemented by incorporating 

additional genetically engineered in vivo models that improve mechanistic understanding. 

Finally, results from studies of stromal-epithelial interactions in both cell-based and animal 

models can be applied in epidemiologic resources to determine the relevance of a given 

interaction to human populations.  
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