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ABSTRACT

Siliang Gong: Study on Correlations in High Dimensional Data
(Under the direction of Yufeng Liu and Kai Zhang)

With the prevalence of high dimensional data, variable selection is crucial in many real

applications. Although various methods have been investigated in the past decades, challenges

still remain when tens of thousands of predictor variables are available for modeling. One

difficulty arises from the spurious correlation, referring to the phenomenon that the sample

correlation between two variables can be large when the dimension is relatively high even if they

are independent. While many classical variable selection methods choose a variable based upon

its marginal correlation with the response, the existence of spurious correlation may result in a

high false discovery rate. On the other hand, when important variables are highly correlated,

it is desirable to include all of them into the model. However, there is no such guarantee in

many existing methods. Another challenge is in most variable selection approaches one needs to

implement model selection to control the model complexity. While cross-validation is commonly

used, it is computationally expensive and lacks statistical interpretation. In this proposal,

we introduce some novel variable selection approaches to address the challenges mentioned

above. Our proposed methods are based upon the investigations on the limiting distribution of

the spurious correlation. For the first project, we study the maximal absolute sample partial

correlation between the covariates and the response, and introduce a testing-based variable

selection procedure. In the second project, we take advantage of the asymptotic results of the

maximal absolute sample correlation among covariates and incorporate them into a penalized

variable selection approach. The third project considers applications of the asymptotic results in

multiple-response regression. Numerical studies demonstrate the effectiveness of our proposed

methods.
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CHAPTER 1

Introduction

1.1 Variable selection in high dimensional problems

Due to the advance of technology, high dimensional data are prevalent in many different

scientific disciplines, where the number of variables may be much larger than the sample size.

For example, in biological studies, microarray data often contain the expressions of thousands

of genes, where only tens of them are responsible for the phenotype. In financial markets, high-

frequency financial data often include numerous variables that are influential to assets pricing.

High-dimensional data are also frequently involved in health studies, nueroscience, economics,

and many more.

For high dimensional data, linear model is one of the most commonly used models in

practice. Consider the following linear model

y = Xβ + ε, (1.1)

where y is an n × 1 response vector, X is an n × p design matrix, β = (β1, β2, · · · , βp)T is

a vector of unknown coefficients and ε = (ε1, ε2, · · · , εn)T is a vector of random errors. Here

ε1, ε2, · · · , εn are i.i.d. mean zero random variables independent of the covariates.

Under the high dimensional setting where p � n, traditional modeling methods such as

ordinary least squares (OLS) cannot be applied directly to (1.1). On the other hand, for datasets

with a large number of candidate predictors, sometimes only a few of them are truly relevant

to the response (Fan et al., 2014). In other words, the underlying true model is sparse, i.e.,

the number of non-zero parameters in β, denoted by s, cannot be too large. Therefore, it is

important to identify such variables, and this consideration makes variable selection crucial in

high dimensional problems.

1



In the context of linear regression model (1.1), various variable selection procedures have

been intensively investigated in the past decades. One well known example is best subset

selection (c.f., Furnival and Wilson (2000)), which can be viewed as the solution to l0-penalized

least squares,

min
β∈Rp

‖y −Xβ‖22 + λ‖β‖0, (1.2)

where ‖ · ‖2 and ‖ · ‖0 denote the l2 and l0 norms respectively. Although best subset selection

admits good sampling properties (Barron et al., 1999), the optimization problem in (1.2) is

NP-hard, thus is computationally infeasible for high dimensional problems.

Variants of best subset selection methods include the forward stepwise regression (FSR),

backward stepwise regression, stagewise regression (Hocking, 1976), ect. FSR starts with a null

model, and adds one variable at a time such that the residual sum of squares is minimized.

Backward stepwise selection, on the contrary, starts with the full model and deletes a variable

that is least statistically significant. In contrast with best subset selection, these methods are

more computationally efficient. However, those algorithms can be too greedy. For instance, at

each step, FSR fixes the variables already in the model, and selects an additional one among

those remaining that minimizes residual sum of squares. Due to the much reduced search

space, FSR often misses important variables. Taking a sequential selection strategy similar to

stepwise algorithms, Efron et al. (2004) proposed the Least Angle Regression (LARS), which

is less greedy by construction. At the first step, LARS chooses a variable if it has the largest

absolute sample correlation with the response. For successive steps, the estimate is obtained

such that all active variables have equal sample correlation with the current residuals. Here

active variables refer to those already included in the model. Although LARS is discrete in

terms of variable selection, it is closely connected with continuous selection methods, which

will be discussed later.

Another class of extensions of best subset selection is to use shrinkage techniques. In

particular, Problem (1.2) can be generalized to penalized regression as follows:

min
β∈Rp

‖y −Xβ‖22 + λP (β), (1.3)

2



where λP (β) is the regularization term with P (β) being a function of β. One of the most

well known penalized variable selection methods is the least absolute shrinkage and selection

operator (LASSO) introduced by Tibshirani (1996). Tibshirani (1996) proposed to impose an l1

penalty P (β) = ‖β‖1 =
∑p

j=1 βj , leading to a sparse estimator that shrinks the OLS solution

and sets some of the estimated coefficients exactly to zeros. In the literature, a lot of work

has been done on developing both the computational and theoretical properties of the LASSO

estimator (Knight and Fu, 2000; Greenshtein et al., 2006; Wu and Lange, 2008; Friedman et al.,

2010). Efron et al. (2004) demonstrated that LARS can be used to compute the entire solution

path of LASSO efficiently. Moreover, the optimization problem in LASSO is convex, hence

many convex programming methods can be applied to solve the LASSO. Theoretical studies

of LASSO mainly focus on two aspects: prediction accuracy and variable selection consistency,

where the latter is more related to our thesis. Meinshausen and Bühlmann (2006) provided

a neighborhood stability condition that is necessary and sufficient for LASSO to recover the

support set of β, which is equivalent to the irrepresentablility condition introduced by Zhao

and Yu (2006).

Due to the shrinkage nature, LASSO may over-shrink the estimates and cause significant

bias. An alternative approach to address such a problem is the adaptive LASSO (Zou, 2006).

Zou (2006) suggested a reweighted version of the l1 penalty P (β) =
∑p

j=1wjβj with wj =

|βinitj |−γ for some γ > 0, where βinitj is an initial estimate for βj . Zou (2006) also demonstrated

that the adaptive LASSO is consistent in variable selection under less stringent conditions than

LASSO. There are other modifications of the LASSO in the literature. For example, Zou and

Hastie (2005) pointed out some limitations of LASSO as a variable selection procedure: first, in

the high dimensional setting where p� n, LASSO can only select up to n variables; secondly,

if there is a group of variables that are highly correlated, LASSO tends to select only one of

them. To address these problems, Zou and Hastie (2005) introduced the elastic net method,

using λ1‖β‖1 + λ2‖β‖2 as the regularization term in (3.1) and thus encouraging a grouping

effect. Besides the elastic net, various penalized variable selection methods have been proposed

as extensions to LASSO, including the Dantzig selector (Candes and Tao, 2007), the smoothly

clipped absolute deviation (SCAD) penalty (Fan and Li, 2001), among many others.
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Despite good theoretical properties and numerical performance in practice, those penalized

variable selection procedures mentioned above may not work well when the dimensionality

p is very large. When p diverges with an exponential rate with respect to n, this situation

is referred to as the ultrahigh dimensional setting. With the development in mass storage

technology, ultrahigh dimensional data have become prevalent in different applications. As

a result, ultrahigh dimensional variable selection has gained much attention. A well known

example is the Sure Independence Screening (SIS) proposed by Fan and Lv (2008), which

screens out covariates based upon their marginal sample correlation with the response. More

specifically, let w = (w1,w2, · · · ,wp) be a vector such that wj = |Ĉorr(Xj , Y )| and γ is a

constant between (0, 1), then a sub-model is defined as

Mγ = {j : wj is amongst the largest [γn] of all the correlations}, (1.4)

where [γn] denotes the integer part of γn. Fan and Lv (2008) further demonstrated that SIS is

screening consistent under some conditions. This guarantees that all those Xj ’s with βj 6= 0 is

included in the subset of covariates. Other examples of variable screening include, but are not

limited to Wang (2009); Li et al. (2012); Zhu et al. (2012).

So far we have discussed variable selection approaches under a high dimensional setting.

Although these methods are useful in many practical applications, they can be sub-optimal in

the ultrahigh dimensional problems due to spurious correlation. In the following section, we

will discuss some potential issues caused by correlation.

1.2 Spurious correlation

One challenge for high dimensional variable selection arises from the spurious correlation

among variables. To be more specific, the sample correlation between two variables (here the

two variables might be a covariate and a response, or two covariates) can be large even if

they are uncorrelated in the population sense. To better understand the impact of spurious

correlation, we use a simple toy example to demonstrate the issue. Let x = (X1, X2, · · · , Xp) be

i.i.d. standard normal random variables, and 50 independent observations are generated from

the distribution of x. Figure 1.1 displays the maximal absolute sample correlation between X1
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Figure 1.1: Distribution of maximal absolute sample correlation between X1 and {Xj : j 6= 1}.

and the remaining variables out of 1000 simulations with p = 800 and p = 5000 respectively.

One can see that even if Xi’s are independent of each other, the magnitude of maximal sample

correlation is much greater than zero.

The phenomenon of spurious correlation may challenge the aforementioned variable selec-

tion approaches and can result in failures to identify important variables. Note that LARS and

FSR add a covariate into the model when it maximizes the absolute sample correlation with the

response or residuals, but such a large sample correlation can be spurious, especially when the

number of candidate variables increases. In other words, with the presence of spurious correla-

tion, it becomes harder to distinguish important variables from unimportant ones. Moreover, in

many applications where important variables tend to be highly correlated, it will be desirable to

include all of those covariates into the model when implementing variable selection. However,

due to the spurious correlation issue, it is difficult to identify covariates that are truly correlated

based on their pairwise sample correlations. Although spurious correlation has been recognized

in the literature (Fan et al., 2014, 2015), few of them are devoted to high dimensional variable

selection, which is of our primary interest.
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1.3 New contributions and outline

In this proposal, we introduce some novel variable selection methods for high dimensional

linear models. We first propose a testing-based variable selection procedure that utilizes the

limiting distribution of the maximal absolute partial sample correlation between covariates and

the response. Moreover, we study the extreme distributions of the absolute pairwise sample

correlation among covariates and incorporate the results to a penalized variable selection ap-

proach. We further consider utilizing the asymptotic results for multiple-response regression

problems. The main outline is as follows:

• In Chapter 2, we introduce a flexible and efficient test-based variable selection approach

that could be incorporated with any sequential selection procedure. The test is on the

overall signal in the remaining inactive variables using the maximal absolute partial corre-

lation among the inactive variables with the response given active variables. We develop

the asymptotic null distribution of the proposed test statistic as the dimension grows

towards infinity uniformly in the sample size. We also prove the consistency of the test

procedure. With this test, at each step of the selection, we include a new variable if and

only if the p-value is below some pre-defined level. Numerical studies show that the pro-

posed method delivers very competitive performance in terms of both variable selection

accuracy and computational complexity compared to cross-validation.

• We study in Chapter 3 the asymptotic distribution of the maximal absolute correlation

among p independent covariates as the dimensionality p goes to infinity. Using the limiting

distribution, we propose a threshold to screen covariates pairs. We further combine the

pair screening with marginal screening using Sure Independence Screening (SIS) (Fan

and Lv, 2008) and establish a penalized variable selection procedure that can penalize

covariates selectively according to the screening results. Numerical studies demonstrate

that our method is competitive in both variable selection and model prediction.

• In Chapter 4, we proposal a multiple-response regression approach using weighted L2

penalty. We first consider applications of the asymptotic distribution of the maximal

absolute sample correlation between each of the covariates and all responses. Based on
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the extreme value theory results, we propose a weight function using the exponential

of p-values for each covariate and construct a weighted simultaneous variable selection

estimator for the parameter matrix. We also introduce a blockwise descent algorithm to

compute the estimator. We show that our method performs well in practice by several

numerical examples.

There are some potential future work that are related to the topics discussed in this thesis.

For instance, we only investigated the limiting distribution of the maximal absolute sample

correlation between the i.i.d. Gaussian covariates and the response. A possible extension is to

expand the result to covariates with other correlation structures. Another potential work is to

develop a decision rule for the sequential testing framework in Section 2.3.1 with multiple false

discovery rate control (Benjamini and Hochberg, 1995). We shall try to solve these problems

in the future work.
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CHAPTER 2

Test-based Variable Selection in High-dimensional linear models

2.1 Introduction

Thanks to technological advancement, high-dimensional data are now prevalent in science.

Unfortunately, traditional techniques such as ordinary least squares cannot be applied directly

to these high-dimensional settings, where the number of variables is typically much larger than

the sample size. Furthermore, it is often the case that only a few candidate predictors are truly

relevant to the response (Fan et al., 2014). In other words, the inherent high-dimensional model

is sparse. It is then crucial to identify such variables, whence the important problem of variable

selection arises.

In the context of linear regression, various variable selection procedures have been inten-

sively investigated in the past decades. One type of methods are stepwise regression, including

forward stepwise regression (FSR), backward stepwise regression, etc. Another well-known ex-

ample is the least absolute shrinkage and selection operator (LASSO) proposed by Tibshirani

(1996), which imposes the L1 penalty on regression coefficients. Efron et al. (2004) proposed

the least angle regression (LARS) method, which can compute efficiently the entire solution

path of the LASSO with respect to the tuning parameter. Details of FSR, LASSO and LARS

can be found in Chapter 1.

The variable selection methods discussed above usually involve a penalty parameter which

controls the complexity of the resulting model. In practice, cross-validation (CV) is a commonly

used technique for selecting the penalty parameter. However, CV is computationally inefficient.

Moreover, it is based on minimizing in-sample prediction errors, and thus does not have a clear

inferential meaning. Besides CV, another class of model selection approaches is based on

hypothesis testing. For example, Goeman et al. (2006) and Zhong and Chen (2011) focused on

testing the regression coefficients globally.
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Other testing schemes have been implemented adaptively in sequential selection procedures.

For example, Lockhart et al. (2014) proposed the covariance test statistic for the LASSO.

Another example is the truncated Gaussian (TG) test (Tibshirani et al., 2016) developed for

LARS, FSR and LASSO. While these methods are specifically designed for particular variable

selection procedures, Fithian et al. (2015) introduced a general framework for testing the

goodness of fit that applies to FSR, LARS and LASSO. However, their tests are developed

separately for FSR and LARS (LASSO). In addition, the method of Fithian et al. (2015)

requires MCMC sampling for the null distribution, which can be time consuming.

For LARS, FSR and LASSO, test-based approaches are applicable because these procedures

are sequential in nature: typically, only one variable is added into the model at each step (though

the LASSO can sometimes include steps in which variables are dropped). Therefore, tests can

be conducted at each step of the selection procedure. One can further develop some stopping

criterion based on the p-values associated with these hypothesis tests.

Another common feature of these procedures is that at each step, a variable is selected

if, among all unselected (or inactive) variables, it has the largest absolute sample correlation

with the current residuals, i.e., the difference between the response and its estimates from the

previous step. However, such a large sample correlation can be spurious. Indeed in situations

where the number of predictors is large compared to the sample size, it may happen that the

response is theoretically independent from all of them and yet some of these predictors appear to

be highly correlated with the response simply by chance. This phenomenon can be particularly

severe in high-dimensional problems. As proved by Fan et al. (2014), the maximal correlation

observed in a sample of fixed size n between a response and independent covariates can be close

to 1 if the number p of such covariates is sufficiently large.

In this thesis, we introduce an efficient high-dimensional test-based variable selection

method. We focus on the variable selection problem under the sparse linear model setting.

Motivated by the spurious correlation issue discussed above, we construct a test statistic based

on the maximal absolute sample partial correlation between the inactive covariates and the re-

sponse conditioning on the active covariates at each step of the procedure. Our null hypothesis

assumes that the remaining variables are conditionally independent of the response given the

active variables. Based on the null distribution of the test statistic, we can detect whether there
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exist important covariates for the response in the inactive set. We further develop a stopping

criterion from the p-values.

There are three key advantages to the proposed method, namely:

(i) The method is flexible: the proposed tests and stopping criterion can be incorporated

into any sequential selection procedure, such as the aforementioned LARS, LASSO and

FSR.

(ii) The method is much more computationally efficient than CV, especially when p is large.

(iii) The method can accommodate arbitrarily large p, since the asymptotic null distribution

of the test statistic is developed as p→∞ uniformly in n.

This chapter is organized as follows. In Section 2.2.1, we formulate the null hypothesis

and introduce the corresponding test statistic for the proposed method. In Sections 2.2.2

and 2.2.3, we discuss the asymptotic null distribution and power of our test statistic with

independent covariates, respectively, and we extend the results for equally correlated covariates

in Section 2.2.4. In Section 2.2.5, we introduce the permutation test for covariates with arbitrary

correlation structure. In Section 2.3, we incorporate our hypothesis testing approach into

sequential variable selection procedures. In Section 2.4, we demonstrate the performance of the

new method through three simulation studies and a microarray data study. We present several

proofs in Section 2.7.

2.2 Global test to control spurious correlation

2.2.1 Global null for testing significant variables

Consider the linear model

Y = X>β + ε, (2.1)

where Y is the response variable, X = (X1, . . . , Xp)
> is a p-dimensional covariate vector,

β = (β1, . . . , βp)
> is the unknown coefficient vector which may be sparse, and ε is a random noise

from N (0, σ2) with σ2 unknown. For now we assume that X is from a p-dimensional Gaussian

distribution with some unknown covariance matrix Σ. We will discuss the non-Gaussian case
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in the numerical studies. Let y = (y1, . . . , yn)> and xj = (x1j , . . . , xnj)
> respectively stand for

the vectors of independent observations from Y and X.

For variable selection problems, the primary goal is to recover the support set of β, which

is the index set of non-zero components of the coefficient, denoted by M∗. Suppose we are

given a candidate set M, which includes the indices of all selected variables, and that we want

to know whether there are remaining important covariates in M{. We then need to test

H0 :M∗ ⊆M. (2.2)

The following proposition demonstrates that under (2.1) and the Gaussian assumption,

we can convert the above hypothesis into the problem of testing the conditional independence

between Y and the Xj ’s with j ∈M{.

Proposition 1. Suppose that X = (X1, . . . , Xp)
> has a multivariate Gaussian distribution and

the response Y is generated from the linear model (2.1). If M is a subset of {1, . . . , p}, then

M∗ ⊆M if and only if Y is independent of all Xjs for j ∈M{ conditional on XM.

Proof of Proposition 1. The proof consists of two parts: if and only if. We first prove the if

part by contradiction.

Given Y is independent of all Xj ’s for j ∈Mc conditioning on M, assume that M∗ 6⊂ M.

Denote M0 = M∗ ∩ Mc, then M0 6= ∅. Let XM0 be a sub-vector of X indexed by M0.

Similarly we have the notations XM∗ , XM∗∩M, βM0
, βM∗ and βM∗∩M. Then we have

Cov(Y,XM0 |M) = Cov(X>M∗βM∗ + ε,XM0 |M)

= Cov(X>M0
βM0

,XM0 |M) + Cov(X>M∗∩MβM∗∩M + ε,XM0 |M)

= Cov(X>M0
βM0

,XM0 |M)

(as M∗ ∩M ⊂M, and ε is independent of any Xj)

= Var(XM0 |M)βM0
,

where Var(XM0 |M) is the conditional covariance matrix given M. Since M0 ∩ M = ∅,

Var(XM0 |M) is positive definite. On the other hand, M0 ⊂M∗ implies βM0
6= 0. Therefore,

Var(XM0 |M)βM0
6= 0, leading to contradiction. As a result, we can conclude M∗ ⊂M.
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Now we prove the only if part. Suppose M∗ ⊂M, then for any j ∈Mc, we have

Cov(Y,Xj|M) = Cov(X>β + ε,Xj|M) = Cov(X>M∗βM∗ + ε,Xj|M)

= X>M∗Cov(βM∗ ,Xj|M) + Cov(ε,Xj|M) ( as M∗ ⊂M)

= 0. (as ε is independent of any Xj)

Since Y and Xj are normally distributed, it follows that Y is independent of Xj for j ∈ Mc

conditioning on M.

Proposition 1 guarantees that testing (2.2) is equivalent to the following null hypothesis:

HM0 : Given XM, Y is independent of all Xjs for j ∈M{. (2.3)

Unless the noise level σ is large, the correlation between an important covariate and the

response should be stronger than the maximal spurious correlation. In fact, many existing

variable selection methods, such as the LASSO and FSR, select variables that maximize the

absolute marginal correlation between the covariates and the response or the current residu-

als. Moreover, it is easy and efficient to obtain the maximal absolute correlation, even if the

dimension p is high. Therefore, studying the distribution of the maximal absolute correlation

under the null hypothesis (2.3) can help discover true important covariates among the candidate

predictor variables.

We cannot directly test (2.3) based on the correlation between Y and Xj because they can

be both correlated with Xi for some i ∈ M. In classical regression, the partial correlation is

commonly used to test conditional independence given a controlling variable. Motivated by

that observation, we develop our test statistic based on the sample partial correlation between

{Xj : j ∈ M{} and Y conditioning on XM. We first regress {Xj : j ∈ M{} and Y onto XM,

respectively; we then obtain the regression residual vectors

rj = (I − PM)xj , j ∈M{, r = (I − PM)y, (2.4)

12



where PM = XM(X>MXM)†X>M is the projection onto the column space of XM. Here XM

consists of the columns of X indexed by M and a vector column of 1s, so that all residual

vectors have zero mean, and A† denotes the Moore–Penrose pseudo-inverse of a matrix A. We

then compute the maximal absolute sample correlation between {rj : j ∈ M{} and r. In this

way, we define our test statistic as

RM = max
j:j∈Mc

|Ĉorr(rj , r)|, (2.5)

where Ĉorr(rj , r) is the Pearson sample correlation between rj and r. Note that the distribution

of RM depends on n, p and s, but for simplicity we omit them in the notation for RM. Since

both rj and r have zero mean, we can write

RM = max
j:j∈Mc

|〈rj , r〉|
‖rj‖‖r‖

,

where 〈 · , · 〉 is the inner product of two vectors and ‖ · ‖ represents the L2 norm. Moreover,

note that our test statistic does not depend on the mean and variance of the covariates or the

response.

To gain insight into the proposed test statistic, we start from a special case where M =

∅. The properties of the Pearson sample correlation have been intensively studied under the

classical setting n > p. In particular, it has been shown that when Xj and Y are independent

Gaussian random variables, |Ĉorr(Xj , Y )|2 ∼ B[1/2, (n − 2)/2]; see, e.g., Muirhead (2009).

Here B(s, t) represents a Beta distribution with parameters s, t. Therefore, the magnitude of

each Ĉorr(Xj , Y ) cannot be too large. However, by taking maxima, RM will be larger as p

increases. In fact, for a fixed sample size n, under (2.3), RM can get close to 1 as p→∞; see,

e.g., Fan et al. (2014). The phenomenon of irrelevant covariates being highly correlated with

the response is referred to as “spurious correlation”, which challenges variable selection and

may lead to false scientific discoveries. Thus it is important to study the distribution of RM,

especially for high-dimensional problems.
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In what follows, we discuss the asymptotic null distribution (Section 2.2.2) and power

(Section 2.2.3) of RM respectively for the situation where the Xjs are independent random

variables. We discuss the situation where the covariates are dependent in Section 2.2.4.

2.2.2 Null distribution of the test statistic with independent covariates

The limiting distribution of the maximal absolute sample correlation has been investigated

recently under the assumption of independent Gaussian covariates; see Theorem II.4 in (Zhang,

2017). The latter paper focuses on the global null hypothesis that Y is independent of the

Xjs, which is a special case of (2.3) with M = ∅. We expand the results to a more general

setting and derive the exact asymptotic distribution of the proposed test statistic under (2.3),

as described in the following theorem

Theorem 1. Suppose we observe a random sample of size n from the linear model (2.1) and

we further assume that the Xjs are independent. Let M be a candidate set with cardinality

|M| = s < n− 2 and RM be defined as in (2.5). Define

a(p, n, s) = 1− (p− s)−2/(n−s−2)c(p, n, s), b(p, n, s) =
2

n− s− 2
(p− s)−2/(n−s−2)c(p, n, s),

where

c(p, n, s) =
{n− s− 2

2
B(

1

2
,
n− s− 2

2
)
√

1− (p− s)−2/(n−s−2)
}2/(n−s−2)

is a correction factor with B(s, t) being the Beta function. Then under the null hypothesis (2.3),

for all x ∈ R,

lim
p→∞

sup
n≥s+3

∣∣∣∣Pr

{
R2
M − a(p, n, s)

b(p, n, s)
< x

}
− Fn,s(x)

∣∣∣∣ = 0,

where

Fn,s(x) = exp

{
−
(

1− 2

n− s− 2
x

)(n−s−2)/2
}
1

(
x ≤ n− s− 2

2

)
+ 1

(
x >

n− s− 2

2

)
.

(2.6)

Remark 2.2.1. The convergence in Theorem 1 is with respect to p instead of n, making it

possible to test models where p� n. Therefore, the proposed test statistic is applicable to high-
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dimensional or ultra-high-dimensional problems. In addition, the convergence is uniform for

any n ≥ s+ 3, and thus ensures finite-sample performance.

With the results in Theorem 1, we can further compute the p-value associated with the null

hypothesis (2.3). Let rM denote the observed value of RM. Then the p-value of RM for (2.3)

is approximated by

p(rM) = 1− Fn,s
{
r2
M − a(p, n, s)

b(p, n, s)

}
, (2.7)

with Fn,s as specified in Theorem 1. If the p-value is small, it is likely that at least one

variable from {Xj : j ∈ M{} is correlated with the response. Therefore we can construct

a stopping criterion based on p-values in sequential selection procedures. We will provide a

detailed discussion in Section 2.3.

Our test statistic can be connected to the conventional t-test for testing whether the pop-

ulation correlation is zero. The t-statistic is defined as t = r
√

(n− 2)/(1− r2), where r is

the Pearson sample correlation between two Gaussian random variables. Motivated by that

connection, we also develop a maximal t-statistic corresponding to the proposed test statistic

RM. The maximal t-statistic is

TM =

√
(n− s− 2)R2

M
1−R2

M
. (2.8)

Analogous to the results in Theorem 1, we derive next the asymptotic null distribution of

TM.

Corollary 1. Consider the same setting as in Theorem 1, and let TM be defined as in (2.8).

Then, for all x ∈ R, uniformly for any n ≥ s+ 3,

lim
p→∞

Pr

{
TM − ã(p, n, s)

b̃(p, n, s)
< x

}
= Fn,s(x),

where ã(p, n, s) =
√
{(n− s− 2)a(p, n, s)}/{1− a(p, n, s)}, b̃(p, n, s) = [(n−s−2)a(p, n, s){1−

a(p, n, s)}]−1/2 with a(p, n, s) given in Theorem 1, and Fn,s(x) as in (2.6).

Proof of Corollary 1. Write g(x) =
√

(n−s−2)x
1−x , then we have TM = g(R2

M) and ã(p, n, s) =

g(a(p, n, s)).
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By the Taylor expansion,

TM − g(a(p, n, s)) ≈ g′
(
a(p, n, s)

)
b(p, n, s) ·

R2
M − a(p, n, s)

b(p, n, s)
.

Then we have

g
′
(a(p, n, s))b(p, n, s) =

1

2
√

(n− s− 2)

√
1

a(p, n, s)(1− a(p, n, s))3/2
· b(p, n, s)

=
(

(n− s− 2)a(p, n, s)
(
1− a(p, n, s)

))−1/2

= b̃(p, n, s).

By the delta method, it follows that

lim
p→∞

sup
n≥s+3

∣∣∣∣∣Pr

(
TM − ã(p, n, s)

b̃(p, n, s)
< x

)
− Fn,s(x)

∣∣∣∣∣
= lim
p→∞

sup
n≥s+3

∣∣∣∣Pr

(
R2
M − a(p, n, s)

b(p, n, s)
< x

)
− Fn,s(x)

∣∣∣∣
= 0.

Our simulation results show that the difference between p-values obtained from RM and

TM is negligible. Moreover, when the covariates are correlated, the null distribution of RM

is easier to approximate, which will be discussed in Section 2.2.4. Therefore we develop our

test-based procedure with RM instead of TM.

2.2.3 Asymptotic power with independent covariates

In this section, we still focus on independent Gaussian covariates. We analyze the asymp-

totic power of RM by considering the following alternative hypothesis:

H1 :Conditionally on XM, there exists at least one j ∈M{ such that Y

is correlated with Xj .

(2.9)
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In the following theorem we show that under (2.9), the asymptotic power of the proposed

test statistic RM is 1.

Theorem 2. Suppose we have the linear model (2.1) and assume that the Xjs are independent

Gaussian variables. Then under the alternative hypothesis (2.9), as ln p/n → 0 and n → ∞,

Pr{RM ≥ xα(p, n, s)|H1} −→ 1, where xα(p, n, s) is the critical value of HM0 at significance

level α.

Theorem 2 shows the consistency of our dependency test based on the proposed test statistic

when at least one covariate is correlated with the response under the linear model setting.

2.2.4 Null distribution of the test statistic with equally correlated covariates

In Theorem 1 we have derived the exact asymptotic distribution of RM under (2.3) when

the covariates are independent Gaussian variables. When the Xj ’s have an arbitrary cor-

relation structure, it is difficult to obtain similar results. We can point to some results in

classical extreme-value theory; see, e.g., Chapter 3.8 in (Galambos, 1978). In particular, if

U1, . . . , Un is a stationary Gaussian sequence with zero expectation and unit variance, then

the limiting distribution of Wn = max(U1, . . . , Un) only depends on the limiting behavior of

rm/ln(m), where rm = E(UiUi+m) is the correlation between Ui and Ui+m. Note that due to

the stationarity assumption, rm does not change with respect to i. More specifically, if there

is another zero-mean, unit-variance stationary Gaussian sequence U ′1, . . . , U
′
n that has equal

pairwise correlation r = r(n), and r(n)/ln(n) has the same limiting form as rm/ln(m), then

W
′
n = max(U ′1, . . . , U

′
n) has the same asymptotic distribution as Wn when n → ∞. Inspired

by that result, we focus on analyzing the null distribution of RM when X1, . . . , Xp are equally

correlated, i.e., Corr(Xi,Xj) = ρ with −1/(p− 1) ≤ ρ ≤ 1 for all i 6= j.

Without loss of generality, we assume that each of the Xjs has zero mean and unit variance.

Under the equal correlation assumption, it is well known that we can decompose Xj into a linear

combination of iid standard Gaussian random variables Z1, . . . , Zp, i.e.,

Xj =
√

1− ρZj + hρ
1
√
p

p∑
i=1

Zi, (2.10)
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where hρ = {
√

1 + (p− 1)ρ−
√

1− ρ}/√p. In fact, we can also replace p by p−s in (2.10) such

that each of {Xj : j ∈ M{} is decomposed into a linear combination of p − s i.i.d. Gaussian

random variables. However, under high-dimensional sparse model settings, p � s. Hence the

two decompositions are almost the same. For notational simplicity, we consider using p instead

of p− s.

Let zj = (zj1, . . . , zjn)> be n independent samples of Zj and r̃j = (I − PM)zj be the

residuals from projecting zj onto the column space of XM. It follows from (2.10) that

rj =
√

1− ρ r̃j + hρ
1
√
p

p∑
i=1

r̃i.

Hence we have

〈rj , r〉 =
√

1− ρ 〈r̃j , r〉+ hρ

〈
p−1/2

p∑
i=1

r̃i, r

〉
,

where rj and r are defined as in (2.4).

Recall that by assumption, var(Zj) = var(Xj) = 1. Thus conditioning on XM, we have

‖rj‖2
d∼χ2

n−s−1, ‖r̃j‖2
d∼χ2

n−s−1, ‖p−1/2
p∑
i=1

r̃i‖2
d∼χ2

n−s−1.

For moderately large n, we can approximate Ĉorr(rj , r) = 〈rj , r〉/(‖rj‖‖r‖) by

Ĉorr(rj , r) ≈
√

1− ρ Ĉorr(r̃j , r) + hρĈorr

(
p−1/2

p∑
i=1

r̃i, r

)
.

Taking the maximum on both sides, we find

max
j:j∈Mc

Ĉorr(rj , r) ≈
√

1− ρ max
j:j∈Mc

Ĉorr(r̃j , r) + hρĈorr

(
p−1/2

p∑
i=1

r̃i, r

)
. (2.11)

Under the null hypothesis (2.3), note that r = (I − PM)y = (I − PM)ε and thus r̃j =

(I − PM)zj is conditionally independent of r given XM for all j ∈ {1, . . . , p}. Hence the

variables {|Ĉorr(r̃j , r)|2 : j ∈ M{} are independently distributed as B(1
2 ,

n−s−2
2 ) conditioning
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on XM. Furthermore, from a property of the normal distribution,

p−1/2
p∑
i=1

Zi
d∼N (0, 1).

Thus the conditional distribution of |Ĉorr(p−1/2
∑p

i=1 r̃i, r)|2 given XM is also B(1
2 ,

n−s−2
2 ).

Therefore, the two terms on the right-hand side of (2.11) have corresponding exact distributions.

Letting f1, f2 be the densities of max
j:j∈Mc

Ĉorr(r̃j , r) and Ĉorr(p−1/2
∑p

i=1 r̃i, r), respectively, we

have

f1(x; p, n, s) = p|x|fB(x2;n, s)

{
1 + sign(x)FB(x2;n, s)

2

}p−s−1

,

f2(x;n, s) = |x|fB(x2;n, s),

where fB(x;n, s) and FB(x;n, s) are the density and the cumulative distribution function of

B(1
2 ,

n−s−2
2 ), respectively.

It is known that when p → ∞, max(Z1, . . . , Zp) and Z1 + · · · + Zp are independent;

see, e.g., (James et al., 2007). With asymptotic independence, the density f3(x; p, n, s) of

max
j:j∈Mc

Ĉorr(r̃j , r) can be approximated, for all z ∈ [0, 1], by

f3(z; p, n, s) ≈
∫ ∞
−∞

f̃1(z − x)f̃2(x)dx, (2.12)

with f̃1(x) = ρ−1/2f1(ρ−1/2x; p, n, s) and f̃2(x) = f2(x/hρ;n, s)/hρ. In practice, ρ can be

estimated by the average of pairwise correlations among the covariates. Let

UM = max
j:j∈Mc

Ĉorr(rj , r), VM = − min
j:j∈Mc

Ĉorr(rj , r).

Note that RM = max(UM, VM), where UM and VM have identical distributions, but are not

independent.

Due to the dependence between UM and VM, it is difficult to derive the distribution of

RM and the corresponding p-value when we use RM as the test statistic. One possible way to

tackle this problem is to take UM or VM as the test statistic instead. However, the resulting

test might not be powerful enough. For example, when the true model is Y = −X1 +ε, a larger
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value of VM it is difficult to reject the null hypothesis (2.3) based on the null distribution of

UM. Similarly, if the true model is Y = X1 + ε, then using VM as the test statistic might be

unable to detect X1. However, note that if the null hypothesis does not hold, i.e., there are

important variables remaining in M{, it can be expected that the tail probability of RM will

be very small. It can then be approximated by

Pr (RM ≥ x) ≈ Pr (UM ≥ x) + Pr (VM ≥ x) = 2 Pr (UM ≥ x) . (2.13)

Since Pr (RM ≥ x) ∈ [Pr (UM ≥ x) , 2 Pr (UM ≥ x)] always holds, if 2 Pr (UM ≥ x) is small,

Pr (RM ≥ x) will also be very small, which implies that the null hypothesis may be rejected.

Therefore we can compare 2 Pr (UM ≥ x) with a pre-specified constant c to determine which

test statistic, RM or UM to use. In general, we propose to compute the p-value corresponding

to (2.3) in the following way:

p =

 Pr (RM ≥ x) ≈ 2 Pr (UM ≥ x) if 2 Pr (UM ≥ x) ≤ c,

Pr (UM ≥ x1) otherwise,
(2.14)

where x and x1 represent the observed value of RM and UM, respectively, and

Pr (UM ≥ t) ≈
∫ ∞
t

f3(z; p, n, s)dz.

The constant c is essentially a parameter balancing the accuracy and conservatism of the re-

sulting p-value. Specifically, if c is too small, the p-value is then computed from UM, which can

be too conservative; if c is too large, the approximation in (2.13) will be invalid. Our numerical

studies indicate that so long as c is relatively small, the performance of our method won’t be

affected much. Thus we set c = 0.01 throughout the numerical studies in Section 2.4.

To investigate the accuracy of the proposed asymptotic null distributions in Sections 2.2.2

and 2.2.4, we compare the p-values obtained from the proposed asymptotic null distributions

with the uniform distribution on [0, 1] respectively. We simulate 1000 independent datasets

with 200 samples from the linear model Y = X>β + ε, where β is a vector of dimensionality

2000 with non-zero components (β1, β2, β3) = (3,−1.5, 2). We generate Xj ’s from i.i.d. normal
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random variables for the independence case; while for the equally-correlated covariates, the

correlation is ρ = 0.3. The random noise is from ε ∼ N (0, 9). We first project the response

and unimportant covariates onto the space spanned by X1, X2, X3 and calculate RM with

M = {1, 2, 3}, then obtain the p-value using the proposed asymptotic distributions. The two

Q-Q plots are presented in Figures 2.1a and 2.1b respectively. It can be seen from the plots that

in both scenarios, the distribution of the empirical p-values is close to a uniform distribution

on [0, 1], indicating that our theoretical results are valid.

2.2.5 Permutation test

In the previous subsection, we mentioned when the correlation structure of the covariates

is unknown, we can still obtain the p-value approximately using the proposed asymptotic dis-

tributions. In fact, the p-value can also be computed using the permutation test, which is a

well-known resampling procedure that has many applications. A permutation test is appli-

cable if the samples are exchangeable when the null hypothesis holds. In fact, under certain

assumptions, the exchangeability condition can be satisfied.

Remark 2.2.2. Suppose ỹ is a random permuted sample from y and we obtain the test statistic

as RM(ỹ,X). If Y is independent of the covariates, i.e., β = 0, then RM(ỹ,X) has the same

distribution as RM.

To conduct the permutation test, at each step of the sequential selection, we randomly

permute the observations of Y and obtain a new sample. Then we can compute the test

statistic based on the new sample. The permutations are implemented repeatedly, and the p-

value is obtained by the ranking of the original test statistic among the permuted test statistics

over the total number of permutations. We further illustrate the permutation test step by step

as below:

1. At Step k, we shuffle the observations of Y at random Q times and obtain the permuted

sample Y (q) = (yq1, . . . , y
q
n) for q ∈ {1, . . . , Q}.

2. Compute the corresponding test statistic RqM for each Y (q), and compare the test statistic

RM obtained from the original Y .
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(a) Independent covariates
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(b) Equally correlated covariates

Figure 2.1: Q-Q plots of p-values against U[0,1] when the covariates are (a) independent; (b) equally-
correlated with correlation ρ = 0.3.

3. Suppose the rank of RM among R1
M, . . . , R

Q
M is rk. Then the p-value of the permutation

test can be written as pk = rk/Q.

Recall that our goal is to use the distribution information to provide guidance for sequential

selection procedures. In what follows, we introduce a test-based variable selection procedure

by applying the results obtained in Section 2.2.

2.3 Sequential testing for variable selection

2.3.1 Testing-based variable selection procedure

For sequential selection procedures, it is crucial to find a stopping criterion. In other words,

at each step of a particular selection procedure, we want to know whether there are remaining

important covariates in the inactive set. Therefore, we propose to conduct the dependence test

introduced in the previous section correspondingly at each step and stop the procedure once

we accept the null hypothesis. This leads to a test-based variable selection approach.

Suppose we are at Step k (k ≥ 1) of a sequential selection procedure, and let Ak−1 denote

the active set that includes the indices of selected variables from the previous step. We want to

emphasize that here Ak−1 is fixed given the data. In contrast, we use the notation Âk−1(X, Y )

to denote the index set for sampling from the data, which is random. Then one needs to
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know whether the remaining inactive covariates are all uncorrelated with the response, which is

equivalent to testing (2.3) with M = Ak−1 under the Gaussian assumption. Note that A0 = ∅

when k = 1. More specifically, we consider the following null hypothesis at Step k:

H(k)
0 : Conditioning on XAk−1

, Y and Xj are independent for ∀j /∈ Ak−1. (2.15)

We note here that the proposed testing in Section 2.2 conditions on XAk−1
, where Ak−1 is

non-random, rather than on both XAk−1
and Âk−1(X, Y ) = Ak−1. However, below are a few

justifications for using the proposed test in the model selection procedure.

1. The main purpose of using the test in Section 2.2 is to control the entry of variables with

spurious partial correlation in the selection process. The ultimate goal is to assist the

selected model in having good properties on FP, FN and MSE. In this regard, the problem

is essentially different from post-selection inference (Fithian et al., 2015; Tibshirani et al.,

2016), where the aim is to obtain valid conclusions for scientific discoveries. The simulation

and real data studies in Section 2.4 demonstrate the good model selection properties of

the proposed procedure.

2. In Section 2.3.2 we compare the empirical distributions of the unconditional test statistic

in Section 2.2 and the conditional ones through extensive simulations. We find that the

difference is very small.

3. The unconditional test provides a valid p-value at the first step of model selection to

prevent any spurious variables from entering the model when β = 0. For later steps, our

test provides a good approximation of spurious correlation control.

Based on the above considerations, we propose to incorporate the test in Section 2.2 in the se-

quential selection procedure. The procedure is detailed below. Under (2.15), the corresponding

test statistic can be written as

R(k) = max
j:j∈Ack−1

|Ĉorr(r
(k)
j , r(k))|, (2.16)
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where

r
(k)
j = (I − PAk−1

)xj , r(k) = (I − PAk−1
)y

with PAk−1
defined in the similar way as in Section 2.2.1. Note that when k = 1, we have

r
(1)
j = xj − x̄j1n, where x̄j is the mean of xj and 1n is an n-dimensional vector of 1s since

PA0 = 1
n1n1

>
n . Similarly r(1) reduces to y − ȳ 1n.

From Theorem 1, we can see that when the covariates are independent, the p-value of R(k)

converges to a uniform distribution on the unit interval, U(0, 1), under null hypothesis (2.15).

This conclusion is formally stated below.

Corollary 2. Suppose we have a linear model as in (2.1) and we assume that the covariates

are independent Gaussian variables. Let x(k) be the observed value of the test statistic R(k) as

defined in (2.16). Then the p-value can be obtained from p(x(k)) = 1− Fn,k−1(x(k)). Under the

null hypothesis (2.15), we have p(x(k))
d−→U(0, 1) as p→∞.

We omit the proof because it follows directly from Theorem 1. Corollary 2 suggests that it is

possible and reasonable to use the proposed test statistic R(k) when the covariates are indepen-

dent Gaussian variables. For dependent covariates, although we do not have similar theoretical

results for the distribution of the p-value, we can use the approximation described in Section

2.2.4 to obtain the p-value. Our numerical studies demonstrate that such an approximation

can work well.

Thus far we have discussed how to construct our dependency tests sequentially. Now we

introduce our test-based variable selection method. In each step of the selection procedure, we

compute the current test statistic and the corresponding p-value, and stop the selection when

the p-value exceeds a pre-defined level γ. More specifically, our method is implemented in the

following way.

1. Set the active set to be A0 = ∅.

2. (a) In the kth step (k ≥ 1), compute the residuals r
(k)
j = (I − PAk−1

)xj and r(k) =

(I − PAk−1
)y for each inactive covariate Xj and the response, respectively. Then

derive the test statistic R(k) as in (2.16).
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(b) Compute the p-value pk as in (2.7) for independent covariates and (2.14) for depen-

dent covariates.

3. If pk ≤ γ and k ≤ n − 2, update the active set Ak and get the estimates of β using the

same approach as the original selection procedure; otherwise, terminate the procedure.

In the above procedure, the stopping criterion in Step 3 involves a constant level γ. Here

we do not provide a specific value of γ, because the choice of an appropriate γ should depend

on the goal of the selection, which might vary in different contexts. More specifically, if we

aim to detect important variables other than losing any information, we could set a large γ.

However, if we want to avoid false discoveries, we should choose a small γ. We will illustrate

the effect of γ by simulation examples in Section 2.4. In practice, we also need to determine

which null distribution to use in order to obtain the p-value. As mentioned in Section 2.2.4,

we first compute the average of the pairwise sample correlation among the covariates, say ρ̂,

to estimate ρ. If |ρ̂| < 0.01, we use (2.7) to compute the p-value; otherwise we apply (2.14)

instead.

Our method conducts a sequence of hypothesis tests adaptively until the null hypothesis

(2.15) is accepted. Moreover, at each step we perform the dependency test before adding

the next variable into the active set, which stands alone from the original variable selection

procedure. Hence the proposed method essentially adds (or drops in the LASSO path) the

variables one by one in the same order as in the original sequential selection approach. This

property makes our method very flexible because it can be incorporated into any sequential

selection procedure.

2.3.2 Comparison of empirical distributions

In this subsection, we compare the empirical cumulative distribution functions (cdf) of

RM and RM|M̂ = M under the null hypothesis for all simulated experiments introduced in

Section 2.4.1. In each example we consider one scenario. To obtain the empirical cdfs, we

generate 5000 datasets from the linear model for each scenario. Let M∗ denote the index set

of all important variables of size s0. We implement LARS-Corr s0 + 1 steps and obtain the

set of selected variables M̂. Among the 5000 datasets, we find all with M̂ = M∗ and record
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(a) Example 1 σ = 2, ρ = 0
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(b) Example 3 with σ = 4
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(c) Example 1 σ = 2, ρ = 0.3
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(d) Example 5 with σ = 2
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(e) Example 2
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(f) Example 6

Figure 2.2: Empirical cdfs for RM and RM|M̂ =M. Each panel compares the empirical cdfs of RM
(the red curve) and RM|M̂ =M (the black curve).

the corresponding test statistic at step s0 + 1. Then we use such test statistics to obtain the

empirical cdfs of RM|M̂ = M. For each of the datasets such that M̂ = M∗, we simulate an

independent dataset of the same size and directly calculate RM withM =M∗ to generate the

empirical cdfs of RM.

We illustrate the empirical cdfs of RM, RM|M̂ =M in Figure 2.2. One can see that the

differences between the two empirical cdfs are very small. It implies that our proposed testing

scheme is not much affected by M̂ for later steps during the sequential selection procedures.

2.3.3 Prostate cancer data example

In Section 2.3.1, we have discussed how to implement our test-based variable selection

approach in sequential selection procedures. To better illustrate how our method works, we

apply it to the prostate cancer data, which has been well studied in the literature (Tibshirani,

1996). This dataset contains 97 observations and eight predictor variables, of which 67 are
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Table 2.1: Testing-based LARS procedure applied to the prostate cancer data. For each step, we report
the variable selected by LARS, the active set Ak−1 in null hypothesis (2.15) and the p-value obtained
from our testing approach. The stepwise p-value is calculated before the selected variable enters the
candidate model.

Step Variable Selected Active Set Ak p-value

0 ∅ 0.0000
1 lcavol 1 0.0010
2 lweight 1, 2 0.0791
3 svi 1, 2, 5 0.0645
4 lbph 1, 2, 5, 4 0.2996
5 pgg45 1, 2, 5, 4, 8 0.9482
6 age 1, 2, 5, 4, 8, 3 0.7591
7 lcp 1, 2, 5, 4, 8, 3, 6 0.5681
8 gleason 1, 2, 5, 4, 8, 3, 6, 7

training samples. The goal of the study is to predict the logarithm of prostate-specific antigen

level (lpsa) of men who were about to receive a radical prostatectomy.

We incorporate our approach into LARS and perform the variable selection on the training

data. At each LARS step, we obtain the variable that enters into the model, the corresponding

active set as well as the p-value. As the average of pairwise correlation is about 0.3, we use

(2.14) to compute the p-value. The results are reported in Table 2.1. It must be pointed out

that the p-value is not associated with each variable, but the inactive set Ack−1 at each selection

step. For example, the p-value 0.0010 at Step 1 means that given the selected variable lcavol,

there is strong evidence that there is at least one important variable in the inactive set Ac1.

If one sets the constant level γ described in Section 2.3.1 to be 0.1, the selected variables are

lcavol, lweight and svi ; if γ is increased to 0.5, there is one more variable lbph added into the

final model.

2.4 Numerical studies

In this section, we explore the performance of our method in terms of both simulation

and real data studies. We incorporate the proposed approach into sequential selection proce-

dures and compare the results with that using 10-fold CV to conduct model selection for each

particular procedure.
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2.4.1 Simulation study

In our simulation experiments, we consider three sequential selection procedures: LARS,

LASSO and FSR. When our test-based approach is incorporated into a particular procedure,

we denote the corresponding variable selection method as LARS-Corr. Similarly we use the

notations LASSO-Corr and FSR-Corr to represent our methods integrated with LASSO and

FSR, respectively. In addition, we perform permutation tests in each of these three variable

selection procedures and denote the corresponding methods by LARS-Perm, LASSO-Perm and

FSR-Perm, respectively. For comparison, we use 10-fold CV in LARS, LASSO and FSR to

implement model selection. We represent these three CV-based methods by LARS-CV, LASSO-

CV and FSR-CV. We also perform the truncated Gaussian tests (Fithian et al., 2015) introduced

in Section 2.1 in the sequential selection procedures LARS and FSR, denoted as LARS-TG,

FSR-TG, respectively. For permutation tests, we implement 500 permutations.

Let β̂ = (β̂1, . . . , β̂p)
> denote the estimated coefficient vector. We evaluate the variable

selection accuracy by two quantities: False Negatives (FN) and False Positives (FP), respectively

defined as

FN =

p∑
j=1

1(β̂j = 0)× 1(βj 6= 0) and FP =

p∑
j=1

1(β̂j 6= 0)× 1(βj = 0),

where 1 denotes an indicator function.

We consider three simulated examples to generate the response variable. For the first

two examples, the covariate vector X is generated from a p-dimensional Gaussian distribution

N (0,Σ) with correlation matrix Σ = (ρi,j). For the third example, we aim to assess the

robustness of our procedure, and therefore we generate independent covariates and random noise

from a central Student t distribution with 5 degrees of freedom to distinguish from Gaussian

noise. Throughout the simulation experiments, we fix p = 2000. We generate 100 simulated

datasets with n = 200 observations from each model. In each replication, given a set of

selected variables, we refit a linear model on these variables and calculate the out-of-sample

mean squared errors (MSE) using an independent test dataset with 500 observations. More
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Table 2.2: Results for simulated Example 1 with ρ = 0 and σ = 2. For each method, we report
the average MSE, FN, FP and computational time (in seconds) over 100 replications (with standard
errors given in parentheses). For our approaches, we show the results with γ = 0.01, 0.05, 0.2, 0.5 in the
stopping criterion described in Section 2.3.1. For each sequential selection procedure, we highlight the
smallest MSE and run time (in seconds) in bold font. One can see that the performance of the proposed
method is competitive to CV and is more computationally efficient.

Methods γ MSE FN FP Time

LARS-CV 4.35 (0.05) 0.00 (0.00) 1.85 (0.32) 28.37 (0.15)

LARS-Perm 0.01 4.05 (0.03) 0.00 (0.00) 0.01 (0.01) 5.70 (0.04)
LARS-Perm 0.05 4.08 (0.03) 0.00 (0.00) 0.10 (0.04) 5.82 (0.07)
LARS-Perm 0.2 4.15 (0.04) 0.00 (0.00) 0.40 (0.08) 6.29 (0.13)
LARS-Perm 0.5 4.36 (0.05) 0.00 (0.00) 2.04 (0.41) 8.70 (0.58)

LARS-Corr 0.01 4.05 (0.03) 0.00 (0.00) 0.00 (0.00) 0.76 (0.02)
LARS-Corr 0.05 4.07 (0.03) 0.00 (0.00) 0.08 (0.03) 0.70 (0.01)
LARS-Corr 0.2 4.13 (0.04) 0.00 (0.00) 0.32 (0.08) 0.83 (0.02)
LARS-Corr 0.5 4.33 (0.05) 0.00 (0.00) 1.44 (0.22) 1.03 (0.05)

LARS-TG 0.01 10.22 (0.08) 1.99 (0.01) 0.00 (0.00) 12.16 (0.12)
LARS-TG 0.05 9.89 (0.13) 1.90 (0.03) 0.00 (0.00) 12.17 (0.12)
LARS-TG 0.2 8.89 (0.23) 1.62 (0.06) 0.01 (0.01) 12.41 (0.14)
LARS-TG 0.5 6.85 (0.26) 0.97 (0.08) 0.23 (0.06) 12.31 (0.13)

LASSO-CV 4.70 (0.06) 0.00 (0.00) 4.78 (0.70) 39.74 (0.58)

LASSO-Perm 0.01 4.07 (0.03) 0.00 (0.00) 0.00 (0.00) 5.67 (0.04)
LASSO-Perm 0.05 4.08 (0.03) 0.00 (0.00) 0.03 (0.02) 5.72 (0.06)
LASSO-Perm 0.2 4.17 (0.04) 0.00 (0.00) 0.40 (0.09) 6.31 (0.14)
LASSO-Perm 0.5 4.36 (0.05) 0.00 (0.00) 1.76 (0.32) 8.35 (0.45)

LASSO-Corr 0.01 4.07 (0.03) 0.00 (0.00) 0.00 (0.00) 0.70 (0.01)
LASSO-Corr 0.05 4.08 (0.03) 0.00 (0.00) 0.02 (0.01) 0.70 (0.00)
LASSO-Corr 0.2 4.13 (0.03) 0.00 (0.00) 0.25 (0.06) 0.83 (0.02)
LASSO-Corr 0.5 4.34 (0.04) 0.00 (0.00) 1.46 (0.24) 1.07 (0.07)

FSR-CV 4.05 (0.03) 0.00 (0.00) 0.01 (0.01) 12.24 (0.12)

FSR-Perm 0.01 4.05 (0.03) 0.00 (0.00) 0.00 (0.00) 5.55 (0.04)
FSR-Perm 0.05 4.07 (0.03) 0.00 (0.00) 0.07 (0.03) 5.66 (0.06)
FSR-Perm 0.2 4.12 (0.03) 0.00 (0.00) 0.26 (0.05) 5.88 (0.08)
FSR-Perm 0.5 4.31 (0.04) 0.00 (0.00) 0.97 (0.12) 6.76 (0.16)

FSR-Corr 0.01 4.05 (0.03) 0.00 (0.00) 0.00 (0.00) 0.74 (0.02)
FSR-Corr 0.05 4.07 (0.03) 0.00 (0.00) 0.06 (0.02) 0.73 (0.02)
FSR-Corr 0.2 4.12 (0.03) 0.00 (0.00) 0.23 (0.05) 0.76 (0.02)
FSR-Corr 0.5 4.27 (0.04) 0.00 (0.00) 0.80 (0.09) 0.89 (0.03)

FSR-TG 0.01 10.13 (0.10) 1.96 (0.02) 0.00 (0.00) 11.30 (0.08)
FSR-TG 0.05 10.00 (0.12) 1.93 (0.03) 0.00 (0.00) 11.30 (0.07)
FSR-TG 0.2 9.26 (0.20) 1.73 (0.05) 0.00 (0.00) 11.46 (0.10)
FSR-TG 0.5 7.20 (0.26) 1.08 (0.08) 0.24 (0.07) 11.48 (0.08)

specifically, we fit a regression model using the selected variables as the covariates on the test

dataset and calculate 1
500

∑500
i=1(yi− ŷi)2. The details of the simulation examples are as follows.

Example 1. We generate the response from the following sparse linear model Y = 3X1 −

1.5X2+2X3+ε, where the covariates have equal pairwise correlation, i.e., ρi,j = Corr(Xi,Xj) = ρ

for all i 6= j. We set ρ = 0 for independent covariates and ρ = 0.3 for dependent covariates.

We also consider σ = 2 for strong signal and σ = 6 for weak signal.
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Table 2.3: Results for simulated Example 1 with ρ = 0 and σ = 6. The format of the table is the same
as Table 2.2.

Methods γ MSE FN FP Time

LARS-CV 41.33 (0.48) 1.24 (0.09) 0.82 (0.23) 27.31 (0.14)

LARS-Perm 0.01 40.33 (0.39) 1.40 (0.07) 0.03 (0.02) 3.88 (0.11)
LARS-Perm 0.05 40.05 (0.40) 1.25 (0.07) 0.14 (0.04) 4.23 (0.13)
LARS-Perm 0.2 39.88 (0.41) 1.01 (0.06) 0.48 (0.08) 5.06 (0.17)
LARS-Perm 0.5 41.31 (0.49) 0.75 (0.06) 1.99 (0.33) 7.66 (0.50)

LARS-Corr 0.01 40.37 (0.38) 1.42 (0.07) 0.02 (0.01) 0.44 (0.02)
LARS-Corr 0.05 40.10 (0.39) 1.27 (0.07) 0.13 (0.04) 0.47 (0.02)
LARS-Corr 0.2 39.90 (0.41) 1.02 (0.06) 0.47 (0.09) 0.61 (0.03)
LARS-Corr 0.5 41.26 (0.48) 0.78 (0.06) 1.60 (0.20) 0.97 (0.06)

LARS-TG 0.01 43.57 (0.36) 2.11 (0.03) 0.01 (0.01) 12.86 (0.22)
LARS-TG 0.05 43.26 (0.34) 2.06 (0.03) 0.02 (0.02) 13.07 (0.23)
LARS-TG 0.2 42.48 (0.32) 1.91 (0.04) 0.05 (0.03) 13.03 (0.22)
LARS-TG 0.5 41.70 (0.36) 1.53 (0.06) 0.43 (0.08) 13.11 (0.22)

LASSO-CV 42.33 (0.54) 1.16 (0.08) 1.94 (0.60) 35.52 (0.24)

LASSO-Perm 0.01 41.21 (0.38) 1.56 (0.06) 0.01 (0.01) 3.58 (0.11)
LASSO-Perm 0.05 40.34 (0.36) 1.28 (0.06) 0.09 (0.04) 4.14 (0.13)
LASSO-Perm 0.2 40.10 (0.38) 1.02 (0.06) 0.43 (0.08) 4.97 (0.17)
LASSO-Perm 0.5 41.46 (0.45) 0.76 (0.07) 1.73 (0.24) 7.23 (0.39)

LASSO-Corr 0.01 41.30 (0.38) 1.58 (0.06) 0.01 (0.01) 0.39 (0.01)
LASSO-Corr 0.05 40.36 (0.36) 1.30 (0.06) 0.06 (0.03) 0.47 (0.02)
LASSO-Corr 0.2 40.00 (0.38) 1.02 (0.06) 0.39 (0.08) 0.61 (0.02)
LASSO-Corr 0.5 41.41 (0.44) 0.80 (0.06) 1.49 (0.18) 0.88 (0.04)

FSR-CV 40.72 (0.40) 1.46 (0.07) 0.04 (0.02) 11.63 (0.15)

FSR-Perm 0.01 40.72 (0.38) 1.51 (0.06) 0.01 (0.01) 3.55 (0.09)
FSR-Perm 0.05 39.75 (0.34) 1.17 (0.06) 0.07 (0.03) 4.12 (0.10)
FSR-Perm 0.2 39.66 (0.40) 0.93 (0.06) 0.31 (0.06) 4.74 (0.14)
FSR-Perm 0.5 40.72 (0.44) 0.75 (0.06) 0.98 (0.12) 5.93 (0.22)

FSR-Corr 0.01 40.80 (0.37) 1.54 (0.06) 0.00 (0.00) 0.39 (0.01)
FSR-Corr 0.05 39.77 (0.34) 1.19 (0.06) 0.05 (0.02) 0.46 (0.01)
FSR-Corr 0.2 39.59 (0.38) 0.95 (0.06) 0.26 (0.05) 0.54 (0.02)
FSR-Corr 0.5 40.38 (0.43) 0.75 (0.06) 0.83 (0.10) 0.68 (0.02)

FSR-TG 0.01 43.32 (0.38) 2.10 (0.03) 0.00 (0.00) 12.03 (0.21)
FSR-TG 0.05 43.12 (0.37) 2.06 (0.03) 0.01 (0.01) 12.17 (0.23)
FSR-TG 0.2 42.58 (0.38) 1.88 (0.05) 0.09 (0.04) 12.13 (0.22)
FSR-TG 0.5 41.93 (0.39) 1.55 (0.07) 0.37 (0.09) 12.23 (0.22)

Example 2. We demonstrate that when the covariates do not have equal pairwise correla-

tions, we can still apply our approach using the approximated null distribution discussed in

Section 2.2.4. We simulate data from Y = 2X1 + · · ·+ 2X10 + ε, where ρi,j = 0.5|i−j| for i 6= j

and σ = 3.

Example 3. We demonstrate that our method performs well when the Gaussian assumption

is not satisfied. To this end, we consider the same linear relationship as in Example 1, i.e.,

Y = 3X1−1.5X2 + 2X3 +σ ε, but the Xjs and ε are generated independently from the Student

t distribution with 5 degrees of freedom. We take 5 degrees of freedom such that the tail is
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Table 2.4: Results for simulated Example 1 with ρ = 0.3 and σ = 2. The format of the table is the
same as Table 2.2.

Methods γ MSE FN FP Time

LARS-CV 4.52 (0.06) 0.00 (0.00) 4.72 (0.86) 28.31 (0.24)

LARS-Perm 0.01 4.06 (0.03) 0.00 (0.00) 0.04 (0.02) 5.23 (0.04)
LARS-Perm 0.05 4.07 (0.03) 0.00 (0.00) 0.07 (0.03) 5.26 (0.05)
LARS-Perm 0.2 4.13 (0.04) 0.00 (0.00) 0.33 (0.09) 5.62 (0.12)
LARS-Perm 0.5 4.51 (0.09) 0.00 (0.00) 7.64 (2.81) 15.61 (3.85)

LARS-Corr 0.01 4.08 (0.03) 0.00 (0.00) 0.10 (0.03) 0.54 (0.01)
LARS-Corr 0.05 4.09 (0.03) 0.00 (0.00) 0.16 (0.04) 0.55 (0.01)
LARS-Corr 0.2 4.14 (0.03) 0.00 (0.00) 0.47 (0.08) 0.57 (0.01)
LARS-Corr 0.5 4.29 (0.04) 0.00 (0.00) 1.84 (0.36) 0.76 (0.04)

LARS-TG 0.01 8.46 (0.05) 2.00 (0.00) 0.00 (0.00) 10.97 (0.03)
LARS-TG 0.05 8.33 (0.07) 1.95 (0.02) 0.00 (0.00) 11.02 (0.04)
LARS-TG 0.2 7.79 (0.12) 1.72 (0.05) 0.00 (0.00) 11.12 (0.05)
LARS-TG 0.5 6.95 (0.16) 1.35 (0.07) 0.05 (0.03) 11.09 (0.04)

LASSO-CV 4.73 (0.06) 0.00 (0.00) 6.69 (0.83) 38.05 (0.53)

LASSO-Perm 0.01 4.07 (0.03) 0.00 (0.00) 0.00 (0.00) 5.67 (0.04)
LASSO-Perm 0.05 4.08 (0.03) 0.00 (0.00) 0.03 (0.02) 5.72 (0.06)
LASSO-Perm 0.2 4.17 (0.04) 0.00 (0.00) 0.40 (0.09) 6.31 (0.14)
LASSO-Perm 0.5 4.36 (0.05) 0.00 (0.00) 1.76 (0.32) 8.35 (0.45)

LASSO-Corr 0.01 4.11 (0.03) 0.00 (0.00) 0.09 (0.03) 0.55 (0.01)
LASSO-Corr 0.05 4.12 (0.03) 0.00 (0.00) 0.15 (0.04) 0.56 (0.01)
LASSO-Corr 0.2 4.17 (0.03) 0.00 (0.00) 0.37 (0.06) 0.59 (0.01)
LASSO-Corr 0.5 4.30 (0.04) 0.00 (0.00) 1.58 (0.32) 0.76 (0.03)

FSR-CV 4.07 (0.03) 0.00 (0.00) 0.01 (0.01) 12.45 (0.12)

FSR-Perm 0.01 4.05 (0.03) 0.00 (0.00) 0.00 (0.00) 5.55 (0.04)
FSR-Perm 0.05 4.07 (0.03) 0.00 (0.00) 0.07 (0.03) 5.66 (0.06)
FSR-Perm 0.2 4.12 (0.03) 0.00 (0.00) 0.26 (0.05) 5.88 (0.08)
FSR-Perm 0.5 4.31 (0.04) 0.00 (0.00) 0.97 (0.12) 6.76 (0.16)
FSR-Corr 0.01 4.08 (0.03) 0.00 (0.00) 0.03 (0.02) 0.52 (0.01)
FSR-Corr 0.05 4.11 (0.03) 0.00 (0.00) 0.12 (0.03) 0.53 (0.01)
FSR-Corr 0.2 4.16 (0.03) 0.00 (0.00) 0.30 (0.05) 0.56 (0.01)
FSR-Corr 0.5 4.63 (0.07) 0.00 (0.00) 2.44 (0.32) 0.94 (0.07)

FSR-TG 0.01 8.49 (0.06) 2.00 (0.00) 0.00 (0.00) 10.62 (0.03)
FSR-TG 0.05 8.37 (0.08) 1.95 (0.02) 0.00 (0.00) 10.69 (0.04)
FSR-TG 0.2 7.92 (0.13) 1.76 (0.05) 0.00 (0.00) 10.73 (0.05)
FSR-TG 0.5 6.85 (0.16) 1.30 (0.07) 0.09 (0.05) 10.77 (0.04)

distinguished from that of Gaussian random variables but is not too heavy. We set σ = 4 and

σ = 8 to make the signal to noise ratio comparable with Example 1.

The results for the three simulated examples are summarized in Tables 2.2–2.8. In LARS-

Corr, LASSO-Corr, permutation and truncated Gaussian tests-based methods, we take γ ∈

{0.01, 0.05, 0.2, 0.5}. Based on the simulation results, we can draw the following conclusions.

First, the test-based methods LARS-Corr, LASSO-Corr and FSR-Corr outperform the cor-

responding CV-based methods respectively for all scenarios, and the improvement of perfor-

mance for our methods is more substantial when the signal is strong. Second, when the covari-

ates are not equally correlated, our approach can still work well using (2.12) as an approximation
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Table 2.5: Results for simulated Example 1 with ρ = 0.3 and σ = 6. The format of the table is the
same as Table 2.2.

Methods γ MSE FN FP Time

LARS-CV 41.89 (0.51) 1.38 (0.07) 2.40 (0.76) 29.13 (0.24)

LARS-Perm 0.01 40.66 (0.31) 1.88 (0.04) 0.02 (0.01) 2.65 (0.06)
LARS-Perm 0.05 40.59 (0.37) 1.70 (0.06) 0.31 (0.13) 3.25 (0.21)
LARS-Perm 0.2 42.83 (0.57) 1.33 (0.08) 5.82 (2.05) 10.89 (2.67)
LARS-Perm 0.5 48.02 (0.94) 0.90 (0.08) 25.78 (5.17) 37.59 (6.84)

LARS-Corr 0.01 40.61 (0.31) 1.77 (0.05) 0.01 (0.01) 0.26 (0.02)
LARS-Corr 0.05 40.34 (0.30) 1.62 (0.06) 0.10 (0.03) 0.32 (0.03)
LARS-Corr 0.2 39.95 (0.33) 1.41 (0.06) 0.23 (0.05) 0.44 (0.05)
LARS-Corr 0.5 40.39 (0.37) 1.25 (0.06) 1.03 (0.28) 0.56 (0.05)

LARS-TG 0.01 42.21 (0.42) 2.11 (0.03) 0.00 (0.00) 11.47 (0.06)
LARS-TG 0.05 41.73 (0.37) 2.03 (0.03) 0.09 (0.06) 11.46 (0.06)
LARS-TG 0.2 41.46 (0.37) 1.91 (0.04) 0.29 (0.09) 11.46 (0.06)
LARS-TG 0.5 41.45 (0.35) 1.66 (0.05) 1.22 (0.20) 11.82 (0.08)

LASSO-CV 42.26 (0.54) 1.36 (0.07) 2.58 (0.73) 39.07 (0.56)

LASSO-Perm 0.01 41.21 (0.38) 1.56 (0.06) 0.01 (0.01) 3.58 (0.11)
LASSO-Perm 0.05 40.34 (0.36) 1.28 (0.06) 0.09 (0.04) 4.14 (0.13)
LASSO-Perm 0.2 40.10 (0.38) 1.02 (0.06) 0.43 (0.08) 4.97 (0.17)
LASSO-Perm 0.5 41.46 (0.45) 0.76 (0.07) 1.73 (0.24) 7.23 (0.39)
LASSO-Corr 0.01 41.38 (0.39) 1.82 (0.05) 0.22 (0.15) 0.23 (0.01)
LASSO-Corr 0.05 40.90 (0.40) 1.60 (0.06) 0.36 (0.17) 0.28 (0.02)
LASSO-Corr 0.2 40.62 (0.40) 1.45 (0.06) 0.46 (0.17) 0.43 (0.04)
LASSO-Corr 0.5 40.75 (0.43) 1.25 (0.06) 1.18 (0.32) 0.55 (0.05)

FSR-CV 41.18 (0.42) 1.80 (0.06) 0.05 (0.02) 11.38 (0.19)
FSR-Perm 0.01 40.72 (0.38) 1.51 (0.06) 0.01 (0.01) 3.55 (0.09)
FSR-Perm 0.05 39.75 (0.34) 1.17 (0.06) 0.07 (0.03) 4.12 (0.10)
FSR-Perm 0.2 39.66 (0.40) 0.93 (0.06) 0.31 (0.06) 4.74 (0.14)
FSR-Perm 0.5 40.72 (0.44) 0.75 (0.06) 0.98 (0.12) 5.93 (0.22)

FSR-Corr 0.01 40.38 (0.34) 1.78 (0.05) 0.04 (0.02) 0.23 (0.01)
FSR-Corr 0.05 40.02 (0.34) 1.58 (0.06) 0.12 (0.04) 0.27 (0.01)
FSR-Corr 0.2 39.91 (0.36) 1.43 (0.06) 0.24 (0.05) 0.32 (0.01)
FSR-Corr 0.5 42.67 (0.92) 1.12 (0.06) 3.79 (1.97) 0.95 (0.33)

FSR-TG 0.01 42.33 (0.43) 2.14 (0.04) 0.02 (0.01) 11.16 (0.06)
FSR-TG 0.05 42.01 (0.40) 2.09 (0.03) 0.04 (0.02) 11.17 (0.06)
FSR-TG 0.2 41.54 (0.41) 1.96 (0.04) 0.10 (0.04) 11.05 (0.04)
FSR-TG 0.5 41.29 (0.42) 1.68 (0.06) 0.41 (0.08) 11.46 (0.08)

for the null distribution. Third, although LARS-Perm, LASSO-Perm and FSR-Perm have com-

parable performance to LARS-Corr, LASSO-Corr and FSR-Perm, respectively, they carry more

computational costs. In addition, note that the permutation test can have much larger FP in

some scenarios (e.g., LARS-Perm in Tables 2.4–2.5). Fourth, although the truncated Gaussian

tests have smaller false positives, their power is not very large. Therefore, the false negatives

are still quite large even when γ = 0.5. As a result, the prediction errors are not well controlled.

Finally, throughout the simulation experiments, the computational time of our methods drops

dramatically compared with CV and permutation test.

From Examples 1–3, one can see that our methods can control FN and FP by choosing a

proper value of γ. We illustrate how the performance changes as the value of γ varies for two
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Table 2.6: Results for simulated Example 2. The format of the table is the same as Table 2.2.

Methods γ MSE FN FP Time

LARS-CV 10.78 (0.14) 0.00 (0.00) 4.04 (0.50) 27.25 (0.19)

LARS-Perm 0.01 9.57 (0.09) 0.04 (0.02) 0.04 (0.02) 14.76 (0.11)
LARS-Perm 0.05 9.61 (0.09) 0.02 (0.01) 0.18 (0.07) 14.95 (0.15)
LARS-Perm 0.2 9.85 (0.11) 0.01 (0.01) 0.59 (0.12) 15.69 (0.19)
LARS-Perm 0.5 10.51 (0.13) 0.01 (0.01) 2.60 (0.36) 18.24 (0.52)

LARS-Corr 0.01 9.56 (0.09) 0.02 (0.01) 0.11 (0.06) 1.73 (0.01)
LARS-Corr 0.05 9.55 (0.08) 0.01 (0.01) 0.12 (0.07) 1.74 (0.02)
LARS-Corr 0.2 9.77 (0.09) 0.01 (0.01) 0.52 (0.12) 1.80 (0.03)
LARS-Corr 0.5 10.25 (0.13) 0.01 (0.01) 3.67 (1.88) 2.40 (0.37)

LARS-TG 0.01 12.36 (0.14) 1.98 (0.02) 0.00 (0.00) 12.38 (0.15)
LARS-TG 0.05 12.32 (0.14) 1.95 (0.03) 0.02 (0.01) 12.24 (0.13)
LARS-TG 0.2 11.83 (0.10) 1.75 (0.04) 0.10 (0.04) 12.41 (0.13)
LARS-TG 0.5 11.51 (0.11) 1.48 (0.05) 0.45 (0.10) 12.46 (0.14)

LASSO-CV 12.02 (0.12) 0.00 (0.00) 10.41 (0.84) 40.09 (0.30)

LASSO-Perm 0.01 9.57 (0.08) 0.02 (0.01) 0.03 (0.02) 14.68 (0.09)
LASSO-Perm 0.05 9.61 (0.08) 0.01 (0.01) 0.14 (0.07) 14.86 (0.12)
LASSO-Perm 0.2 10.02 (0.13) 0.01 (0.01) 1.25 (0.45) 16.60 (0.76)
LASSO-Perm 0.5 10.75 (0.15) 0.01 (0.01) 3.59 (0.61) 19.33 (0.78)

LASSO-Corr 0.01 9.57 (0.08) 0.01 (0.01) 0.09 (0.06) 1.72 (0.01)
LASSO-Corr 0.05 9.65 (0.09) 0.01 (0.01) 0.33 (0.17) 1.76 (0.03)
LASSO-Corr 0.2 9.90 (0.11) 0.01 (0.01) 1.01 (0.43) 1.87 (0.08)
LASSO-Corr 0.5 10.4 (0.14) 0.01 (0.01) 2.56 (0.51) 2.17 (0.09)

FSR-CV 12.04 (0.34) 0.89 (0.12) 0.48 (0.09) 11.87 (0.11)

FSR-Perm 0.01 10.84 (0.28) 0.40 (0.09) 0.55 (0.12) 14.87 (0.22)
FSR-Perm 0.05 10.37 (0.19) 0.16 (0.05) 0.92 (0.19) 15.64 (0.25)
FSR-Perm 0.2 10.60 (0.21) 0.12 (0.04) 1.47 (0.26) 16.59 (0.36)
FSR-Perm 0.5 11.16 (0.25) 0.09 (0.03) 2.56 (0.36) 17.84 (0.47)

FSR-Corr 0.01 10.46 (0.20) 0.22 (0.05) 0.72 (0.15) 1.72 (0.02)
FSR-Corr 0.05 10.39 (0.20) 0.14 (0.04) 1.04 (0.21) 1.81 (0.03)
FSR-Corr 0.2 10.69 (0.25) 0.09 (0.03) 1.77 (0.35) 1.91 (0.06)
FSR-Corr 0.5 11.26 (0.30) 0.13 (0.05) 2.87 (0.46) 2.11 (0.07)

FSR-TG 0.01 12.24 (0.13) 1.96 (0.02) 0.00 (0.00) 11.58 (0.13)
FSR-TG 0.05 12.21 (0.13) 1.94 (0.03) 0.00 (0.00) 11.53 (0.12)
FSR-TG 0.2 11.67 (0.13) 1.67 (0.06) 0.03 (0.02) 11.67 (0.12)
FSR-TG 0.5 11.04 (0.15) 1.19 (0.08) 0.24 (0.08) 11.77 (0.13)

scenarios in Figure 2.3. This figure shows that as γ increases, the FP of our methods has an

increasing trend while the FN will decrease. Furthermore, our approach always outperforms

CV in terms of MSE and computational time as γ varies.

For independent cases, we also evaluate the performance of the proposed method using the

maximal t-statistic described in (2.8). We find that the performance of our method with the

maximal t-statistic is only slightly better than that with the maximal absolute correlation as

the test statistic. Hence we do not include the detailed simulation results for the maximal

t-statistic in this thesis.
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Table 2.7: Results for simulated Example 3 with σ = 4. The format of the table is the same as Table
2.2.

Methods γ MSE FN FP Time

LARS-CV 17.65 (0.21) 0.00 (0.00) 2.15 (0.37) 26.57 (0.23)

LARS-Perm 0.01 16.25 (0.13) 0.02 (0.01) 0.00 (0.00) 5.74 (0.05)
LARS-Perm 0.05 16.28 (0.13) 0.01 (0.01) 0.04 (0.03) 5.81 (0.07)
LARS-Perm 0.2 16.64 (0.15) 0.00 (0.00) 0.43 (0.10) 6.26 (0.16)
LARS-Perm 0.5 17.49 (0.24) 0.00 (0.00) 3.58 (1.96) 10.65 (2.68)

LARS-Corr 0.01 16.25 (0.13) 0.02 (0.01) 0.00 (0.00) 0.93 (0.02)
LARS-Corr 0.05 16.28 (0.13) 0.01 (0.01) 0.04 (0.03) 0.88 (0.01)
LARS-Corr 0.2 16.61 (0.15) 0.00 (0.00) 0.39 (0.09) 1.04 (0.04)
LARS-Corr 0.5 17.26 (0.19) 0.00 (0.00) 1.27 (0.21) 1.21 (0.06)

LARS-TG 0.01 38.07 (0.57) 2.00 (0.03) 0.00 (0.00) 12.00 (0.06)
LARS-TG 0.05 37.71 (0.56) 1.95 (0.04) 0.02 (0.02) 12.02 (0.06)
LARS-TG 0.2 36.69 (0.50) 1.80 (0.05) 0.04 (0.03) 11.95 (0.05)
LARS-TG 0.5 34.24 (0.57) 1.24 (0.08) 0.51 (0.14) 12.30 (0.09)

LASSO-CV 18.16 (0.24) 0.00 (0.00) 3.27 (0.49) 44.60 (0.51)

LASSO-Perm 0.01 16.44 (0.13) 0.03 (0.02) 0.02 (0.01) 5.70 (0.05)
LASSO-Perm 0.05 16.41 (0.11) 0.01 (0.01) 0.06 (0.02) 5.77 (0.06)
LASSO-Perm 0.2 16.65 (0.14) 0.00 (0.00) 0.34 (0.09) 6.10 (0.13)
LASSO-Perm 0.5 17.42 (0.21) 0.00 (0.00) 3.21 (1.94) 11.66 (4.35)

LASSO-Corr 0.01 16.37 (0.12) 0.02 (0.01) 0.00 (0.00) 1.07 (0.02)
LASSO-Corr 0.05 16.41 (0.11) 0.01 (0.01) 0.05 (0.02) 1.00 (0.02)
LASSO-Corr 0.2 16.64 (0.14) 0.00 (0.00) 0.33 (0.09) 1.03 (0.03)
LASSO-Corr 0.5 17.22 (0.17) 0.00 (0.00) 1.08 (0.19) 1.08 (0.04)

FSR-CV 16.54 (0.17) 0.07 (0.03) 0.05 (0.03) 13.29 (0.19)

FSR-Perm 0.01 16.42 (0.15) 0.06 (0.02) 0.01 (0.01) 5.56 (0.06)
FSR-Perm 0.05 16.37 (0.13) 0.02 (0.01) 0.07 (0.03) 5.69 (0.07)
FSR-Perm 0.2 16.54 (0.14) 0.00 (0.00) 0.24 (0.06) 5.85 (0.08)
FSR-Perm 0.5 17.13 (0.17) 0.00 (0.00) 0.79 (0.10) 6.47 (0.13)

FSR-Corr 0.01 16.41 (0.15) 0.06 (0.02) 0.00 (0.00) 0.96 (0.02)
FSR-Corr 0.05 16.34 (0.12) 0.02 (0.01) 0.05 (0.02) 0.85 (0.01)
FSR-Corr 0.2 16.50 (0.13) 0.00 (0.00) 0.21 (0.05) 1.00 (0.03)
FSR-Corr 0.5 17.00 (0.17) 0.00 (0.00) 0.68 (0.09) 1.16 (0.04)

FSR-TG 0.01 37.40 (0.46) 1.96 (0.03) 0.00 (0.00) 10.67 (0.05)
FSR-TG 0.05 37.28 (0.46) 1.94 (0.03) 0.00 (0.00) 10.68 (0.05)
FSR-TG 0.2 35.92 (0.47) 1.71 (0.06) 0.02 (0.01) 10.67 (0.04)
FSR-TG 0.5 34.17 (0.54) 1.33 (0.08) 0.17 (0.05) 11.00 (0.06)

2.5 Robustness of the proposed method

In this subsection, we consider several additional simulation experiments for LARS, LASSO

and FSR, especially when the assumptions of independence or equal correlation among covari-

ates are not satisfied.

Example 4. In this example, all the setups are the same as Example 2 in Section 2.4.1,

except that the correlation structure is Corr(Xi,Xj) = 0.9|i−j|, and we consider σ = 1 and 3

respectively.

Example 5. In this example, all the other setups are the same as Example 1 in Section

2.4.1, except that the covariance matrix of Xj ’s is generated by LL′, where L = (lij)p×p is a
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Table 2.8: Results for simulated Example 3 with σ = 8. The format of the table is the same as Table
2.2.

Methods γ MSE FN FP Time

LARS-CV 76.59 (0.97) 1.62 (0.10) 0.97 (0.30) 25.94 (0.08)

LARS-Perm 0.01 73.71 (0.71) 1.78 (0.06) 0.00 (0.00) 3.03 (0.09)
LARS-Perm 0.05 72.04 (0.74) 1.43 (0.07) 0.07 (0.04) 3.62 (0.12)
LARS-Perm 0.2 71.75 (0.77) 1.15 (0.07) 0.41 (0.10) 4.47 (0.18)
LARS-Perm 0.5 74.19 (0.94) 0.93 (0.07) 3.39 (1.95) 8.68 (2.54)

LARS-Corr 0.01 73.72 (0.76) 1.76 (0.06) 0.01 (0.01) 0.43 (0.02)
LARS-Corr 0.05 72.23 (0.74) 1.50 (0.07) 0.03 (0.02) 0.55 (0.02)
LARS-Corr 0.2 71.99 (0.78) 1.19 (0.07) 0.38 (0.09) 0.71 (0.03)
LARS-Corr 0.5 73.61 (0.80) 0.93 (0.07) 1.22 (0.15) 1.07 (0.05)

LARS-TG 0.01 125.93 (1.84) 2.47 (0.05) 0.01 (0.01) 12.11 (0.08)
LARS-TG 0.05 124.84 (1.82) 2.35 (0.05) 0.04 (0.02) 12.26 (0.10)
LARS-TG 0.2 124.42 (1.78) 2.25 (0.05) 0.15 (0.05) 12.26 (0.10)
LARS-TG 0.5 124.51 (1.72) 2.00 (0.06) 0.55 (0.10) 12.29 (0.09)

LASSO-CV 72.70 (1.26) 1.49 (0.11) 1.06 (0.42) 40.59 (0.30)

LASSO-Perm 0.01 73.83 (0.76) 1.71 (0.07) 0.01 (0.01) 3.05 (0.10)
LASSO-Perm 0.05 72.33 (0.72) 1.43 (0.08) 0.07 (0.03) 3.53 (0.12)
LASSO-Perm 0.2 72.21 (0.72) 1.19 (0.08) 0.34 (0.08) 4.22 (0.18)
LASSO-Perm 0.5 74.24 (0.85) 0.95 (0.07) 3.14 (1.93) 10.46 (4.80)

LASSO-Corr 0.01 73.91 (0.79) 1.71 (0.07) 0.02 (0.01) 0.51 (0.02)
LASSO-Corr 0.05 72.60 (0.74) 1.49 (0.07) 0.03 (0.02) 0.53 (0.02)
LASSO-Corr 0.2 72.09 (0.72) 1.19 (0.08) 0.31 (0.08) 0.71 (0.03)
LASSO-Corr 0.5 73.83 (0.77) 0.98 (0.07) 1.18 (0.16) 1.01 (0.05)

FSR-CV 73.01 (0.71) 1.59 (0.07) 0.07 (0.03) 13.25 (0.19)

FSR-Perm 0.01 72.76 (0.72) 1.63 (0.06) 0.01 (0.01) 3.18 (0.09)
FSR-Perm 0.05 71.90 (0.71) 1.41 (0.07) 0.06 (0.02) 3.53 (0.10)
FSR-Perm 0.2 71.18 (0.75) 1.12 (0.07) 0.23 (0.05) 4.08 (0.12)
FSR-Perm 0.5 73.63 (0.98) 0.95 (0.07) 0.97 (0.12) 5.26 (0.17)

FSR-Corr 0.01 72.73 (0.73) 1.63 (0.06) 0.02 (0.01) 0.49 (0.02)
FSR-Corr 0.05 71.80 (0.71) 1.41 (0.07) 0.05 (0.02) 0.55 (0.02)
FSR-Corr 0.2 71.43 (0.75) 1.17 (0.07) 0.22 (0.05) 0.66 (0.03)
FSR-Corr 0.5 73.30 (0.92) 0.96 (0.07) 0.90 (0.11) 0.87 (0.03)

FSR-TG 0.01 125.42 (1.52) 2.45 (0.05) 0.00 (0.00) 10.89 (0.07)
FSR-TG 0.05 124.59 (1.55) 2.36 (0.05) 0.03 (0.02) 10.94 (0.08)
FSR-TG 0.2 123.48 (1.52) 2.24 (0.06) 0.09 (0.03) 10.93 (0.08)
FSR-TG 0.5 123.87 (1.57) 1.93 (0.07) 0.45 (0.09) 11.01 (0.08)

lower triangular matrix with lij = (2Bij − 1) ·Uij for i ≥ j and 0 otherwise. Here Bij ’s are i.i.d.

Bernoulli random variables with success probability 0.5, and Uij ’s follow a uniform distribution

on [0, 1]. As in Example 1, we consider σ = 2 for strong signal and σ = 6 for weak signal.

Example 6. In this example, all the other setups are the same as Example 2 in Section

2.4.1, except that we consider different covariance structure for the covariates. Specifically, we

set Corr(Xi,Xj) = 0.6 for 1 ≤ i < j ≤ 5 and 6 ≤ i < j ≤ 10 and 0 for the other i 6= j. In other

words, important variables are highly correlated within several groups.

We show the results for Example 4 in Tables 2.9 and 2.10. One can see that in terms

of prediction error, LASSO-Corr and LASSO-Perm outperform LASSO-CV; while LARS-Corr

35



●

●

●

●
●

●

●

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
5

1.
0

1.
5

2.
0

gamma

F
N

 &
 F

P

●

●

●

●

●

●

●

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
5

1.
0

1.
5

2.
0

gamma

●

●

FN.Corr
FP.Corr
FN.CV
FP.CV

●

●

● ●

●

●

●

0.0 0.1 0.2 0.3 0.4 0.5

39
.0

39
.5

40
.0

40
.5

41
.0

41
.5

42
.0

gamma

M
S

E

● MSE.Corr
MSE.CV

● ● ● ● ● ● ●

0.0 0.1 0.2 0.3 0.4 0.5

0
5

10
15

20
25

30
35

gamma

C
om

pu
ta

tio
na

l T
im

e

● t.Corr
t.CV

(a) σ = 6 and ρ = 0
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(b) σ = 6 and ρ = 0.3

Figure 2.3: Performance of LARS-Corr and LARS-CV in simulated example 1 with (a) σ = 6 and
ρ = 0 and (b) σ = 6 and ρ = 0.3. In LARS-Corr, and γ ∈ {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}. For all three
panels, the solid curve corresponds to LARS-Corr and the dashed curve corresponds to LARS-CV. In
the first panel of (a) and (b), the red curves represent FN while the blue ones represent FP.

and LARS-Perm have comparable performance to LARS-CV. Moreover, Corr-type methods

are much more computationally efficient. Note that FSR-Corr and FSR-Perm may not work

well compared with FSR-CV. This is, however, resulted from the failure of the FSR procedure.

With the existence of strong multicollinearity, and FSR implements full regression at each

step of selection, unimportant variables tend to enter the model before active covariates along

the solution path, adding more difficulty to testing-based approaches (Derksen and Keselman,

1992). Due to the same reason, although with smaller MSE than FSR-Corr and FSR-Perm,

FSR-CV performs much worse than procedures using CV-based LARS or LASSO for selection.

We display the simulation outputs for Example 5 in Tables 2.11 and 2.12. In Corr-type

methods, since the average of off-diagonal elements in the correlation matrix of the covariates is

close to 0, we use (2.7) to obtain the p-values. The improvement of performance for our methods

is significant when the signal is strong. As the noise level increase, Corr-type methods are still
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Table 2.9: Results for simulated Example 4 with σ = 1. The format of the table is the same as Table
2.2.

Methods γ MSE FN FP Time

LARS-CV 1.07 (0.01) 0.00 (0.00) 0.64 (0.17) 24.31 (0.22)

LARS-Perm 0.01 1.05 (0.01) 0.00 (0.00) 0.00 (0.00) 15.78 (0.10)
LARS-Perm 0.05 1.06 (0.01) 0.00 (0.00) 0.06 (0.03) 16.04 (0.16)
LARS-Perm 0.2 1.08 (0.01) 0.00 (0.00) 0.43 (0.08) 16.50 (0.18)
LARS-Perm 0.5 1.12 (0.01) 0.00 (0.00) 1.51 (0.35) 18.00 (0.49)

LARS-Corr 0.01 1.05 (0.01) 0.00 (0.00) 0.01 (0.01) 1.82 (0.01)
LARS-Corr 0.05 1.06 (0.01) 0.00 (0.00) 0.07 (0.04) 1.83 (0.01)
LARS-Corr 0.2 1.07 (0.01) 0.00 (0.00) 0.31 (0.07) 1.88 (0.02)
LARS-Corr 0.5 1.10 (0.01) 0.00 (0.00) 0.85 (0.12) 1.95 (0.02)

LARS-TG 0.01 38.78 (1.27) 8.18 (0.08) 0.00 (0.00) 11.99 (0.10)
LARS-TG 0.05 34.92 (1.37) 7.83 (0.10) 0.00 (0.00) 11.99 (0.10)
LARS-TG 0.2 27.23 (1.45) 7.08 (0.14) 0.00 (0.00) 12.17 (0.10)
LARS-TG 0.5 18.33 (1.48) 5.59 (0.22) 0.05 (0.04) 12.17 (0.09)

LASSO-CV 1.49 (0.01) 0.00 (0.00) 25.42 (0.50) 48.19 (0.45)

LASSO-Perm 0.01 1.06 (0.01) 0.00 (0.00) 0.00 (0.00) 15.83 (0.10)
LASSO-Perm 0.05 1.06 (0.01) 0.00 (0.00) 0.03 (0.02) 16.02 (0.15)
LASSO-Perm 0.2 1.08 (0.01) 0.00 (0.00) 0.33 (0.08) 16.37 (0.19)
LASSO-Perm 0.5 1.14 (0.02) 0.00 (0.00) 3.68 (1.89) 24.17 (5.60)

LASSO-Corr 0.01 1.06 (0.01) 0.00 (0.00) 0.01 (0.01) 1.82 (0.01)
LASSO-Corr 0.05 1.06 (0.01) 0.00 (0.00) 0.02 (0.01) 1.81 (0.01)
LASSO-Corr 0.2 1.07 (0.01) 0.00 (0.00) 0.20 (0.06) 1.86 (0.02)
LASSO-Corr 0.5 1.10 (0.01) 0.00 (0.00) 0.88 (0.13) 1.95 (0.02)

FSR-CV 4.80 (0.14) 5.38 (0.06) 0.80 (0.10) 9.61 (0.06)

FSR-Perm 0.01 8.37 (0.30) 5.04 (0.07) 32.57 (1.26) 55.11 (1.77)
FSR-Perm 0.05 9.09 (0.31) 5.04 (0.07) 39.95 (1.42) 65.88 (2.04)
FSR-Perm 0.2 9.82 (0.31) 5.04 (0.07) 52.97 (2.85) 83.82 (3.92)
FSR-Perm 0.5 10.94 (0.38) 5.04 (0.07) 98.50 (6.82) 146.89 (9.50)

FSR-Corr 0.01 8.58 (0.30) 5.04 (0.07) 34.37 (1.24) 6.85 (0.22)
FSR-Corr 0.05 9.25 (0.31) 5.04 (0.07) 42.15 (1.52) 8.21 (0.27)
FSR-Corr 0.2 9.85 (0.31) 5.04 (0.07) 51.68 (2.11) 9.91 (0.38)
FSR-Corr 0.5 10.77 (0.37) 5.04 (0.07) 84.36 (6.02) 16.17 (1.18)

FSR-TG 0.01 34.25 (1.39) 8.00 (0.08) 0.00 (0.00) 11.31 (0.09)
FSR-TG 0.05 31.14 (1.47) 7.71 (0.10) 0.00 (0.00) 11.32 (0.09)
FSR-TG 0.2 23.83 (1.34) 7.04 (0.12) 0.00 (0.00) 11.45 (0.09)
FSR-TG 0.5 15.39 (1.23) 5.79 (0.17) 0.00 (0.00) 11.40 (0.07)

competitive compared with CV in terms of MSE, and still enjoy computational efficiency as in

other examples.

The results for Example 6 are displayed in Table 2.13. This setting is more difficult for

our approach due to the nature of the proposed conditioning test. However, our method still

outperforms all the other competitors in terms of prediction accuracy.

2.5.1 A microarray data study

We use a cardiomyopathy microarray dataset to demonstrate the performance of our method

for high-dimensional problems. These data were previously analyzed in Segal et al. (2003); Hall
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Table 2.10: Results for simulated Example 4 with σ = 3. The format of the table is the same as Table
2.2.

Methods γ MSE FN FP Time

LARS-CV 9.63 (0.09) 0.02 (0.01) 0.63 (0.20) 24.72 (0.18)

LARS-Perm 0.01 10.76 (0.09) 2.03 (0.10) 0.00 (0.00) 12.02 (0.14)
LARS-Perm 0.05 10.49 (0.11) 1.64 (0.12) 0.03 (0.02) 12.57 (0.18)
LARS-Perm 0.2 10.27 (0.10) 1.02 (0.11) 0.32 (0.08) 13.90 (0.25)
LARS-Perm 0.5 10.32 (0.10) 0.38 (0.07) 1.79 (0.36) 16.77 (0.52)

LARS-Corr 0.01 10.72 (0.10) 1.97 (0.10) 0.00 (0.00) 1.38 (0.02)
LARS-Corr 0.05 10.46 (0.11) 1.58 (0.12) 0.03 (0.02) 1.46 (0.02)
LARS-Corr 0.2 10.24 (0.11) 1.08 (0.11) 0.21 (0.07) 1.57 (0.03)
LARS-Corr 0.5 10.14 (0.10) 0.49 (0.08) 0.97 (0.19) 1.79 (0.04)

LARS-TG 0.01 58.64 (0.67) 8.95 (0.02) 0.00 (0.00) 11.71 (0.10)
LARS-TG 0.05 56.67 (0.86) 8.85 (0.04) 0.00 (0.00) 11.77 (0.10)
LARS-TG 0.2 50.38 (1.24) 8.46 (0.07) 0.00 (0.00) 11.59 (0.09)
LARS-TG 0.5 41.47 (1.59) 7.55 (0.15) 0.00 (0.00) 12.00 (0.14)

LASSO-CV 12.26 (0.11) 0.02 (0.01) 12.44 (0.44) 50.47 (0.41)

LASSO-Perm 0.01 10.75 (0.10) 1.87 (0.11) 0.00 (0.00) 12.26 (0.16)
LASSO-Perm 0.05 10.43 (0.11) 1.38 (0.12) 0.06 (0.03) 13.00 (0.20)
LASSO-Perm 0.2 10.31 (0.10) 0.96 (0.11) 0.36 (0.09) 14.09 (0.24)
LASSO-Perm 0.5 10.50 (0.12) 0.33 (0.07) 2.47 (0.50) 17.86 (0.72)

LASSO-Corr 0.01 10.66 (0.11) 1.74 (0.11) 0.00 (0.00) 1.41 (0.02)
LASSO-Corr 0.05 10.40 (0.11) 1.37 (0.12) 0.05 (0.03) 1.48 (0.02)
LASSO-Corr 0.2 10.25 (0.10) 1.01 (0.11) 0.21 (0.08) 1.57 (0.03)
LASSO-Corr 0.5 10.13 (0.10) 0.46 (0.08) 0.91 (0.20) 1.81 (0.04)

FSR-CV 16.59 (0.29) 6.45 (0.05) 0.29 (0.07) 8.68 (0.05)

FSR-Perm 0.01 21.22 (0.88) 6.00 (0.07) 11.76 (1.35) 22.04 (1.70)
FSR-Perm 0.05 23.63 (0.99) 6.00 (0.07) 16.93 (1.56) 28.64 (1.96)
FSR-Perm 0.2 26.29 (1.06) 6.00 (0.07) 25.93 (2.87) 40.45 (3.78)
FSR-Perm 0.5 29.00 (1.11) 6.00 (0.07) 39.31 (4.54) 57.63 (5.89)

FSR-Corr 0.01 21.88 (0.91) 6.00 (0.07) 13.18 (1.40) 2.81 (0.23)
FSR-Corr 0.05 23.93 (1.00) 6.00 (0.07) 17.80 (1.58) 3.52 (0.25)
FSR-Corr 0.2 26.68 (1.08) 6.00 (0.07) 27.05 (2.88) 5.08 (0.49)
FSR-Corr 0.5 29.14 (1.11) 6.00 (0.07) 39.64 (4.52) 7.27 (0.80)

FSR-TG 0.01 58.15 (0.86) 8.91 (0.03) 0.00 (0.00) 11.16 (0.08)
FSR-TG 0.05 54.86 (1.11) 8.78 (0.04) 0.00 (0.00) 11.27 (0.09)
FSR-TG 0.2 47.96 (1.38) 8.40 (0.07) 0.00 (0.00) 11.09 (0.09)
FSR-TG 0.5 37.69 (1.57) 7.54 (0.13) 0.00 (0.00) 11.38 (0.12)

and Miller (2012); Li et al. (2012). The aim of this study is to determine the most influential

genes for a G protein-coupled receptor (Ro1) in mice. The dataset contains gene expression

levels of 6320 genes on 30 specimens, in which the response variable is the expression level of

Ro1 and the covariates Xj are the expression levels of the remaining p = 6319 genes.

As in simulation studies, we perform all the methods, i.e., LARS-Corr, LASSO-Corr, FSR-

Corr, LARS-Perm, LASSO-Perm, FSR-Perm, LARS-TG, FSR-TG, LARS-CV, LASSO-CV

and FSR-CV on the dataset. For CV-based methods, we use 5-fold CV to implement model

selection. As the average of pairwise correlations among covariates is close to 0 (less than

0.003), we use the null distribution for independent covariates in our test-based approaches.
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Table 2.11: Results for simulated Example 5 with σ = 2. The format of the table is the same as Table
2.2.

Methods γ MSE FN FP Time

LARS-CV 4.32 (0.05) 0.00 (0.00) 2.09 (0.25) 25.52 (0.35)

LARS-Perm 0.01 4.08 (0.03) 0.00 (0.00) 0.24 (0.05) 5.89 (0.07)
LARS-Perm 0.05 4.11 (0.03) 0.00 (0.00) 0.36 (0.07) 6.04 (0.10)
LARS-Perm 0.2 4.17 (0.04) 0.00 (0.00) 0.64 (0.10) 6.43 (0.14)
LARS-Perm 0.5 4.38 (0.04) 0.00 (0.00) 2.08 (0.22) 8.42 (0.30)

LARS-Corr 0.01 4.08 (0.03) 0.00 (0.00) 0.23 (0.04) 0.64 (0.01)
LARS-Corr 0.05 4.11 (0.03) 0.00 (0.00) 0.34 (0.07) 0.66 (0.01)
LARS-Corr 0.2 4.16 (0.04) 0.00 (0.00) 0.57 (0.09) 0.69 (0.02)
LARS-Corr 0.5 4.33 (0.04) 0.00 (0.00) 1.63 (0.16) 0.89 (0.03)

LARS-TG 0.01 11.43 (0.37) 1.96 (0.02) 0.00 (0.00) 11.35 (0.08)
LARS-TG 0.05 11.20 (0.39) 1.89 (0.03) 0.00 (0.00) 11.33 (0.08)
LARS-TG 0.2 9.84 (0.37) 1.56 (0.06) 0.01 (0.01) 11.48 (0.09)
LARS-TG 0.5 7.92 (0.29) 1.04 (0.08) 0.24 (0.06) 11.54 (0.08)

LASSO-CV 4.74 (0.05) 0.00 (0.00) 5.14 (0.34) 39.63 (0.56)

LASSO-Perm 0.01 4.11 (0.03) 0.00 (0.00) 0.20 (0.04) 5.85 (0.07)
LASSO-Perm 0.05 4.14 (0.03) 0.00 (0.00) 0.33 (0.07) 6.01 (0.11)
LASSO-Perm 0.2 4.24 (0.04) 0.00 (0.00) 0.84 (0.15) 6.76 (0.25)
LASSO-Perm 0.5 4.46 (0.05) 0.00 (0.00) 2.41 (0.26) 8.98 (0.39)

LASSO-Corr 0.01 4.11 (0.03) 0.00 (0.00) 0.20 (0.04) 0.66 (0.01)
LASSO-Corr 0.05 4.14 (0.03) 0.00 (0.00) 0.33 (0.07) 0.69 (0.01)
LASSO-Corr 0.2 4.21 (0.04) 0.00 (0.00) 0.67 (0.12) 0.74 (0.02)
LASSO-Corr 0.5 4.41 (0.05) 0.00 (0.00) 1.98 (0.23) 0.98 (0.04)

FSR-CV 4.45 (0.08) 0.47 (0.08) 0.60 (0.11) 9.89 (0.15)

FSR-Perm 0.01 4.37 (0.07) 0.37 (0.07) 0.81 (0.15) 6.08 (0.16)
FSR-Perm 0.05 4.41 (0.07) 0.37 (0.07) 1.06 (0.19) 6.38 (0.21)
FSR-Perm 0.2 4.53 (0.08) 0.37 (0.07) 1.49 (0.23) 6.95 (0.24)
FSR-Perm 0.5 4.78 (0.10) 0.37 (0.07) 2.43 (0.29) 8.17 (0.33)

FSR-Corr 0.01 4.35 (0.07) 0.38 (0.07) 0.70 (0.13) 0.64 (0.01)
FSR-Corr 0.05 4.40 (0.07) 0.37 (0.07) 1.02 (0.19) 0.70 (0.03)
FSR-Corr 0.2 4.51 (0.08) 0.37 (0.07) 1.41 (0.22) 0.76 (0.03)
FSR-Corr 0.5 4.74 (0.09) 0.37 (0.07) 2.28 (0.28) 0.90 (0.04)

FSR-TG 0.01 11.54 (0.38) 2.00 (0.00) 0.00 (0.00) 10.91 (0.09)
FSR-TG 0.05 11.11 (0.40) 1.88 (0.04) 0.00 (0.00) 10.87 (0.08)
FSR-TG 0.2 9.95 (0.40) 1.57 (0.06) 0.01 (0.01) 10.94 (0.08)
FSR-TG 0.5 8.25 (0.38) 1.06 (0.08) 0.21 (0.07) 10.96 (0.08)

Since the correlation structure of the covariates in the gene expression data is different from iid

Gaussian random variables, we also implement the permutation tests incorporated into LARS,

LASSO and FSR correspondingly. In addition, we consider γ ∈ {0.05, 0.1, 0.2} for LARS-Corr,

LASSO-Corr, FSR-Corr, LARS-Perm, LASSO-Perm, FSR-Perm, LARS-TG and FSR-TG. In

the experiment, 100 replications are conducted. For each replication, we randomly select 20

samples as the training data, and the remaining 10 as test data to obtain out-of-sample MSE.

We report the average of MSE and computational time with standard errors in Table 2.14.

One can see that our test-based methods using theoretical distribution have better prediction

accuracy than CV-based ones. While permutation test has competitive performance for MSE,
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Table 2.12: Results for simulated Example 5 with σ = 6. The format of the table is the same as Table
2.2 in the thesis.

Methods γ MSE FN FP Time

LARS-CV 39.67 (0.39) 0.83 (0.06) 1.14 (0.24) 23.99 (0.18)

LARS-Perm 0.01 40.57 (0.33) 1.59 (0.05) 0.03 (0.02) 3.39 (0.08)
LARS-Perm 0.05 40.01 (0.35) 1.32 (0.06) 0.19 (0.05) 4.03 (0.12)
LARS-Perm 0.2 39.97 (0.35) 1.10 (0.06) 0.58 (0.09) 4.88 (0.18)
LARS-Perm 0.5 40.71 (0.38) 0.74 (0.06) 2.05 (0.29) 7.56 (0.44)

LARS-Corr 0.01 40.77 (0.37) 1.78 (0.07) 0.15 (0.04) 0.31 (0.01)
LARS-Corr 0.05 40.16 (0.34) 1.39 (0.06) 0.15 (0.04) 0.37 (0.01)
LARS-Corr 0.2 39.90 (0.34) 1.10 (0.06) 0.55 (0.09) 0.49 (0.02)
LARS-Corr 0.5 40.24 (0.37) 0.76 (0.06) 1.44 (0.16) 0.70 (0.03)

LARS-TG 0.01 42.45 (0.53) 2.01 (0.02) 0.01 (0.01) 11.82 (0.08)
LARS-TG 0.05 42.40 (0.53) 1.99 (0.03) 0.02 (0.01) 11.68 (0.07)
LARS-TG 0.2 41.78 (0.52) 1.81 (0.05) 0.03 (0.02) 11.70 (0.09)
LARS-TG 0.5 41.10 (0.52) 1.44 (0.07) 0.52 (0.12) 11.85 (0.10)

LASSO-CV 40.38 (0.38) 0.76 (0.06) 1.87 (0.30) 38.13 (0.64)

LASSO-Perm 0.01 41.00 (0.33) 1.66 (0.05) 0.03 (0.02) 3.31 (0.08)
LASSO-Perm 0.05 40.49 (0.35) 1.40 (0.07) 0.20 (0.05) 3.94 (0.14)
LASSO-Perm 0.2 40.51 (0.35) 1.09 (0.07) 0.76 (0.14) 5.18 (0.26)
LASSO-Perm 0.5 41.35 (0.42) 0.75 (0.06) 2.32 (0.32) 7.97 (0.51)

LASSO-Corr 0.01 40.55 (0.37) 1.77 (0.07) 0.19 (0.04) 0.32 (0.01)
LASSO-Corr 0.05 40.44 (0.35) 1.42 (0.06) 0.17 (0.05) 0.37 (0.01)
LASSO-Corr 0.2 40.28 (0.35) 1.11 (0.07) 0.61 (0.11) 0.51 (0.02)
LASSO-Corr 0.5 40.86 (0.40) 0.77 (0.06) 1.67 (0.21) 0.77 (0.04)

FSR-CV 40.89 (0.32) 1.85 (0.04) 0.17 (0.04) 9.37 (0.05)

FSR-Perm 0.01 40.57 (0.31) 1.77 (0.05) 0.20 (0.04) 3.33 (0.08)
FSR-Perm 0.05 40.53 (0.33) 1.70 (0.06) 0.44 (0.06) 3.73 (0.10)
FSR-Perm 0.2 41.21 (0.41) 1.64 (0.06) 0.88 (0.09) 4.39 (0.12)
FSR-Perm 0.5 42.91 (0.51) 1.61 (0.06) 1.71 (0.13) 5.53 (0.16)

FSR-Corr 0.01 41.01 (0.35) 1.88 (0.07) 0.13 (0.04) 0.28 (0.01)
FSR-Corr 0.05 40.51 (0.33) 1.70 (0.06) 0.42 (0.06) 0.36 (0.01)
FSR-Corr 0.2 41.10 (0.40) 1.63 (0.06) 0.86 (0.09) 0.45 (0.01)
FSR-Corr 0.5 42.60 (0.49) 1.61 (0.06) 1.58 (0.12) 0.57 (0.02)

FSR-TG 0.01 43.03 (0.65) 2.06 (0.03) 0.00 (0.00) 11.36 (0.08)
FSR-TG 0.05 43.01 (0.65) 2.05 (0.03) 0.00 (0.00) 11.28 (0.08)
FSR-TG 0.2 42.22 (0.56) 1.89 (0.04) 0.11 (0.04) 11.21 (0.08)
FSR-TG 0.5 41.76 (0.53) 1.64 (0.06) 0.58 (0.10) 11.30 (0.09)

it has the most expensive computational cost among all methods. On the contrary, compared

with CV as well as permutation test, the computational expenses of our test-based approaches

are reduced for all three sequential selection procedures.

To better demonstrate the performance of our test-based approach, we show a stepwise plot

and an overall MSE plot for LARS-Corr as in Figure 2.4. Figure 2.4a illustrates the stepwise

p-value and MSE for the first 15 steps of LARS-Corr. Here the out-of-sample MSE at Step k

is with respect to the model containing variables selected by the first k LARS steps. Note that

such models might vary through 100 replications, resulting in relatively large standard errors

for MSE. By the one standard error rule, Figure 2.4a implies that a candidate model of size
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Table 2.13: Results for simulated Example 6. The format of the table is the same as Table 2.2 in the
thesis.

Methods γ MSE FN FP Time

LARS-CV 9.63 (0.09) 0.02 (0.01) 0.63 (0.20) 24.72 (0.18)

LARS-Perm 0.01 9.69 (0.11) 0.15 (0.05) 0.00 (0.00) 15.45 (0.11)
LARS-Perm 0.05 9.62 (0.10) 0.07 (0.03) 0.10 (0.04) 15.62 (0.11)
LARS-Perm 0.2 9.85 (0.11) 0.05 (0.03) 0.65 (0.13) 16.24 (0.20)
LARS-Perm 0.5 10.70 (0.15) 0.01 (0.01) 5.71 (1.95) 23.35 (2.73)

LARS-Corr 0.01 9.86 (0.12) 0.24 (0.06) 0.00 (0.00) 1.78 (0.01)
LARS-Corr 0.05 9.63 (0.10) 0.10 (0.04) 0.03 (0.02) 1.81 (0.01)
LARS-Corr 0.2 9.72 (0.10) 0.07 (0.03) 0.27 (0.06) 1.86 (0.02)
LARS-Corr 0.5 10.19 (0.12) 0.01 (0.01) 1.65 (0.22) 2.11 (0.04)

LARS-TG 0.01 95.51 (2.09) 8.88 (0.05) 0.00 (0.00) 11.42 (0.06)
LARS-TG 0.05 89.40 (2.49) 8.71 (0.06) 0.00 (0.00) 11.70 (0.12)
LARS-TG 0.2 81.83 (2.74) 8.42 (0.09) 0.00 (0.00) 11.54 (0.09)
LARS-TG 0.5 61.43 (3.27) 7.31 (0.17) 0.00 (0.00) 11.94 (0.14)

LASSO-CV 12.26 (0.11) 0.02 (0.01) 12.44 (0.44) 50.47 (0.41)

LASSO-Perm 0.01 10.75 (0.10) 1.87 (0.11) 0.00 (0.00) 12.26 (0.16)
LASSO-Perm 0.05 10.43 (0.11) 1.38 (0.12) 0.06 (0.03) 13.00 (0.20)
LASSO-Perm 0.2 10.31 (0.10) 0.96 (0.11) 0.36 (0.09) 14.09 (0.24)
LASSO-Perm 0.5 10.50 (0.12) 0.33 (0.07) 2.47 (0.50) 17.86 (0.72)

LASSO-Corr 0.01 10.66 (0.11) 1.74 (0.11) 0.00 (0.00) 1.41 (0.02)
LASSO-Corr 0.05 10.40 (0.11) 1.37 (0.12) 0.05 (0.03) 1.48 (0.02)
LASSO-Corr 0.2 10.25 (0.10) 1.01 (0.11) 0.21 (0.08) 1.57 (0.03)
LASSO-Corr 0.5 10.13 (0.10) 0.46 (0.08) 0.91 (0.20) 1.81 (0.04)

FSR-CV 15.96 (0.37) 2.64 (0.11) 0.39 (0.07) 9.71 (0.11)

FSR-Perm 0.01 13.92 (0.36) 1.43 (0.11) 2.00 (0.22) 16.25 (0.32)
FSR-Perm 0.05 14.54 (0.43) 1.28 (0.11) 3.55 (0.34) 18.46 (0.45)
FSR-Perm 0.2 15.51 (0.52) 1.20 (0.10) 5.51 (0.50) 21.08 (0.63)
FSR-Perm 0.5 16.60 (0.57) 1.18 (0.10) 7.71 (0.60) 24.35 (0.75)

FSR-Corr 0.01 13.97 (0.36) 1.53 (0.11) 1.66 (0.20) 1.77 (0.04)
FSR-Corr 0.05 14.30 (0.42) 1.31 (0.11) 2.96 (0.29) 2.04 (0.05)
FSR-Corr 0.2 15.10 (0.47) 1.25 (0.11) 4.60 (0.41) 2.32 (0.06)
FSR-Corr 0.5 16.11 (0.54) 1.20 (0.10) 6.52 (0.51) 2.64 (0.08)

FSR-TG 0.01 91.36 (2.48) 8.81 (0.05) 0.00 (0.00) 11.13 (0.06)
FSR-TG 0.05 83.52 (2.86) 8.63 (0.06) 0.00 (0.00) 11.23 (0.12)
FSR-TG 0.2 69.66 (2.90) 8.20 (0.09) 0.00 (0.00) 11.13 (0.08)
FSR-TG 0.5 52.66 (2.85) 7.21 (0.16) 0.00 (0.00) 11.41 (0.13)

3 would be preferable. Moreover, we also summarize the most frequently identified genes out

of 100 replications and sort by frequency from high to low. Figure 2.4b shows the eight most

frequently identified genes that are selected at least 10 times over 100 replications, as well as the

out-of-sample MSE corresponding to the model containing the first k genes with k ∈ {1, . . . , 8}.

Among the eight genes, Msa.2877.0 was also identified in Hall and Miller (2012); Li et al. (2012),

and Msa.2134.0 was discovered in Li et al. (2012). Overall, our variable selection method is

effective in identifying potential scientific discoveries.
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Table 2.14: The average MSE and computational time over 100 replications (with standard errors
given in parentheses).

Methods γ MSE Time Methods γ MSE Time

LARS-CV 0.63 (0.04) 1.48 (0.02) FSR-CV 0.91 (0.16) 0.78 (0.04)

LARS-Perm 0.05 0.60 (0.05) 1.81 (0.19) FSR-Perm 0.05 0.62 (0.05) 1.44 (0.04)
LARS-Perm 0.1 0.59 (0.05) 2.62 (0.35) FSR-Perm 0.1 0.63 (0.05) 1.65 (0.06)
LARS-Perm 0.2 0.59 (0.04) 5.78 (0.62) FSR-Perm 0.2 0.67 (0.05) 2.22 (0.20)

LARS-Corr 0.05 0.58 (0.05) 0.44 (0.01) FSR-Corr 0.05 0.61 (0.05) 0.41 (0.01)
LARS-Corr 0.1 0.55 (0.05) 0.53 (0.02) FSR-Corr 0.1 0.60 (0.05) 0.48 (0.02)
LARS-Corr 0.2 0.53 (0.04) 0.58 (0.03) FSR-Corr 0.2 0.60 (0.05) 0.51 (0.02)

LARS-TG 0.05 0.74 (0.05) 3.42 (0.03) FSR-TG 0.05 0.72 (0.05) 2.94 (0.02)
LARS-TG 0.1 0.72 (0.05) 3.52 (0.03) FSR-TG 0.1 0.71 (0.05) 3.01 (0.02)
LARS-TG 0.2 0.66 (0.05) 3.56 (0.03) FSR-TG 0.2 0.65 (0.05) 3.04 (0.02)

LASSO-CV 0.59 (0.04) 1.98 (0.02)

LASSO-Perm 0.05 0.60 (0.05) 1.47 (0.05)
LASSO-Perm 0.1 0.57 (0.05) 3.21 (0.60)
LASSO-Perm 0.2 0.54 (0.04) 7.84 (0.99)

LASSO-Corr 0.05 0.58 (0.05) 0.41 (0.01)
LASSO-Corr 0.1 0.55 (0.05) 0.49 (0.02)
LASSO-Corr 0.2 0.53 (0.04) 0.55 (0.03)
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Figure 2.4: Performance of LARS-Corr applied to the microarray data. (a) Average p-value and
MSE with one standard error bands for the first 15 steps of LARS-Corr over 100 replications. (b) 8
most frequently identified genes by LARS-Corr and the out-of-sample MSE corresponding to the model
consists of the first k ∈ {1, . . . , 8} genes.

2.6 Discussion

In this thesis, we propose a test-based variable selection approach in the context of high-

dimensional linear regression model with Gaussian covariates. We first formulate the null

hypothesis, where we assume that the response is uncorrelated with all of the remaining co-
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variates given a set of selected variables. We also propose the maximal absolute sample partial

correlation statistic and discuss its asymptotic null distribution and power. We then incorpo-

rate the distribution information with sequential selection procedures. We use three simulated

examples and one real data analysis to demonstrate that compared with CV-based procedure,

the proposed method can perform variable selection effectively and efficiently.

Our proposed method involves sequential hypothesis testing. Therefore, instead of using

a constant test level γ, one can consider multiple testing methods, such as the false discovery

rate (FDR) control (Benjamini and Hochberg, 1995), which provides flexible test levels and

meaningful probability statements of the selected model. However, due to the adaptive nature

of the sequential selection procedures, classical FDR control methods cannot be applied directly.

There are some recent papers for sequential testing (Foster and Stine, 2008; Aharoni and Rosset,

2014; G’Sell et al., 2016). However, the approaches in Aharoni and Rosset (2014); Foster and

Stine (2008) are known to control the marginal FDR instead of the FDR. In contrast, G’Sell

et al. (2016) assumes that the p-values corresponding to the null hypotheses are iid U(0, 1),

which does not usually hold in our setting. We plan to investigate our procedure along this

direction in future work.

2.7 Proofs

In this section, we provide proofs to Theorems 1 and 2.

Proof of Theorem 1. Without loss of generality, we assume that Xj ’s are standard normal

variables. Let β∗ be a vector consisting of all non-zero components of β. Recall thatM∗ is the

support set of β. Thus we can rewrite the regression model in (2.1) as

y = XM∗β
∗ + ε.

Recall that under the null hypothesisM∗ ⊆M, r = (I−PM)y = (I−PM)(XM∗β
∗+ε) =

(I − PM)ε. Therefore, for any j /∈ M, the sample partial correlation between rj and r given
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the active set M can be written as

Ĉorr(rj , r) =
〈rj , r〉
‖rj‖‖r‖

= 〈 (I − PM)xj
‖(I − PM)xj‖

,
(I − PM)ε

‖(I − PM)ε‖
〉.

Denote Lj =
(I−PM)xj
‖(I−PM)xj‖ , V = (I−PM)ε

‖(I−PM)ε‖ . According to Theorem II.4 in Zhang (2017), to

obtain the uniform asymptotic null distribution of max
j:j∈Mc

|Ĉorr(rj , r)|, it is enough to show the

following two arguments:

(1) Conditioning on M, {Lj ; j ∈ Mc} are independent, and they have a degenerate uniform

distribution on the (n− s− 2)-sphere S(n−s−2) in n-dimensional space.

(2) Conditioning on M, V is a unit vector independent of Lj for ∀j ∈Mc.

For part (1), asM is given, I−PM is deterministic. Since I−PM is a orthogonal projection

and rank(I−PM) = n−s−1, there exists an n× (n−s−1) matrix U1 with orthogonal column

vectors of unit length such that I − PM = U1U
>
1 . In fact, we can take orthonormal basis for

the column space of XM as the column vectors of U1. Thus we have

rj = (I − PM)xj = U1U
>
1 xj .

Denote z = U>1 xj . By the Gaussian assumption of the covariates, we have xj
d∼N (0, In). Hence

z
d∼N (0, In−s−1). By Lemma A.4.2 of Anderson (2003), it is possible to find an n × (s + 1)

matrix U2 with U =
(
U1, U2

)
being orthogonal, such that rj can be rewritten as rj = U z̃.

Here z̃ =

 z

0

 is an n-vector.

Note that z̃
‖z̃‖ = ( z>

‖z‖ ,0)> is a degenerate uniform distribution on S(n−s−2) in n-dimensional

space. Since U is orthogonal, by the definition of uniform spherical distribution, Lj =
rj
‖rj‖ =

U z̃
‖z̃‖

d∼ z̃
‖z̃‖ , thus is also uniformly distributed on Sn−s−2. Moreover, rj ’s are independent condi-

tioning on M, which implies that Lj ’s are also conditionally independent given M.

For part (2), by the model assumption, xj is independent of ε for ∀j ∈ Mc. Hence given

XM, {(I −PM)xj ; j ∈Mc} are also conditionally independent of (I −PM)ε, implying that Lj

is conditionally independent of V for all j ∈Mc.
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Thus far we have justified the two aforementioned arguments. Therefore the proposed test

statistic has the asymptotic distribution uniformly for any n ≥ s+ 3 as in (1).

Proof of Theorem 2. Note that xα(p, n, s) = F−1
n,s (1 − α)b(p, n, s) + a(p, n, s), with Fn,s( · )

being the asymptotic cumulative distribution function of RM under HM0 as in (2.6). Before

proving the theorem, we first prove the following two lemmas.

Lemma 1. For a(p, n, s), b(p, n, s) and c(p, n, s), we have the following asymptotic results:

1. Uniformly for all p ≥ 2, c(p, n, s)→ 1 as n→∞.

2. As log p
n → 0 and n→∞, a(p, n, s)→ 0, b(p, n, s)→ 0.

Proof of Lemma 1. Note that
√

2π
n−s−2 ≤ B(1

2 ,
n−s−2

2 ) ≤
√

4π
n−s−2 , hence

c(p, n, s) ≤ (
n− s− 2

2
B(

1

2
,
n− s− 2

2
))2/(n−s−2)

≤ (
n− s− 2

2

√
4π

n− s− 2
)2/(n−s−2)

= ((n− s− 2)π)1/(n−s−2)

→ 1 as n→∞.

Furthermore, for any p ≥ 2, (n−s−2
2 )(1− p−2/(n−s−2)) ≥ 1− 1/p, hence we have

c(p, n, s) ≥
(
n− s− 2

2

√
2π

n− s− 2
(1− p−2/(n−s−2))

)2/(n−s−2)

≥ (π(1− 1/p)1/(n−s−2)

≥ (
π

2
)1/(n−s−2)

→ 1 as n→∞.

Note that the above two convergence results do not depend on p. Therefore, uniformly for

any p ≥ 2, c(p, n, s)→ 1 as n→∞.

Since a(p, n, s) = 1− (p−s)−2/(n−s−2)c(p, n, s), b(p, n, s) = 2
n−s−2(p−s)−2/(n−s−2)c(p, n, s),

and (p− s)−2/(n−s−2) → 1 by assumption. It follows directly that as log p
n → 0 and n→∞,

a(p, n, s)→ 0, b(p, n, s)→ 0.
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Lemma 2. Under the alternative hypothesis (2.9), there exists a constant c0 > 0 such that

uniformly for any p ≥ s, Pr (RM ≥ c0|H1)→ 1 as n→∞.

Proof of Lemma 2. Under (2.9), we can find some j0 ∈Mc such that ρ0 = |Corr(Xj0 ,Y|XM)| >

0, which is the absolute population partial correlation between Xj0 and Y given XM. We have

that rn,j0 = |Ĉorr(Xj0 , Y |XM)| p−→ ρ0 as n→∞.

Let c0 = ρ0/2, then

Pr (RM ≥ c0|H1) ≥ Pr (rn,j0 ≥ c0|H1)

≥ Pr (|rn,j0 − ρ0| ≤ c0|H1)

→ 1 as n→∞.

As the above convergence does not depend on p, it follows that uniformly for any p ≥ s,

Pr (RM ≥ c0|H1)→ 1 as n→∞.

Note that ∀x > 0, F−1
n,s (x)→ − log(− log(x)) as n→∞. Thus we have −1− log(− log(1−

α)) ≤ F−1
n,s (1 − α) ≤ 1 − log(− log(1 − α)) for large enough n. Together with the results of

Lemma 1, we have for any fixed s and α, xα(p, n, s) = F−1
n,s (1 − α)b(p, n, s) + a(p, n, s) → 0 as

(log p)/n→ 0 and n→∞.

Therefore, for ∀0 < ε < c0 with c0 being the same as in Lemma 6,

Pr (RM ≥ xα(p, n, s)|H1) =1− Pr (RM < xα(p, n, s)|H1)

=1− Pr (RM < xα(p, n, s), xα(p, n, s) < ε|H1)

− Pr (RM < xα(p, n, s), xα(p, n, s) ≥ ε|H1)

≥1− Pr (RM < xα(p, n, s), xα(p, n, s) < ε|H1)

− Pr (xα(p, n, s) ≥ ε|H1)

≥1− Pr (RM < c0|H1)− Pr (xα(p, n, s) ≥ ε|H1) .

When (log p)/n→ 0 and n→∞, we have Pr (RM < c0|H1)→ 0, Pr (xα(p, n, s) ≥ ε|H1)→

0, thus Pr (RM ≥ xα(p, n, s)|H1)→ 1, i.e., the asymptotic power is 1.
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CHAPTER 3

Penalized linear regression with high-dimensional pairwise screening

3.1 Introduction

In the era of big data, high dimensional problems are of interest in many scientific fields,

where the number of variables may be comparable to or even much larger than the sample size.

For example, in genetic studies, one often has tens of thousands of genes in the microarray

datasets with only a few hundreds of patients; in neuroscience, fMRI images may contain

millions of voxels.

In recent years, much research effort has been devoted to deal with high dimensional data

analysis. Among those methods developed, penalized least squares plays an important role. In

particular, one of the most well-known method is the LASSO proposed by Tibshirani (1996),

which is the solution to the following penalized problem

min
β∈Rp

‖y −Xβ‖22 + λP (β), (3.1)

where λP (β) = λ
∑p

j=1 |βj | is the l1 penalty. Tibshirani (1996) showed that the LASSO leads to

a sparse estimator that shrinks the OLS solution and sets some of the estimated coefficients to

exact zero. As introduced in Chapter 1, despite with good theoretical properties and practical

performance, the LASSO has some drawbacks. To address these issues, Zou and Hastie (2005)

introduced the elastic net method, using λ1‖β‖1+λ2‖β‖22 as the regularization term in (3.1) and

thus encouraging a grouping effect. Besides the elastic net, various penalized variable selection

methods have been proposed as extensions to LASSO. See Chapter 1 for an overview.

For high dimensional variable selection, it is crucial to account for the dependency structure

between covariates. Such structure information not only improves the accuracy of selection,

but also have practical meanings. For instance, in gene expression data, genes usually function
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as biological pathways instead of working independently. Classical penalized variable selection

methods, however, usually do not explicitly take into account the relationships between co-

variates. To address this problem, Yuan and Lin (2006) proposed the group LASSO method,

which takes advantage of the grouping information among the covariates. Extensions of group

lasso include, but are not limited to the PACS proposed by Breheny and Huang (2015). Other

methods use the structure information as predictor graph (see Li and Li (2008); Pan et al.

(2010); Zhu et al. (2013); Yu and Liu (2016) among others for reference).

A common assumption for the methods mentioned above is that the underlying predictor

graph is given, which may not hold in practice. When the prior information is not available,

the idea of clustering can be incorporated to improve regression performance. Specifically,

Park et al. (2007) proposed to perform hierarchical clustering on the covariates first and take

the cluster average as new predictors for regression. There are also methods using supervised

clustering to encourage highly correlated pairs of covariates to be included or excluded simul-

taneously (Bondell and Reich, 2008; Sharma et al., 2013). Similarly, another type of methods

aims to make correlated covariates have similar regression coefficients (She et al., 2010). Nev-

ertheless, a large sample correlation between two variables does not necessarily indicate that

they are dependent in the population sense. When the dimensionality continues to increase, the

maximal pairwise correlation among p independent covariates can be close to 1 (Fan and Lv,

2010). Therefore, it is important to identify covariates that are truly correlated and incorporate

such information into variable selection procedures.

In this chapter, we study the limiting behavior of the maximal absolute pairwise sample

correlation among covariates when they are independent Gaussian random variables. Different

from existing work, we investigate the limiting distribution as the dimensionality p diverges.

Therefore, the proposed asymptotic results potentially can be applied to datasets with arbi-

trarily large dimensionality. We further discuss the extreme behavior of the maximal absolute

Spearman’s rho statistic for covariates with general distributions. On the other hand, we ob-

tain the lower bound of maximal pairwise R squares when regressing the response onto pairs

of covariates. With the extreme value results, we formulate a screening procedure to identify

covariates pairs that are potentially dependent and associated with the response. We fur-

ther combine the pairwise screening with the Sure Independence Screening (SIS) (Fan and Lv,
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2008) and propose a novel penalized variable selection method. More specifically, we assign

different penalties to each individual covariate according to the screening results. Numerical

experiments show that the performance of our proposed method is competitive compared with

existing approaches in terms of both variable selection and prediction accuracy.

The remainder of this chapter is organized as follows: We first investigate the limiting

distribution of the maximal pairwise sample correlation among covariates in Section 3.2.1. We

also show that our asymptotic results cover that of Cai and Jiang (2012) as a special case.

Then we propose an upper bound for the maximal pairwise R squares in Section 3.2.2. In

Section 3.3.1 we formulate our proposed variable selection approach as a penalized maximum

likelihood problem, and discuss potential extensions of our method in Section 3.3.2. We show

with simulated experiments as well as two real datasets in Section 3.5 that the propose method

has improved performance when important variables are highly correlated. Finally, we conclude

this chapter and discuss possible future work in Section 3.6. Proofs of theoretical results are

presented in Section 3.7.

3.2 Pair Screening for covariates

Suppose we have the following linear model

y = Xβ + ε, (3.2)

where y = (y1, y2, · · · , yn)T is the response vector, X = (x1,x2, · · · ,xp) is an n × p design

matrix with xj being n independent and identical observations from the covariate Xj . We

assume that the covariate vector x = (X1, X2, · · · , Xp)
T has a multivariate distribution with

unknown covariance matrix Σ, and ε = (ε1, ε2, · · · , εn)T is a vector of i.i.d. random variables

with mean 0 and standard deviation σ, and is independent of the covariate vector x.

For the linear model (3.2), variable selection methods aim to identify the non-zero compo-

nents of β, in other words, the important variables among all candidate predictors. Particularly,

if two covariates have a large pairwise correlation, we may want to include or exclude these two

variables simultaneously when conducting variable selection. However, the sample correlation

can be spurious, especially when the number of covariates p is relatively large. Therefore, it
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is important to identify covariates that are truly correlated. In other words, we need to find

a threshold for the pairwise sample correlation among covariates to screen covariates pairs. In

the following subsection, we will discuss in details the asymptotic results that generate the

screening rule.

3.2.1 Extreme laws of pairwise sample correlation among covariates

We propose to choose a bound based on the extreme laws of the pairwise sample correlation

when the p covariates are independent. Our investigations are under two settings: (a) the

covariates are normally distributed; (b) the covariates are non-Gaussian random variables.

3.2.1.1 Gaussian covariates

It has been recently studied that the maximal absolute Pearson sample correlation between

p i.i.d. Gaussian covariates and an independent response has a Gumble-type limiting distri-

bution as p goes to infinity (Zhang, 2017). Motivated by Zhang (2017)’s work, we find that

the maximal absolute pairwise sample correlation among p independent covariates also has a

limiting distribution, as stated in the following theorem:

Theorem 3. Suppose X1, X2, · · · , Xp are p independent Gaussian variables and we observe n

independent samples from each of Xj’s. Let Wpn = max1≤i<j≤p |ρi,j |, where ρi,j = Ĉorr(Xi, Xj)

is the Pearson sample correlation between Xi and Xj. Then as p→∞,

lim
p→∞

|P (
W 2
pn − ap,n
bp,n

≤ x)−I(x ≤ n− 2

2
) exp

{
− 1

2

(
1− 2

n− 2
x
)n−2

2
}
−I(x >

n− 2

2
)| = 0, (3.3)

which is uniform for any n ≥ 3. Here ap,n = 1 − p−4/(n−2)cp,n, bp,n = 2
n−2p

−4/(n−2)cp,n, and

cp,n =
(
n−2

2 B(1
2 ,

n−2
2 )
√

1− p−4/(n−2)
)2/(n−2)

are the normalizing constants.

Remark 3.2.1. The above limiting distribution is similar to 2.6 given in Chapter 2, but differs

in the constant within the exponential term. Moreover, the normalizing constant involves

p−4/(n−2).

In random matrix theory, Wpn is also known as the coherence when the design matrix X

is random. Specifically, the coherence is defined as the largest magnitude of the off-diagonal

50



entries of the sample correlation matrix associated with a random matrix. The limiting behavior

of the coherence has been well studied when the sample size n goes to infinity. For example,

Cai and Jiang (2011) studied the asymptotic distribution under certain regularity conditions

with application to the testing of covariance matrix. Cai and Jiang (2012) further obtained the

limiting laws of the coherence for different divergence rate of p with respect to n and summarized

the results as phase transition phenomena. We can show that our result unifies the convergence

in terms of the sample size, and covers Cai and Jiang (2012)’s as special cases, described in the

following corollary.

Corollary 3. Let Wpn be defined as in Theorem 3, where we still assume Xj’s are independent

normal random variables. Let Tpn = log(1−W 2
pn).

(a) (Sub-Exponential Case) Suppose p = pn → ∞ as n → ∞ and (log p)/n → 0, then as

n→∞,

Pr (nTpn + 4 log p− log log p ≤ x)→ 1− e−
1√
8π
ex/2

.

(b) (Exponential Case) Suppose p = pn satisfies (log p)/n→ β ∈ (0,∞) as n→∞. Then

as n→∞,

Pr (nTpn + 4 log p− log log p ≤ x)→ 1− exp
{
−K(β)e(x+8β)/2

}
,

where K(β) =
( β

2π(1−4e−4β)

)1/2
.

(c) (Super-Exponential Case) Suppose p = pn satisfies (log p)/n → ∞ as n → ∞. Then

as n→∞,

Pr

(
nTpn +

4n

n− 2
log p− log n ≤ x

)
→ 1− e−

1√
2π
ex/2

.

Compared with previous work, our asymptotic distribution is novel in two aspects. First,

the convergence in Theorem 3 is with respect to p instead of n, making it applicable to high

dimensional data, or even ultrahigh dimensional problems. Moreover, the convergence result

we have discovered is uniform for any n ≥ 3, thus finite sample performance is guaranteed.
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3.2.1.2 Non-Gaussian covariates

When the covariates are non-Gaussian random variables, it is more desirable to choose a

distribution-free statistic for the screening rule. Therefore, instead of using the Pearson’s sample

correlation, we study the extreme behavior of the Spearman’s rho statistic (Spearman, 1904).

Recall that xj = (X1j , X2j , · · · , Xnj)
T are n i.i.d. observations from the covariate Xj . Let Qjni

and Qkni be the ranks of Xij and Xik in {X1j , · · · , Xnj} and {X1k, · · · , Xnj} respectively. Then

the Spearman’s rho is defined as

ρij =

∑n
i=1(Qjni − Q̄

j
n)(Qkni − Q̄kn)√∑n

i=1(Qjni − Q̄
j
n)2
∑n

i=1(Qkni − Q̄kn)2

, (3.4)

where Q̄jn = Q̄kn = n+1
2 .

Similar to the normal setting, we are particularly interested in the limiting distribution of

S2
pn = max1≤i<j≤p ρ

2
ij when the covariates are all independent, which has been studied in Han

and Liu (2014). The following proposition introduced by Han and Liu (2014) states that as n

increases, S2
pn converges to a Gumble type distribution.

Proposition 2. [Han and Liu (2014)] Suppose that X1, · · · , Xp are independent and identically

distributed random variables, and we have n independent samples for each of the covariates.

Let S2
pn = max1≤i<j≤p ρ

2
ij be the squares of the maximal pairwise Spearman’s rho statistics, then

for log p = o(n1/3), we have

lim
n→∞

|Pr
(
(n− 1)S2

pn − 4 log p+ log log p ≤ x
)
− exp

{
− (8π)−1/2 exp(−y/2)

}
| = 0. (3.5)

Theorem 3 and Proposition 2 characterize the magnitude of the maximal pairwise corre-

lation and Spearman’s rho statistic respectively when the covariates are independent. In the

following subsection, we further investigate the extreme behavior of the maximal pairwise R

squares under the null model, i.e., βj ’s are all equal to zero.
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3.2.2 R squares screening for pairs of covariates

With the asymptotic distributions introduced in the previous subsections, we can identify

covariates pairs that are potentially dependent. However, such screening does not take into

account the association between the covariates and the response. It is possible that an impor-

tant variable has a large sample correlation with unimportant ones; or two highly correlated

covariates are both unrelated to the response. To address such an issue, we introduce another

screening procedure based on the R squares from regressing the response Y onto the pairs of

covariates.

Consider the linear regression where we regress Y onto a pair of covariates Xi and Xj with

i 6= j, we can obtain the corresponding R squares R2
ij =

∑n
i=1(ŷi−ȳ)∑n
i=1(yi−ȳ)

where ŷi is the regression fit

for the ith instance and ȳ is the sample mean of yi’s. Under the model setting (3.2), when all

the coefficients are zeros, the maximal pairwise R squares max
1≤i<j≤p

R2
ij cannot be too large. In

fact, there exists an asymptotic bound for max
1≤i<j≤p

R2
ij , as described in the following theorem.

Theorem 4. Let R2
pn = max1≤i<j≤pR

2
ij, where R2

ij is the pairwise R squares from regressing

Y onto Xi and Xj where i 6= j. Suppose that X1, · · · , Xp and Y are from the model setting 3.2

and we further assume that Y is a normally distributed. Then when βj’s are all zeros, we have

for any fixed n ≥ 4, δ > 0, as p→∞, P (R2
pn ≥ 1− p−(4+δ)/(n−3))→ 0.

Proof of Theorem 4. If Y is normally distributed, then conditioning on Xi and Xj ,

R2
ij |Xi, Xj is distributed as Beta(1, n−3

2 ) (Muirhead, 2009), which is independent of Xi, Xj .

Therefore, the unconditional distribution of R2
ij is also Beta(1, n−3

2 ).

P (R2
pn ≥ 1− p−(4+δ)/(n−3)) = P

(
max

1≤i<j≤p
R2
ij ≥ 1− p−(4+δ)/(n−3)

)
= P

(
∪1≤i<j≤p {R2

ij ≥ 1− p−(4+δ)/(n−3)}
)

≤ p(p− 1)

2
P ({R2

ij ≥ 1− p−(4+δ)/(n−3)})

=
p(p− 1)

2

(
p−(4+δ)/(n−3)

) (n−3)
2

= O(p−δ/2)→ 0,

as p→∞.
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With the bound given by Theorem 4, we can design a screening rule to find pairs of covariates

that are potentially associated with the response. In Section 3.3, we introduce how to make

use of the theoretical results to benefit variable selection.

3.3 Penalized variable selection using pairwise screening

In this section, we propose a pairwise screening procedure that takes advantages of the

asymptotic results in Section 3.2. We further establish a new penalization algorithm for variable

selection.

3.3.1 Screening-based penalization

Given the limiting distribution of the maximal pairwise sample correlation described in Sec-

tion 3.2, we propose the following screening rule to identify covariates pairs that are potentially

correlated and related to the response:

G = {(i, j) : i < j, |Ĉorr(Xi, Xj)| ≥ a and Rij ≥ r0}, (3.6)

where a is the 100(1 − α)% quantile of the distribution given in Theorem 3 (for Gaussian

covariates) or Proposition 2 (for non-Gaussian covariates), and r0 = 1 − p−(4+δ)/(n−3). Note

that the values of α and δ can affect the size of G. The larger α and δ are, there are fewer pairs

included in G. In practice, we suggest to take α = 0.05 and δ = 0.1.

The group definition in (3.6) is a screening procedure with respect to covariates pairs. The

idea of screening is prevalent for high dimensional data analysis. In particular, for penalized

variable selection methods, increasing dimensionality makes it more difficult to capture the

inherent sparsity structure. Therefore, dimension reduction is necessary when there are tens

of thousands of candidate variables. To this end, Fan and Lv (2008) introduced the Sure

Independence Screening (SIS) method, which ranks the covariates based on the magnitude of

their sample correlation with the response. Let w = (w1, w2, · · · , wp)T be a vector such that

wj = |Ĉorr(Xj , Y )| and γ is a constant between (0, 1), then a sub-model is defined as

Mγ = {j : wj is amongst the largest [γn] of all}, (3.7)
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where [γn] denotes the integer part of γn. Fan and Lv (2008) further demonstrated that SIS is

screening consistent under some conditions. This guarantees that all those Xj ’s with βj 6= 0 is

included in the subset of covariates.

To take advantage of the distribution information while implementing dimension reduction,

we propose a new penalized variable selection approach that applies different penalties to each

covariate based on the screening results. Let M be the index set of covariates that have the

largest [n\ log n] absolute sample correlation with the response among X1, X2, · · · , Xp. We also

define the set of paired covariates as

C = {Xi : ∃j 6= i such that (i, j) ∈ G}. (3.8)

Our proposed method is established by solving the following optimization problem:

min
β∈Rp

1

2n
‖y −Xβ‖22 + λ1

∑
j:j∈Cc∩M

|βj |+ λ2

∑
j:j∈C∩M

β2
j (3.9)

subject to βj = 0 for j /∈ M. In other words, we ignore the covariates that fail the marginal

screening.

From the above penalty, it can be seen that we apply different penalties to covariates based

upon the results from two types of screening. The intuition behind the proposed penalty is

• For a covariate that is included in both C and M, we only apply the l2 penalty because

it tends to be an important variable that we need to include in the final model.

• For a covariate that is included in M but not in C, we only apply the l1 penalty since

there is no significant multicollinearity between it and other covariates.

• For a covariate that is not included in M, since it does not pass the marginal screening,

we no longer consider it in the regression. This is because SIS enjoys screening consistency

under certain assumptions, which implies that M covers all important variables.

Our proposed method is connected with existing penalization approaches when the covari-

ates have certain covariance structure. In particular, when the covariates are all independent,

our method reduces to SIS-LASSO, which performs marginal screening first and then imple-
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ments LASSO on the remaining covariates; when the predictors are all highly correlated such

that G includes all covariates pairs, our method is equivalent to SIS-Ridge.

So far we have proposed a new penalized variable selection. Now we discuss how to solve

the optimization problem in (3.9). One can see that the penalty part of (3.9) is convex, so we

can efficiently solve it by coordinate descent algorithm (Friedman et al., 2010). Specifically, the

updating rule has the following form:

β̂j ←


S(

1

n

n∑
i=1

xij(yi − ỹ(j)
i ), λ1) for j ∈ Cc ∩M,

1
n

∑n
i=1 xij(yi − ỹ

(j)
i )

1 + λ2
for j ∈ C ∩M,

(3.10)

where ỹ
(j)
i = β̂0 +

∑
k 6=j xikβ̂k is the fitted value excluding the effect of xij , and S(z, λ) =

sign(z)(|z| − λ)+ is the soft-thresholding function. In practice, we can first implement SIS to

obtain M when the dimension is high, then run the algorithm on the covariates Xj ’s with

j ∈M.

3.3.2 Further extensions

As discussed in the previous subsection, we introduce a new penalized method that com-

bines marginal screening with pairwise screening under the linear model setting. Note that the

pairwise covariates screening does not involve the response. Therefore, our method can be fur-

ther extended to generalized linear models (GLM), e.g., logistic regression for binary response,

or cox model for survival data. Suppose the response Y is from the following one-parameter ex-

ponential family f(y|x, θ) = h(y) exp{yθ−b(θ)}. Moreover, we assume θ = xTβ for generalized

linear models.

Similar to 3.6, we define the pairwise screening as

G1 = {(i, j) : i < j, |Ĉorr(Xi, Xj)| ≥ a}. (3.11)

The difference is that we do not consider the R squares screening for GLMs. This is because for

GLMs, it is not reasonable to use the regression R squares to evaluate the associations between
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the covariates and the response. We further define the set of paired covariates as follows

C1 = {i : ∃j such that (i, j) ∈ G1}. (3.12)

Let

Pλ1,λ2(β) = λ1

∑
j:j∈Cc1∩M

|βj |+ λ2

∑
j:j∈C1∩M

β2
j

be our proposed screening-based penalty. Then for logistic regression, we need to solve the

following penalized maximum likelihood problem

min
β

n∑
i=1

(
yi(x

T
i β)− log(1 + ex

T
i β)
)

+ Pλ1,λ2(β). (3.13)

In the above optimization problem, the log likelihood part can be approximated by a

quadratic function, which is a weighted least squares term (Friedman et al., 2010). There-

fore, it can still be solved by coordinate descent algorithm. Similarly, we can use the algorithm

proposed by Simon et al. (2011) to solve the regularized Cox proportional hazard model using

the screening based penalty Pλ1,λ2(β).

In Section 3.5, we will show with numerical examples that our proposed method can perform

well in practice.

3.4 Theoretical properties

In this section, we study the theoretical properties of the proposed pairwise correlation

screening (PCS) method. More specifically, we investigate the conditions under which the PCS

achieves the variable selection consistency.

Note that we implemented the marginal screening using SIS to the covariates set. We also

introduce the details of the SIS procedure in Section 3.3.1. Fan and Lv (2008) demonstrated

that under certain regularity conditions, SIS has the screening consistency, that is, the resulting

subset of covariatesMγ contain all important variables. We present this result in the following

proposition.
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Proposition 3. [Fan and Lv (2008)] Suppose X and x are defined the same as in (3.2). Define

z = Σ−1/2x, Z = XΣ−1/2. Let M∗ be the index set of covariates with non-zero coefficient. The

following assumptions are imposed:

(A1) p > n and log(p) = O(nε) for some ε ∈ (0, 1− 2κ), where κ is given by condition (A3).

(A2) z has a spherically symmetric distribution, and ∃c0, c1 > 1, C1 > 0 such that

Pr
(
λmax(p̃Z̃Z̃T ) > c1 or λmin(p̃Z̃Z̃T ) < 1/c1

)
≤ exp(−C1n)

holds for any n× p̃ submatrix Z̃ of Z with c0n < p̃ ≤ p.

(A3) V ar(Y ) = O(1), and for some κ ≥ 0 and c2, c3 > 0,

min
j∈M∗

|βj | ≥
c2

nκ
, min

j∈M∗
Cov(β−1

j Y,Xj) ≥ c3

(A4) There are some τ ≥ 0 and c4 > 0 such that λmax(Σ) ≤ c4n
τ .

Under conditions (A1)− (A4), if 2κ+ τ < 1, then there is some θ < 1−2κ− τ such that , when

γ ∼ cn−θ with c > 0, we have, for some C > 0,

Pr (M∗ ⊂Mγ) = 1−O[exp{−C1−2κ/ log(n)}], (3.14)

where Mγ is the subset of covariates obtained from the sure independence screening.

The above proposition guarantees that all important variables survive the marginal screen-

ing with high probability. In order to achieve the selection consistency, we also need to ensure

that only important variables can pass the pairwise screening. In the following theorem, we

present the technical conditions that are required such that the event C ∩M ⊂M∗ occurs with

high probability.

Theorem 5. Suppose the following conditions holds

(B1) n/p2 → 0.

(B2) There exists η > 0 such that either one of the following two conditions holds:
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(a) limn→∞ log p/n→ η0,maxi∈M∗,j∈M\M∗ |Corr(Xi,Xj)| < min{η, 1− e−4η0}

(b) limn→∞ log p/n→ 0,maxi∈M∗,j∈M\M∗ |Corr(Xi,Xj)| < η.

Under conditions (B1) and (B2)(a) or conditions (B1) and (B2)(b), we have that

Pr (C ∩M ⊂M∗)→ 1. (3.15)

Let C = 1
nX

TX. Without of loss of generality, assume that β = (β1, β2, . . . , βs)
T where

βj 6= 0 for j = 1, . . . , s. We further assume that {1, · · · , s1} ⊂ C ∩M. Then the design matrix

X can be expressed as X = (X1
(1), X

2
(1), X(2)), where X1

(1) corresponds to the first s1 columns,

X2
(1) corresponds to the (s1 + 1)th to the sth columns and X(2) corresponds to the last p − s

columns of X respectively. Similarly, we can write β
(1)
1 = (β1, . . . , βs1), β

(1)
2 = (βs1+1, . . . , βs),

and β(2) = (βs+1, . . . , βp).

Set C
(11)
11 = 1

nX
1
(1)

T
X1

(1), C
(12)
11 = 1

nX
1
(1)

T
X2

(1), C
(21)
11 = 1

nX
2
(1)

T
X1

(1), C
(22)
11 = 1

nX
2
(1)

T
X2

(1),

C
(1)
21 = 1

nX
T
(2)X

1
(1) , C

(2)
21 = 1

nX
T
(2)X

2
(1), C22 = 1

nX
T
(2)X(2), C

(1)
12 = 1

nX
1
(1)

T
X(2), C

(2)
12 =

1
nX

2
(1)

T
X(2). Then C can be expressed in a block-wise form as follows:


C

(11)
11 C

(12)
11 C

(1)
12

C
(21)
11 C

(22)
11 C

(2)
12

C
(1)
21 C

(2)
21 C22


To ensure variable selection consistency, we need to impose the following assumption anal-

ogous to the irrepresentability condition proposed by Zhao and Yu (2006). Specifically, we

assume that there exists a constant δ > 0, such that

‖C(1)
21 (C

(22)
11 )−1sign(β2

(1))‖max ≤ 1− δ, (3.16)

where ‖ · ‖max is the max norm.

In fact, we can show that the condition mentioned above is implied by the irrepresentable

condition on the full covariates set M under mild assumptions. We illustrate this result in the

following theorem:
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Theorem 6. Assume that there exists λ0 > 0 so that λmin(C
(11)
11 ) ≥ λ0, λmin(C

(22)
11 ) ≥ λ0, and

conditions (B1) and (B2)(b) holds. Suppose the irrepresentability condition holds, i.e., ∃ξ > 0

s.t.

‖Σ21Σ−1
11 sign(β1)‖max ≤ 1− ξ, (3.17)

where Σ =

Σ11 Σ12

Σ21 Σ22

 with Σ11 corresponding to X(1) and Σ22 corresponding to X(2), β1 =

(β1, . . . , βs)
T and ξ is a positive constant. Then with probability tending to 1, the condition

(3.16) holds.

So far we have discussed all the theoretical assumptions required to ensure the selection

consistency of our PCS method. We conclude the consistency results in the following theorem:

Theorem 7. Suppose the conditions (A1) to (A4) and inequality (3.17) hold, and the assump-

tions of Theorem 6 are satisfied, then as n→∞,

Pr
(
{j : β̂j 6= 0} =M∗

)
→ 1, (3.18)

where β̂ = (β̂1, . . . , β̂p)
T is the solution to (3.9).

The proof follows immediately from Proposition 3 and Theorems 5 and 6. It shows that

under certain conditions, the proposed method is consistent in variable selection.

3.5 Numerical Studies

In Section 3, we have established a new regularized variable selection approach for high-

dimensional linear models. In this section, we demonstrate the performance of our proposed

method using both simulations and real data examples.

3.5.1 Simulation study

In this section, we use several simulated examples to show that our method with pair-

wise correlation screening (PCS) or pairwise rank-based correlation screening (PRCS) outper-

forms some existing variable selection procedures. More specifically, PCS denotes our proposed
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method using the limiting distribution in Theorem 3, and PRCS uses the asymptotic result in

Proposition 2.

For comparison, we consider LASSO, elastic net (Enet), SIS-LASSO, SIS-elastic net (SIS-

Enet) and SIS-PACS. The SIS-PACS refers to applying the PACS method proposed by Sharma

et al. (2013) after implementing the SIS procedure. In SIS-type methods, we first implement

SIS and find those covariates with the largest [n\ log n] absolute sample correlations with the

response, then perform LASSO, Enet or PACS on these variables. We evaluate the variable

selection accuracy using False Negatives (FN) and False Positives (FP). FN is defined as FN =∑p
j=1 I(β̂j = 0) × I(βj 6= 0), where I(·) denotes the indicator function, and FP is defined as

FP =
∑p

j=1 I(β̂j 6= 0) × I(βj = 0). We use the following quantities to evaluate the prediction

accuracy:

• ‖β̂−β0‖2: the l2 distance between the estimated coefficient vector and the true coefficients

β0;

• Out of sample mean squared errors (MSE) on the independent test data;

We generate the simulated data from Model (3.2) and conduct 100 replications. Each

simulated dataset includes a training set of size 100, an independent validation set of size 100

and an independent test set of size 400. Here we fix the sample size to be 100 throughout the

simulation study. In the next subsection, we also consider varying sample size for sensitivity

study. We only fit models on the training data, and we use the validation data to select tuning

parameters. Given the fitted model, we can calculate the FN, FP and the estimation error

‖β̂ − β0‖2, and we make predictions and calculate the out of sample MSEs using the test

data. We simulate the covariates from the multivariate Gaussian distribution N (0,Σ), with

Σ = (σij)p×p being the correlation matrix.

Details of the simulated examples are as follows:

Example 1: We consider p = 1000 or 5000, σ = 2 or 6, and we take β =

(2, 2, · · · , 2, 0, · · · , 0)T where the first 10 coefficients being non-zero and equal to 2. We set

σij = 0.8 for 1 ≤ i 6= j ≤ 5, 6 ≤ i 6= j ≤ 10 and 0 for all the other i 6= j. We also consider

σ = 6 and present the results in the supplementary. In other words, there are two groups in

the covariates, where each group has 5 important variables.
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Table 3.1: Average MSE, l2 distance, FN and FP over 100 replications for simulated example 1 (with
standard errors given in parentheses).

Method MSE ‖β̂ − β0‖2 FN FP

p = 1000, σ = 2

Elnet 5.94 (0.07) 1.40 (0.03) 0.00 (0.00) 1.64 (0.24)

SIS-Elnet 5.47 (0.06) 1.30 (0.03) 0.00 (0.00) 1.15 (0.12)

LASSO 5.95 (0.07) 1.50 (0.03) 0.00 (0.00) 1.28 (0.18)

SIS-LASSO 5.47 (0.06) 1.42 (0.03) 0.00 (0.00) 0.85 (0.10)

SIS-Ridge 86.00 (0.76) 4.5 (0.01) 0.00 (0.00) 12.00 (0.00)

PACS 4.69 (0.07) 0.48 (0.02) 0.00 (0.00) 0.01 (0.01)

PCS 4.74 (0.05) 0.76 (0.02) 0.00 (0.00) 0.03 (0.02)

PCRS 4.91 (0.05) 0.93 (0.02) 0.00 (0.00) 2.55 (0.15)

p = 5000, σ = 2

Elnet 6.42 (0.09) 1.57 (0.03) 0.00 (0.00) 2.45 (0.26)

SIS-Elnet 5.64 (0.06) 1.41 (0.03) 0.00 (0.00) 1.28 (0.12)

LASSO 6.41 (0.08) 1.64 (0.04) 0.00 (0.00) 2.06 (0.21)

SIS-LASSO 5.65 (0.06) 1.52 (0.03) 0.00 (0.00) 1.03 (0.10)

SIS-Ridge 88.74 (0.75) 4.59 (0.01) 0.00 (0.00) 12.00 (0.00)

PACS 4.97 (0.08) 0.72 (0.02) 0.00 (0.00) 1.78 (0.43)

PCS 4.77 (0.05) 0.81 (0.03) 0.00 (0.00) 0.02 (0.02)

PCRS 4.85 (0.06) 0.89 (0.03) 0.00 (0.00) 1.21 (0.11)

p = 1000, σ = 6

Elnet 52.11 (0.59) 3.31 (0.07) 0.81 (0.09) 1.85 (0.26)

SIS-Elnet 50.68 (0.53) 3.15 (0.07) 0.63 (0.08) 1.81 (0.20)

LASSO 52.52 (0.57) 3.96 (0.06) 1.50 (0.10) 1.13 (0.17)

SIS-LASSO 50.88 (0.54) 3.91 (0.06) 1.44 (0.10) 1.03 (0.13)

SIS-Ridge 119.9 (1.01) 4.59 (0.01) 0.00 (0.00) 12.00 (0.00)

SIS-PACS 52.50 (0.67) 3.40 (0.06) 0.00 (0.00) 4.86 (0.04)

PCS 41.68 (0.38) 1.67 (0.07) 0.06 (0.04) 0.00 (0.00)

PRCS 43.12 (0.37) 2.04 (0.08) 0.06 (0.04) 2.05 (0.14)

p = 5000, σ = 6

Enet 55.57 (0.64) 3.55 (0.06) 0.99 (0.11) 2.47 (0.29)

SIS-Enet 53.86 (0.60) 3.45 (0.07) 0.99 (0.10) 1.83 (0.19)

LASSO 55.95 (0.64) 4.16 (0.06) 1.77 (0.12) 1.55 (0.17)

SIS-LASSO 53.78 (0.61) 4.02 (0.06) 1.68 (0.10) 1.22 (0.13)

SIS-Ridge 123.29 (1.03) 4.68 (0.01) 0.00 (0.00) 12.00 (0.00)

SIS-PACS 56.45 (0.74) 3.80 (0.04) 0.00 (0.00) 4.94 (0.03)

PCS 42.76 (0.42) 1.96 (0.11) 0.25 (0.07) 0.04 (0.02)

PRCS 43.16 (0.47) 2.11 (0.11) 0.25 (0.07) 0.80 (0.09)

Example 2: We consider p = 1000 or 5000, σ = 2 or 6, β0 = (3,−1.5, 2, 0, · · · , 0, · · · , 0)T ,

where the first 3 coefficients are non-zero ones. We also consider σ = 6 and present the results in

the supplementary. We generated Gaussian covariates with σij = 0.5|i−j| for 1 ≤ i 6= j ≤ 1000.
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Table 3.2: Results for simulated example 2. The format of this table is the same as Table 3.1.

Method MSE ‖β̂ − β0‖2 FN FP

p = 1000, σ = 2

Enet 6.75 (0.08) 2.45 (0.02) 1.00 (0.01) 0.98 (0.25)

SIS-Enet 6.47 (0.10) 2.30 (0.03) 0.76 (0.05) 3.16 (0.41)

LASSO 6.75 (0.08) 2.45 (0.02) 1.00 (0.01) 0.98 (0.25)

SIS-LASSO 6.47 (0.10) 2.30 (0.03) 0.76 (0.05) 3.16 (0.41)

SIS-Ridge 14.14 (0.10) 3.85 (0.00) 0.27 (0.04) 19.27 (0.04)

SIS-PACS 6.53 (0.14) 2.43 (0.04) 1.06 (0.05) 3.39 (0.73)

PCS 5.24 (0.12) 1.41 (0.08) 0.34 (0.05) 1.63 (0.13)

PCRS 5.72 (0.13) 1.75 (0.08) 0.43 (0.05) 1.34 (0.24)

p = 5000, σ = 2

Elnet 7.16 (0.08) 2.55 (0.02) 1.02 (0.01) 0.40 (0.09)

SIS-Elnet 7.02 (0.09) 2.49 (0.03) 0.94 (0.03) 1.31 (0.34)

LASSO 7.16 (0.08) 2.55 (0.02) 1.02 (0.01) 0.36 (0.08)

SIS-LASSO 7.03 (0.09) 2.49 (0.03) 0.94 (0.03) 1.31 (0.34)

SIS-Ridge 14.40 (0.11) 3.87 (0.00) 0.59 (0.05) 19.59 (0.05)

SIS-PACS 7.28 (0.16) 2.83 (0.04) 1.26 (0.07) 2.41 (0.95)

PCS 5.96 (0.14) 1.83 (0.09) 0.63 (0.06) 0.74 (0.08)

PCRS 6.48 (0.13) 2.14 (0.07) 0.68 (0.05) 0.73 (0.24)

p = 1000, σ = 6

Elnet 45.03 (0.35) 3.73 (0.03) 2.28 (0.07) 1.30 (0.59)

SIS-Elnet 45.08 (0.35) 3.75 (0.02) 2.31 (0.07) 1.53 (0.51)

LASSO 45.03 (0.36) 3.74 (0.03) 2.35 (0.06) 0.12 (0.04)

SIS-LASSO 45.09 (0.35) 3.75 (0.02) 2.43 (0.06) 0.12 (0.04)

SIS-Ridge 46.08 (0.30) 3.90 (0.00) 1.07 (0.07) 20.07 (0.07)

SIS-PACS 45.45 (0.34) 3.91 (0.02) 1.07 (0.07) 4.03 (0.06)

PCS 44.01 (0.46) 3.51 (0.06) 2.2 (0.08) 0.24 (0.05)

PRCS 44.98 (0.35) 3.73 (0.03) 2.37 (0.07) 0.14 (0.04)

p = 5000, σ = 6

Elnet 45.78 (0.35) 3.84 (0.01) 2.48 (0.07) 1.09 (0.67)

SIS-Elnet 45.77 (0.35) 3.84 (0.02) 2.47 (0.05) 0.77 (0.36)

LASSO 45.78 (0.35) 3.84 (0.01) 2.57 (0.05) 0.20 (0.04)

SIS-LASSO 45.75 (0.35) 3.83 (0.02) 2.50 (0.05) 0.15 (0.04)

SIS-Ridge 46.14 (0.35) 3.90 (0.00) 1.42 (0.06) 20.42 (0.06)

SIS-PACS 45.76 (0.38) 3.85 (0.02) 2.46 (0.06) 0.76 (0.06)

PCS 45.80 (0.36) 3.85 (0.01) 2.61 (0.05) 0.12 (0.04)

PRCS 45.79 (0.36) 3.84 (0.02) 2.62 (0.05) 0.13 (0.05)

Example 3: The coefficients have the same set up as in Example 1. But we set σij = 0.8

for 1 ≤ i 6= j ≤ 5 and 0 for all the other i 6= j. Therefore only part of the important variables

are highly correlated. We consider p = 5000 and σ = 6 in this Example.
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Table 3.3: Results for simulated example 3. The format of this table is the same as Table 3.1.

Method MSE ‖β̂ − β0‖2 FN FP

Enet 69.71 (0.88) 5.13 (0.03) 4.99 (0.13) 1.57 (0.37)

SIS-Enet 72.54 (0.88) 5.25 (0.03) 5.65 (0.10) 0.23 (0.12)

LASSO 72.78 (0.87) 5.41 (0.03) 6.06 (0.10) 0.09 (0.04)

SIS-LASSO 70.12 (0.86) 5.35 (0.04) 5.69 (0.12) 0.94 (0.19)

SIS-Ridge 109.66 (0.87) 5.74 (0.01) 4.46 (0.06) 16.46 (0.06)

SIS-PACS 71.27 (0.89) 5.58 (0.02) 5.06 (0.02) 3.45 (0.07)

PCS 58.87 (0.50) 4.80 (0.04) 4.95 (0.03) 0.06 (0.06)

PCRS 59.76 (0.56) 4.83 (0.04) 4.97 (0.02) 0.00 (0.00)

Table 3.4: Results for simulated example 4. The format of this table is the same as Table 3.1.

Method Classification Error ‖β̂ − β0‖2 FN FP

Enet 0.129 (0.003) 5.79 (0.01) 2.16 (0.17) 12.77 (1.54)

SIS-Enet 0.126 (0.003) 5.69 (0.03) 1.37 (0.15) 7.48 (0.39)

LASSO 0.136 (0.003) 5.83 (0.01) 4.19 (0.13) 4.25 (0.49)

SIS-LASSO 0.130 (0.003) 5.75 (0.02) 3.94 (0.12) 3.50 (0.32)

SIS-Ridge 0.311 (0.003) 6.28 (0.01) 0.11 (0.05) 12.11 (0.05)

PCS 0.098 (0.004) 5.39 (0.05) 1.73 (0.14) 2.92 (0.31)

PCRS 0.099 (0.004) 5.34 (0.06) 1.71 (0.13) 3.26 (0.32)

Table 3.5: Results for simulated example 5. The format of this table is the same as Table 3.1.

Method MSE ‖β̂ − β0‖2 FN FP

Enet 102.47 (1.84) 3.90 (0.08) 1.51 (0.12) 4.88 (0.86)

SIS-Enet 96.60 (2.74) 3.49 (0.09) 1.02 (0.12) 4.20 (0.37)

LASSO 103.11 (1.89) 4.42 (0.08) 2.30 (0.13) 3.74 (0.71)

SIS-LASSO 96.97 (2.78) 4.27 (0.08) 2.05 (0.14) 1.87 (0.20)

SIS-Ridge 226.52 (3.78) 4.95 (0.03) 0.26 (0.08) 12.26 (0.08)

SIS-PACS 84.20 (1.77) 3.24 (0.09) 0.89 (0.09) 7.32 (0.45)

PCS 79.79 (3.16) 2.42 (0.14) 0.42 (0.10) 1.29 (0.33)

PCRS 74.60 (1.24) 2.15 (0.12) 0.31 (0.08) 0.06 (0.03)

Example 4: In this example, we examine the performance of all methods under the lo-

gistic regression setting. We simulate the binary response Y from the binomial distribution

Binom(1, exp{XTβ+σ}
1+exp{XTβ+σ}), where X, and β follow the same set ups as in Example 1.We consider

p = 5000 and σ = 6 in this Example. Instead of comparing MSE, we calculate the classifica-

tion errors on the test data. We did not compare with SIS-PACS in this example since the R

program does not support GLM.
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Example 5: In this example, we generate the covariates from a multivariate t distribu-

tion, where Xj ’s are t distributed with degrees of freedom 5. The covariance structure of the

covariates and the coefficients are set the same as in Example 1. We consider p = 5000 and

σ = 6 in this Example.

The results for simulated example 1 is shown in Table 3.1. We see that when there are groups

in the covariates, the performance improvement of our approach is significant compared with

other penalized methods. While elastic net-based procedures perform better than LASSO-type

approaches in terms of FN, as illustrated by Zou and Hastie (2005), they still miss approximately

one important covariate on average. In contrast, the model selection results of our method

are much closer to the correct model for this example. In addition, although SIS-PACS has

competitive performance when σ is small, it tends to include more unimportant variables into

the model when the noise level increases, and therefore may not work well.

Table 3.2 displays the performance comparisons for Example 2. Compared with Example

1, this setting is a more difficult one for our method, since correlation exists among all pairs of

covariates. Nevertheless, PCS and PCRS perform better than, or as well as all the others in

terms of estimation error and prediction accuracy. Moreover, besides SIS-Ridge, our proposed

methods are able to identify more important variables than others in this example when the

noise level is low.

Table 3.3 shows the results for Example 3, where correlation exists only within part of

the important variables. This example is more difficult compared with Example 1 due to the

correlation structure of the covariates. One can see that the false negatives are significantly

larger for all procedures. Nevertheless our method still outperforms all the others in terms of

prediction and variable selection accuracy.

Example 4 considers the logistic regression setting, and the results are provided in Table

3.4. One can see that as the correlations among the covariates vary, the performance of our

method is always competitive compared with the others.

Table 3.5 displays the results for all methods under the non-Gaussian covariates setting.

Similar to Example 1, our proposed PCS and PCRS achieve much better performance compared

with the competitors. Moreover, due to the non-Gaussian set ups, the nonparametric method

PCRS outperforms PCS.
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As a conclusion, our method can make use of the correlation structure among predictors.

Compared with other penalized variable selection procedures, our method performs well, espe-

cially when the covariates are highly correlated.

3.5.2 Sensitivity Study

In this subsection, we investigate how the performance of our method depends on the

sample size, dimensionality, and noise level. In particular, we consider n = 100, 500, p =

500, 1000, 2000, 5000 and σ = 2, 6 in the Simulated Examples 1 and 2 as introduced in Sec-

tion 3.5.1. We illustrate the MSE, ‖β̂−β0‖2, FN and FP against different values of p for each

configuration of sample size and noise level in Figures 3.1 and 3.2.

One can see from the plots that the performance of PCS does not change much as the

dimensionality p increases from 500 to 5000, especially in terms of MSE and the estimation

error of β0. Moreover, the performance is better when the sample size and signal to noise ratio

(SNR) become larger, which is expected. In general, our proposed PCS method is robust to

sample size, dimensionality and SNR.

3.5.3 Soil data

We first demonstrate the performance of our method in real applications using a small

dataset. This dataset contains 15 covariates of soil characteristics for 20 plots with the same

area in the Appalachian Mountain. The outcome variable is the forest diversity for each plot.

More descriptions of the data can be found in Bondell and Reich (2008). To better demonstrate

the correlation structure of covariates, we obtain the absolute pairwise correlation matrix and

show the heatmap in Figure 3.3. One can see that some predictors are highly correlated. In

particular, the magnitude of the pairwise correlations among Sum of Cations (SumCation),

calcium, magnesium, Base Saturation (BaseSat), and cation exchange capacity (CEC) are as

large as 0.9. The reason is SumCation, BaseSat, CEC are characteristics for cations; while

calcium and magnesium are examples of cations (Bondell and Reich, 2008).

We conduct a total of 100 replications. In each replication, 15 samples are randomly chosen

as the training set and the remaining as the test set. As in the simulation experiments, we

applied LASSO, Enet, Ridge and our proposed PCS, PCRS to the dataset. For each method,
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(a) MSE

(b) Estimation error

(c) FN

(d) FP

Figure 3.1: Performance of PCS against different dimensionality p.

5-fold cross-validation is used to choose the tuning parameters since the sample size is very

small. We report the average prediction errors on the test data and the model size in Table 3.6.

One can see that PCS and PCRS outperform all the others in terms of prediction accuracy.

Method MSE Model Size
Enet 1.088 (0.047) 3.70 (0.38)
LASSO 1.068 (0.045) 2.08 (0.21)
Ridge 1.113 (0.044) 15.00 (0.00)
PCS 0.996 (0.062) 5.82 (0.37)
PCRS 1.028 (0.063) 5.96 (0.38)

Table 3.6: Average mean squared errors and model size (with standard errors in parenthesis) for Enet,
LASSO, Ridge and our method on the soil data.
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(a) MSE

(b) Estimation error

(c) FN

(d) FP

Figure 3.2: Performance of PCS against different dimensionality p.

Moreover, PCS and PCRS tend to include more covariates into the model compared with

LASSO and Enet.

To further investigate the performance of variable selection, we summarize the frequency

that each covariate is selected for LASSO, Enet and our method, which is displayed in Table

3.7. Note that among those variables that are most frequently selected by LASSO and Enet, for

instance, CEC, Mn, HumicMatt, they also tend to be included for our method. Moreover, our

method can identify covariates that are strongly correlated. For example, potassium, sodium

and copper are variables related to cations, and all have a large sample correlation with CEC,

which is a potentially important variable. These variables are frequently selected by our method,

but not by Enet and LASSO.
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Figure 3.3: Heatmap for the absolute pairwise correlation matrix of the covariates for the soil data.

PCS Enet LASSO
Variables

BaseSat 16 9 0
SumCaton 32 23 0
CECbuffer 86 62 48
Ca 37 32 11
Mg 6 10 0
K 49 27 12
Na 22 10 6
P 32 15 5
Cu 47 17 9
Zn 29 17 4
Mn 69 43 32
HumicMatt 89 70 69
Density 25 15 4
pH 27 11 4
ExchAc 16 9 4

Table 3.7: Frequency of each variable being selected for PCS, Enet and LASSO out of 100 replications.

3.5.4 Riboflavin data

In this section, we consider a real data set about the riboflavin production in Bacillus

subtilis. The data contain n = 71 samples, where the response variable is the logarithm of the

riboflavin production rate, and the covariates are the logarithm of expression levels of p = 4081

genes. More descriptions about the dataset can be found in Bühlmann et al. (2014). Before

analysis, all covariates are standardized to have zero means and unit standard deviations.
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Method MSE Model Size
SIS-Enet 0.358 (0.015) 15.66 (0.46)
SIS-Lasso 0.356 (0.016) 9.12 (0.18)
SIS-Ridge 0.632 (0.024) 26.00 (0.00)
PCS 0.327 (0.014) 15.04 (0.39)
PCRS 0.361 (0.018) 12.77 (0.37)

Table 3.8: Average mean squared errors and model size (with standard errors in parenthesis) for
SIS-Enet, SIS-LASSO, SIS-Ridge and PCS applied to the riboflavin data.

For comparison purpose, we apply LASSO, Enet, SIS-LASSO, SIS-Enet, SIS-ridge and our

method to the dataset. We conduct 100 replications, and we randomly split the dataset into

a training set of size 50 with the remaining as the test data. For all methods, we implement

10-fold cross validation on the training data to select the penalty parameters.

The results are reported in Table 3.8. One can see that PCS has significant improvement

in terms of out of sample mean squared errors compared with other competitors. On the other

hand, PCRS does not perform well compared with PCS. A possible reason is that in this dataset

all the variables have been taken log transformations and are approximated well by Gaussian

distribution. Moreover, due to the assumption of Proposition 2 where log p = o(n1/3), PCRS

is more sensitive to the dimensionality and the sample size of dataset. As a result, PCRS may

not achieve good performance when the dimensionality is too high.

We also examine the gene selection results. There are 8 genes that are selected at least 50

times out of the 100 replications by our method, i.e., XTRA at, YCKE at, YDAR at, YOAB at,

YWFO at, YXLC at, YXLD at and YXLE at. Besides YXLC at, all the other genes also

appear among the most frequently selected genes by SIS-Enet and SIS-LASSO with a frequency

no less than 50. For YXLC at, we find that the magnitude of the pairwise sample correlations

between this gene and two other genes, YXLD at and YXLE at, are greater than 0.95. It

indicates that our method is capable of identifying potentially important variables that are

highly correlated with the others.

3.6 Discussion

In summary, we propose a novel variable selection method that regularizes covariates se-

lectively based on the results from two screening procedures: pairwise screening and marginal
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screening. The screening process of covariates pairs takes advantage of the distribution informa-

tion of the maximal absolute pairwise sample correlation among covariates, and is applicable

to large scale problems. Simulation experiments and real data study demonstrate that the

proposed method performs well when important variables are highly correlated compared with

existing approaches. For future research, we can consider other extensions of our proposed

method, for example, the Cox model for survival data.

3.7 Proofs

Proof of Theorem 3. To prove Theorem 3, we need to use the following lemma, which is

from Arratia et al. (1989).

Lemma 3 (Arratia et al. (1989)). Let I be an index set and {Bα, α ∈ I} be a set of subsets of

I, that is, Bα ⊂ I for each α ∈ I. Let also {ηα, α ∈ I} be random variables. For a given t ∈ R,

set λ =
∑

α∈I Pr (ηα > t). Then

|Pr

(
max
α∈I

ηα < t

)
− e−λ| ≤ (1 ∧ λ−1)(b1 + b2 + b3)

where b1 =
∑

α∈I
∑

β∈Bα Pr (ηα > t) Pr (ηβ > t), b2 =
∑

α∈I
∑

α 6=β∈Bα Pr (ηα > t, ηβ > t) and

b3 =
∑

α∈I E|Pr (ηα > t|σ(ηβ, β /∈ Bα)) − Pr (ηα > t) |, and σ(ηβ, β /∈ Bα) is the σ-algebra

generated by {ηβ, β /∈ Bα}. In particular, if ηα is independent of {ηβ, β /∈ Bα} for each α, then

b3=0.

In our proof, we take I = {(i, j); 1 ≤ i ≤ j ≤ p}. Let α = (i, j) ∈ I, we define Bα =

{(k, l) ∈ I; one of k and l = i or j, but (k, l) 6= α}, and Aα = Aij = {|ρi,j |2 ≥ t}, where

ρi,j = |Ĉorr(Xi, Xj)|. Let Wpn = max1≤i<j≤p |ρi,j |, by Lemma 3, we have

|P (W 2
pn ≤ t)− e−λp,n | ≤ b1 + b2, (3.19)

where λp,n =
∑

α∈I P (Aα) = p(p−1)
2 P (A12), and b1 =

∑
α∈I

∑
β∈Bα P (Aα)P (Aβ), b2 =∑

α∈I
∑

α 6=β∈Bα P (AαAβ).

Moreover, we have b1 ≤ 2p3P (A12)2 and b2 ≤ 2p3P (A12A13).
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Since X1, · · · , Xp are independent, A12 and A13 are also independent with equal probability.

Therefore we have b1 ∨ b2 ≤ 2p3P (A12)2.

On the other hand, |ρi,j |2 ∼ B(1
2 ,

n−2
2 ). Take

t∗ = ap,n + bp,nx,

where (x ≤ n−2
2 ), ap,n = 1 − p−4/(n−2)cp,n, bp,n = 2

n−2p
−4/(n−2)cp,n, and cp,n =(

n−2
2 B(1

2 ,
n−2

2 )
√

1− p−4/(n−2)
)2/(n−2)

. Then

P (A∗12) =
2(1− t∗)(n−2)/2

B(1
2 ,

n−2
2 )(n− 2)

√
t∗

(1 +O(
1

log(p)
)).

= p−2
(
1− 2

n− 2
x
)n−2

2

√
1− p−4/(n−2)

ap,n

(
1 + (

bp,n
ap,n

x)
)−1/2(

1 +O(log−1(p))
)
.

= p−2
(
1− 2

n− 2
x
)n−2

2
(
1 +O(

log log(p)

log(p)
)
)(

1 +O(log−1(p))
)2

= p−2
(
1− 2

n− 2
x
)n−2

2
(
1 +O(

log log(p)

log(p)
)
)

(3.20)

Therefore, uniformly for any n ≥ 3, b1 ∨ b2 = O(1/p), and limp→∞ λp,n = 1
2

(
1− 2

n−2x
)n−2

2

Then it follows from (3.19) that uniformly for any n ≥ 3 and x ≤ n−2
2 ,

lim
p→∞

|P (W 2
pn ≤ t∗)− exp

{
− 1

2

(
1− 2

n− 2
x
)n−2

2
}
| = 0. (3.21)

When x ≥ n−2
2 , t∗ = 1 + ( 2

n−2x− 1)p−4/(n−2)cp,n ≥ 1. Therefore, uniformly for any n ≥ 3,

lim
p→∞

P (Wpn ≤ t∗) = 1 (3.22)

Combining (3.21) and (3.22) we have uniformly for any n ≥ 3,

lim
p→∞

|P (Wpn ≤ t∗)− I(x ≤ n− 2

2
) exp

{
− 1

2

(
1− 2

n− 2
x
)n−2

2
}
− I(x >

n− 2

2
)| = 0. (3.23)
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Or equivalently,

lim
p→∞

|P (
W 2
pn − ap,n
bp,n

≤ x)− I(x ≤ n− 2

2
) exp

{
− 1

2

(
1− 2

n− 2
x
)n−2

2
}
− I(x >

n− 2

2
)| = 0.

(3.24)

Proof of Corollary 3. First note that
W 2
pn−ap,n
bp,n

≥ x is equivalent to

log(1−W 2
pn) ≤ log(1− ap,n − bp,nx), (3.25)

where log(1−W 2
pn) = Tpn. The RHS of (3.25) can be further expressed as

log(1− ap,n − bp,nx) = log
(
1− 2

n− 2
p−4/(n−2)cp,nx− (1− p−4/(n−2)cp,n)

)
= log

(
p−4/(n−2)(1− 2

n− 2
x)cp,n

)
= −4 log p

n− 2
+ log(1− 2

n− 2
x) + log cp,n.

(3.26)

(i) Sub-Exponential Case

If log(p)/n→ 0 as n→∞, then we have

cp,n =
( 2

n− 2
B(

1

2
,
n− 2

2
)

√
1− p−4/(n−2)

) 2
n−2

=

(√((n− 2)π

2
+ o(1)

)
(1− e−

4 log p
n−2 )

) 2
n−2

=

(
(n− 2)π

2
· 4 log p

n− 2
(1 + o(1))

) 2
n−2

= exp

{
1

n− 2

(
log(2π log p) + o(1)

)}
for large enough n.

Hence for large enough n,

n log(1− ap,n − bp,nx) = −4n log p

n− 2
+ n log(1− 2

n− 2
x) + log 2π + log log p+ o(1)

= log log p− 4 log p+ n log(1− 2

n− 2
x) + log 2π + o(1)

(3.27)
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Let y = n log(1− 2
n−2x)+log 2π, then the RHS of (3.26) becomes log log p−4 log p+y+o(1).

Combing with (3.25) we get

lim
n→∞

Pr

(
W 2
pn − ap,n
bp,n

≥ x

)
= lim
n→∞

Pr (nTpn ≤ n log(1− ap,n − bp,nx))

= lim
n→∞

Pr (nTpn ≤ log log p− 4 log p+ y)

(3.28)

As p = pn →∞ as n→∞, we have

lim
n→∞

Pr

(
W 2
pn − ap,n
bp,n

≥ x

)
= lim

n→∞,p→∞
Pr

(
W 2
pn − ap,n
bp,n

≥ x

)

= lim
n→∞

lim
p→∞

Pr

(
W 2
pn − ap,n
bp,n

≥ x

)
( as the convergence is uniform in n)

=1− lim
n→∞

Gn(x),

where Gn(x) = I(x ≤ n−2
2 ) exp

{
− 1

2

(
1− 2

n−2x
)n−2

2
}

+ I(x > n−2
2 ).

Note that 1− 2
n−2x = exp{ 1

n(y − log 2π)}, plugging it into Gn(x) yields

lim
n→∞

Gn(x) = lim
n→∞

exp
{
− 1

2
exp

{n− 2

2n
(y − log 2π)

}}
= exp

{
− 1√

8π
exp(

1

2
y)
}
.

Hence part (i) of Corollary 3 follows.

• Exponential Case

When (log p)/n→ β ∈ (0, β) as n→∞, we have

cp,n =
( 2

n− 2
B(

1

2
,
n− 2

2
)

√
1− p−4/(n−2)

) 2
n−2

=

(
(n− 2)π

2
(1− e−4β) + o(1)

) 2
n−2

= exp

{
1

n− 2
log
((n− 2)π(1− e−4β)

2
) + o(1)

)}
for large enough n.
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It follows that for large enough n,

n log(cp,n) =
n

n− 2
log(n− 2) + log

(π(1− e−4β)

2

)
+ o(1)

= log log p− log β + log
(π(1− e−4β)

2

)
+ o(1)

Together with (3.26) we have

n log(1− ap,n − bp,nx)

= log log p− log β + log
(π(1− e−4β)

2

)
− 4 log p

n− 2
+ n log(1− 2

n− 2
x)

= log log p− 4 log p− 8β + n log(1− 2

n− 2
x) + log

(π(1− e−4β)

2β

)
+ o(1)

(3.29)

Let y = −8β+n log(1− 2
n−2x)+log

(π(1−e−4β)
2β

)
, then the RHS of (3.29) becomes log log p−

4 log p+ y + o(1). Again combing with (3.25), we can still get (3.28).

Moreover,

lim
n→∞

Gn(x) = lim
n→∞

exp

{
− 1

2
exp

{
n− 2

2n

(
y + 8β − log

(π(1− e−4β)

2β

))}}
= exp

{
−
( β

π(1− e−4β)

)1/2
e(y+8β)/2},

which leads to the convergence result in part (ii).

• Super-Exponential Case

If log p/n→∞ as n→∞, then for large enough n,

cp,n =
( 2

n− 2
B(

1

2
,
n− 2

2
)

√
1− p−4/(n−2)

) 2
n−2 = exp

{ 1

n− 2
log
((n− 2)π

2

)}
.

Combing with (3.26) we obtain

n log(1− ap,n − bp,nx)

=− 4n log p

n− 2
+ n log(1− 2

n− 2
x) +

n

n− 2
log 2π − n

n− 2
log(n− 2) + o(1)

=− 4n log p

n− 2
+ log n+ n log(1− 2

n− 2
x) + log

π

2
+ o(1).

(3.30)
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Let y = n log(1− 2
n−2x)+log π

2 , then the RHS of (3.29) becomes −4n log p
n−2 +log n+y+o(1).

Moreover,

lim
n→∞

Gn(x) =1− lim
n→∞

exp
{
− 1

2
exp

{n− 2

2n

(
y − log

π

2

)}}
= exp

{
− 1√

2π
ey/2

}
.

Proof of Theorem 3. Let event A = {R2
ij ≤ 1 − p−(4+δ)/(n−3) for all i, j ∈ M\M∗}, event

B = {ρ̂ij ≤ f(n, p, α) for i ∈ M∗, j ∈ M\M∗} where ρ̂ij = |Corr(Xi,Xj)|, f(n, p, α) is the

screening threshold for pairwise correlation screening. Then A implies that no pairs of unim-

portant variables passed the R squares screening. B implies that important and unimportant

variables can not be too highly correlated.

By the definition of C, we have

P (C ∩M ⊂M∗) ≥ P (A ∩B) ≥ P (A) + P (B)− 1. (3.31)

For the event A, we have

P (A) = 1− P (
⋃

i 6=j∈M\M∗
R2
ij ≥ 1− p−(4+δ)/(n−3))

≥ 1−
∑

i 6=j∈M\M∗
P (R2

ij ≥ 1− p−(4+δ)/(n−3))

= 1− (n/ log(n))2P (Beta(1,
n− 3

2
) ≥ 1− p−(4+δ)/(n−3))

= 1− (n/ log(n))2p−(4+δ)/2

Under the assumption (B1), (n/ log(n))2p−(4+δ)/2 → 0 as n → ∞. Therefore we have

P (A)→ 1.

Next we show that P (B)→ 1 as n→∞. We have
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P (B) = 1− p(
⋃

i∈M∗,j∈M\M∗
ρ̂ij ≥ f(n, p, α))

≥ 1−
∑

i∈M∗,j∈M\M∗
P (ρ̂ij ≥ f(n, p, α))

= 1− (n/ log(n))2 Pr (ρ̂ij ≥ max{ap,n + bp,nFn(α), η})

= 1− (n/ log(n))2 Pr (ρ̂ij ≥ δp,n) ,

where Fn(α) is the 100(1 − α) quantile of the limiting cumulative distribution function of the

maximal pairwise correlation statistic, and we denote max{ap,n + bp,nFn(α), η} by δp,n.

Note that

ap,n + bp,nFn(α) = 1− p−4/(n−2)cp,n(1− 2

n− 2
Fn(α))

=1− p−4/(n−2)cp,n{−2 log(1− α)}2/(n−2)

=1−
(
Cαp

−2n− 2

2
B(

1

2
,
n− 2

2
)

√
1− p−4/(n−2)

) 2
n−2

=1−O
(C2

α(n− 2)(1− p−4/(n−2))

p4

) 1
n−2

for large enough n

=1−O
(
e−

log p
n
)

for large enough n

Let ρij be the population correlation coefficient between Xi and Xj . Write z(n) =

1
2 log

1+ρ̂ij
1−ρ̂ij , ξ = 1

2 log
1+ρij
1−ρij . It has been shown that as n→∞, n1/2(z(n)− ξ)→ N (0, 1).

We have
Pr (ρ̂ij ≥ δp,n) = Pr

(
n1/2(z(n)− ξ) ≥ n1/2(

1

2
log

1 + δp,n
1− δp,n

− ξ)
)

= Pr

(
Z ≥ n1/2(

1

2
log

1 + δp,n
1− δp,n

− ξ) + on(1)

)
≤ e−Cp,nn√

2πnCp,n
,

(3.32)

where Cp,n = 1
2 log

1+δp,n
1−δp,n − ξ.
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If log(p)/n → ∞ as n → ∞, then ap,n + bp,nFn(α) → 1. Therefore δp,n → 1, which yields

Cp,n →∞. Then the tail probability in (3.32) goes to zero as n→∞. It follows that P (B)→ 1

as n→∞.

If log(p)/n → η0 as n → ∞, then δp,n → max{1 − e−4η0 , η}. Under assumption (B2) that

ρij < max{1− e−4η0 , η}, limn→∞Cp,n = limn→∞
1
2 log 1+max{1−e−4η0 ,η}

1−max{1−e−4η0 ,η} − ξ > 0. Again the tail

probability in (3.32) goes to zero as n→∞. It follows that P (B)→ 1 as n→∞.

If log(p)/n → 0 as n → ∞, then ap,n + bp,nFn(α) → 0. Hence δp,n → η. Under the

assumption (B2), we have limn→∞Cp,n = log 1+η
1−η − ξ > 0. Therefore P (B)→ 1 as n→∞.

Given P (A)→ 1 and P (B)→ 1, we have P (C ∩M ⊂M∗)→ 1.

Proof of Theorem 4. By (3.17), as n → ∞, the following inequality holds with probability

tending to 1.

‖C21C
−1
11 sign(β1)‖max ≤ 1− ξ/2. (3.33)

where C11 =

C(11)
11 C

(12)
11

C
(21)
11 C

(22)
11

, C21 =

(
C

(1)
21 C

(2)
21

)
. It follows from (3.33) directly that

‖(C(2)
21 − C

(1)
21 (C

(11)
11 )−1C

(12)
11 )

(
C

(22)
11 − C(21)

11 (C
(11)
11 )−1C

(12)
11

)−1
sign(β

(2)
1 )‖max ≤ 1− ξ, (3.34)

where ‖ · ‖max denotes the max norm of a matrix. Based the definition of C, we have the

following element wise inequalities ‖C(12)
11 ‖max ≤ cn,p,α, ‖C(21)

11 ‖max ≤ cn,p,α. Here cn,p,α is the

pairwise correlation screening bound. Since C
(11)
11 is positive definite, there exists an orthogonal

matrix Q s.t. C
(11)
11 = QΛQT , where Λ is a diagonal matrix consists of the eigenvalues of C

(11)
11 .

By assumption, we have λmin(C
(11)
11 ) ≥ λ0. Therefore ‖C(21)

11 (C
(11)
11 )−1C

(12)
11 ‖max ≤ λ−1

0 c2
n,p,αs

2
1.

Under the assumption that log(p)/n → 0, cn,p,α = on(1). It follows that λ−1
0 c2

n,p,αs
2
1 = on(1).

By assumption (B2), ‖C(1)
21 ‖max ≤ η. Thus ‖C(1)

21 (C
(11)
11 )−1C

(12)
11 ‖max ≤ λ−1

0 ηcn,p,αs
2
1, then
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‖C(1)
21 (C

(11)
11 )−1C

(12)
11 ‖max = on(1). Therefore

‖(C(2)
21 − C

(1)
21 (C

(11)
11 )−1C

(12)
11 )

(
C

(22)
11 − C(21)

11 (C
(11)
11 )−1C

(12)
11

)−1
sign(β

(2)
1 )

− C(2)
21 (C

(22)
11 )−1sign(β

(2)
1 )‖max

=‖
(
C

(2)
21 (C

(22)
11 )−1C

(21)
11 (C

(11)
11 )−1C

(12)
11 − C(1)

21 (C
(11)
11 )−1C

(12)
11

)(
C

(22)
11 − C(21)

11 (C
(11)
11 )−1C

(12)
11

)−1·

sign(β
(2)
1 )‖max

Write A = C
(2)
21 (C

(22)
11 )−1C

(21)
11 (C

(11)
11 )−1C

(12)
11 , B = C

(1)
21 (C

(11)
11 )−1C

(12)
11 , D = C

(21)
11 (C

(11)
11 )−1C

(12)
11 ,

and Y = sign(β
(2)
1 ). Then the above term becomes ‖(A − B)(C

(22)
11 −D)−1Y ‖max. Moreover,

we have

‖(A−B)(C
(22)
11 −D)−1Y ‖max ≤ (s− s1)‖A−B‖max‖(C(22)

11 −D)−1Y ‖max.

Since ‖A‖max ≤ λ−1
0 (s − s0)2‖C(2)

21 ‖max‖C(21)
11 (C

(11)
11 )−1C

(12)
11 ‖max ≤ λ−2

0 ηc2
n,p,αs

2
1(s − s1)2,

‖B‖max ≤ λ−1
0 ηcn,p,αs

2
1, and

‖(C(22)
11 −D)−1Y ‖max ≤ (s− s1)‖(C(22)

11 −D)−1‖max ≤ (s− s1)(λ0 − λ−1
0 c2

n,p,αs
2
1)−1.

Therefore we have

‖(A−B)(C
(22)
11 −D)−1Y ‖max

≤(s− s0)2(λ−2
0 ηc2

n,p,αs
2
1(s− s1)2 + λ−1

0 ηcn,p,αs
2
1)(λ0 − λ−1

0 c2
n,p,αs

2
1)−1

→0,

as n → ∞. It follows that C
(2)
21 (C

(22)
11 )−1sign(β

(2)
1 ) ≤ 1 − ξ/3, which concludes the proof if we

take δ = ξ/3.
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CHAPTER 4

Multivariate Response regression

4.1 Introduction

In many real applications, it is often to have more than one variables that are associated

with a common set of response variables. For instance, in financial econometrics, one may need

to predict the asset returns based on the historical data, where multiple-response regression

problems arise.

Consider the following multiple-response regression:

Y = XB + e,

where Y is the n×m response matrix, X is the n× p design matrix, B is the p×m unknown

parameter matrix, and e = [ε1, . . . , εn]T is the error matrix. Our goal is to estimate B to

obtain predictions for the response vector based on a common list of predictors. An intuitive

estimation of B is to solve the following optimization problem:

min
B

tr{(Y −XB)T (Y −XB)}. (4.1)

The solution to (8) is in fact equivalent to solving ordinary least squares separately on each

of the response variables. This method, however, does not take into account the underlying

correlations among the responses. Suppose the error vectors ε1, · · · , εn are i.i.d. and have a

multivariate distribution with an unknown covariance matrix Σ. Denote Ω = Σ−1. In order to

take advantage of the information of Σ, one can add a penalty term, such as λ(B), to (4.1). In

the literature, a number of existing papers have been focused on penalized multiple-response

regression. For instance, Turlach et al. (2005) proposed the L∞-penalized simultaneous variable

selection method (L∞-SVS) using λ(B) = λ
∑p

i=1 ‖Bi‖∞, where ‖Bi‖∞ is the infinity norm of

80



the ith row of B. The motivation of using L∞ is that a variable should be selected if it is

associated with at least one response variable. Similä and Tikka (2007) proposed a similar

method, known as L2-SVS, where they use the L2 penalty for Bi, which measures the overall

effect of the ith covariate on the responses. Peng et al. (2010) introduced a combined penalty

function λ(B) = λ1
∑

i,j |bi,j | + λ2
∑p

i=1 ‖Bi‖2, where the first part encourages the sparsity of

B, while the second part requires that the rows of B to be zeros or nonzeros simultaneously.

Instead of using penalization, another type of methods focus on identifying the low-rank

structure of the parameter matrix B. Such an idea is closely related to factor analysis. That is,

the effects of the covariates are from a few underlying factors. Therefore, a rank constraint is

imposed on B. One example is the factor estimation and selection (FES) method introduced by

Yuan et al. (2007), where they impose the sparsity constraint on the singular values of B, and

thus reduce the rank of B. A similar approach is the sparse reduced-rank regression (SRRR)

investigated by Chen and Huang (2012). They decompose the coefficient matrix B to the

multiplication of two low-rank matrices, and add a sparsity constraint to one of the matrices.

In this chapter, we introduce a weighted simultaneous variable selection (WSVS) method

for multiple-response regression. Our method is motivated by the extreme behavior of the

maximal absolute correlation between each of the covariates and all the responses. Based on

the asymptotic distribution, we can calculate p-values for each of the covariates. We further

propose a weighted L2 penalty that utilizes the p-values and design the WSVS estimate for the

coefficient matrix.

The rest of this chapter is organized as follows. In Section 4.2, we introduce the model-

ing framework for multiple-response regression problems and the assumptions required for our

method. We investigate the theoretical results in Section 4.2.1 and propose a weighted penalty

based screening in Section 4.2.2. Then we demonstrate that our proposed method has competi-

tive performance using numerical examples in Section 4.4. We conclude this Chapter in Section

4.5.
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4.2 Weighted simultaneous variable selection

Consider a multivariate-response regression model

Y = XB + e. (4.2)

In (4.2), the response matrix is Y = [y1, . . . ,yn]T , where yi = (yi1, . . . , yim)T is the m-

dimensional response vector for the ith instance. In addition, X = [x1, . . . ,xn]T is the

n × p design matrix with xi = (xi1, . . . , xip)
T being the p-dimensional predictors. Let

yk = (y1k, . . . , ynk)
T be the kth response vector, and xj = (x1j , . . . , xnj)

T be the jth predictor.

Finally, e = [ε1, . . . , εn]T denotes the error matrix and assume that εi’s are i.i.d. N (0,Σ) with

Σ being the unknown covariance matrix.

4.2.1 Extreme value theories

In this section, we investigate the extreme behavior of the pairwise correlations between

{xj : j = 1, . . . , p} and {yk, k = 1, . . . ,m}. Let R(xj) = max1≤j≤m |Ĉorr(xj ,yk)| be the

maximal absolute sample correlation between xj and yk. We further define

RXY = min
1≤j≤p

R(xj). (4.3)

Then when Σ is the identity matrix, that is, the random errors are independent, the magnitude

of RXY can not be too large. In particular, we study the asymptotic distribution of RXY as m

increases and state it in the following theorem.

Theorem 8. Suppose we observe a random sample of size n from the linear model (4.2) and

we further assume that εj’s are independent. Let RXY be defined as in (4.3). Define

am,n = 1−m−2/(n−2)cm,n, bm,n =
2

n− 2
m−2/(n−2)cm,n,
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where cm,n = {2−1(n − 2)B(1
2 ,

n−2
2 )
√

1−m−2/(n−2)}2/(n−2) is a correction factor with B(s, t)

being the Beta function. Then under the null hypothesis (2.3), for all x ∈ R,

lim
m→∞

sup
n≥3

∣∣∣∣Pr

{
R2
XY − am,n
bm,n

< x

}
− Fn,p(x)

∣∣∣∣ = 0,

where

Fn,p(x) =
(

1− exp

{
−
(

1− 2

n− 2
x

)(n−2)/2
})p

1

(
x ≤ n− 2

2

)
+ 1

(
x >

n− 2

2

)
. (4.4)

The above theorem follows directly from Theorem 1 by the properties of order statistics for

i.i.d. random variables. Note that the results hold uniformly for the sample size n ≥ 3, which

means finite sample performance is guaranteed.

To better demonstrate the asymptotic distribution of RXY , we illustrate the limiting dis-

tribution function Fn,p for n = 200, and p = 10 or p = 100 in Figure 4.1. We also evaluate

the accuracy of the extreme value results. In particular, we simulate 1000 independent samples

from i.i.d. xj ’s and yk’s and calculate RXY when n = 200, p = 10, and m = 10 or m = 100, and

compare Fn,p(
R2
XY −am,n
bm,n

) with the uniform distribution on [0, 1]. The Q-Q plots are displayed

in Figure 4.2. One can see that the Q-Q plots almost fall onto the straight line y = x, which

implies that the asymptotic distribution is accurate. Moreover, as expected, the discrepancy

becomes smaller as m increases.

Given the covariate vector xj , we can calculate the maximal absolute correlation between

this covariate and the responses, denoted as Rxj . We can further calculate p-value by

p(xj) = 1− Fn,p(
R2

xj
− am,n
bm,n

). (4.5)

A larger p-value indicates that xj has a stronger effect on the responses. Motivated by that,

we can assign different weights on the penalty λ(Bj). In the following section, we introduce a

weighted simultaneous variable selection (WSVS) approach based on the p-values.
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Figure 4.1: Asymptotic cumulative distribution function of RXY
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(b) m = 100

Figure 4.2: Q-Q plots of Fn,p(
R2

XY −am,n

bm,n
) against U[0,1] when (a) m = 10; (b) m = 100.

4.2.2 Weighted L2 penalization

In Section 4.1, we introduced the L2-SVS method proposed by Similä and Tikka (2007),

where they suggested an estimator of the coefficient matrix by solving the following optimization
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problem:

min
B

1

2
tr{(Y −XB)T (Y −XB)}+ λ

p∑
i=1

‖Bi‖2. (4.6)

By introducing the L2 penalty, the rows of B will be zeros or non-zeros simultaneously. If the

ith row contains all zeros, it implies that the ith covariate has no effect on the responses. One

drawback of L2SVS is that it imposes the same level of penalty to all covariates and does not

take into account the individual effect. To address this issue, we propose the following weighted

simultaneous variable selection (WSVS) method:

min
B

1

2
tr{(Y −XB)T (Y −XB)}+ λ

p∑
i=1

wi‖Bi‖2, (4.7)

where wi = exp(p(xi)) with p(xi) as defined in (4.5). The rationality of such weighting is that

if the p-value p(xi) is smaller, it is more likely that the covariate xi is an important variable.

Therefore, less shrinkage should be assigned to xi. We take the exponential of the p-values to

ensure wi’s are positive and their magnitude falls into a reasonable range.

4.3 Computational algorithm and model selection

In this section, we introduce the computational algorithm to solve the WSVS estimator. We

apply the group descent algorithm described in Simon et al. (2013). The optimization problem

(4.7) is equivalent to solving

min
B

1

2
‖Y −XB‖2F + λ

p∑
i=1

wi
∥∥Bi

∥∥
2

(4.8)

For problem (4.8), we can decompose B as Bk, k = 1, . . . , p. We can further view the objective

function in (4.8) as a function of Bk with fixed Bj for all j 6= k. Then solving (4.8) is equivalent

to

min
Bk

1

2
‖Y−k − xkBk‖2F + λwk‖Bk‖2

where xk denotes the kth column of X, and Y−k = Y−
∑

j 6=k x
jBj is the residual of removing

the effects of xj , j 6= k. If we solve the above optimization problem, then we get that the
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solution B̂k satisfies

B̂k =
1

‖xk‖22

(
1− λwk
‖(xk)TY−k‖2

)
+

(xk)TY−k (4.9)

where (a)+ = max(0, a). By applying these updates sequentially, we can obtain the global

solution to (4.8) due to the convexity of the objective function.

Our proposed WSVS algorithm can be summarized as follows.

WSVS Algorithm:

1. Start with Bk
0 = 0

2. Define Y−k = Y −
∑

j 6=k x
jBj , then update Bk by

Bk ← 1

‖xk‖22

(
1− λwk
‖(xk)TY−k‖2

)
+

(xk)TY−k

3. Iterate Step (2) over k = 1, . . . , p until convergence.

For the tuning parameter λ, it can be selected by either using an independent validation

set or through K-fold cross-validation (CV). In K-fold CV, we randomly spit the training data

into K parts of equal sizes. For each of the K folds, we obtain the estimated B̂λ using data in

all of the remaining folds and evaluate the CV errors. Then we find λ such that the sum of CV

errors is minimized.

4.4 Numerical studies

We demonstrate using numerical examples to show that our method has competitive per-

formance compared with several existing methods in this section. We compare with the curds

and whey (CW) method introduced by Breiman and Friedman (1997). We use the CW with

generalized cross validation (CW-GCV) when p < n and the CW with the ridge regression

(CW-RR) when p ≥ n. We also compare with the separate ridge regression (Ridge) and the

separate LASSO.

For all simulated examples, we simulate i.i.d. predictor vector xi’s from N (0, Ip) for

i = 1, . . . , n, where Ip is the p × p identify matrix. In other words, the p covariates are all
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(a) Example 1 (b) Example 2

Figure 4.3: Plots of the inverse covariance structure for Examples 1 and 2.

independent. For each example, we consider n = 40, 100, 200, p = 20, 40 and m = 10. The coef-

ficient matrix B is set as βj,k = 0 for all j ≥ 13. For j = 1, . . . , 10, βj,j = 3, βj,j+1 = 4, βj,j+2 = 3

and βj,k = 0.5 otherwise.

We consider two different configurations of the Ω matrix.

• Example 1: ωi,i = i/5, ωi+1,i = (i(i+1)/100)1/2(i = 1, . . . ,m−1), and ωi,i = 0 otherwise.

• Example 2: ωi,i = i/5, ωi,j = (ij/100)1/2(i 6= j, i, j ≤ 5), and ωi,i = 0 otherwise.

We show the inverse covariance structure for Examples 1 and 2 in Figure 4.3. As shown in

the plots, the structure of the inverse covariance in Example 1 is banded, and Example 2 has

a nonzero block on the lower left corner.

For model selection, we simulate an independent validation dataset of size n to select the

tuning parameter λ. Then we construct the final estimator with the selected λ on the training

data. We also generate a testing dataset of size 400 to evaluate the out of sample mean squared

prediction errors (MSPE), which is calculated by

MSPE = tr{(Y − Ŷ)T (Y − Ŷ)}.
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p = 20

CW 1.43 (0.009) 1.13 (0.003) 1.06 (0.002)

RR 1.71 (0.023) 1.17 (0.005) 1.08 (0.002)

LASSO 1.72 (0.024) 1.21 (0.007) 1.10 (0.003)

WSVS 1.54 (0.021) 1.12 (0.005) 1.06 (0.002)

Oracle 1.00 (0.003) 1.00 (0.003) 1.00 (0.002)

p = 40

CW 4.29 (0.059) 1.25 (0.004) 1.11 (0.002)

RR 3.64 (0.048) 1.45 (0.010) 1.15 (0.003)

LASSO 2.32 (0.035) 1.45 (0.011) 1.18 (0.004)

WSVS 2.39 (0.032) 1.24 (0.010) 1.12 (0.003)

Oracle 1.00 (0.003) 1.00 (0.002) 1.00 (0.001)

Table 4.1: Averages of RMSE and standard erros out of 100 replications (The standard errors are given
in the parentheses).

p = 20

CW 1.46 (0.009) 1.13 (0.003) 1.06 (0.002)

RR 1.45 (0.010) 1.13 (0.004) 1.06 (0.002)

LASSO 1.44 (0.010) 1.13 (0.003) 1.06 (0.002)

WSVS 1.53 (0.020) 1.11 (0.005) 1.06 (0.002)

Oracle 1.00 (0.003) 1.00 (0.003) 1.00 (0.002)

p = 40

CW 3.80 (0.069) 1.28 (0.004) 1.12 (0.002)

RR 3.24 (0.062) 1.31 (0.004) 1.12 (0.002)

LASSO 1.96 (0.032) 1.25 (0.005) 1.10 (0.002)

WSVS 2.21 (0.030) 1.21 (0.007) 1.11 (0.003)

Oracle 1.00 (0.003) 0.99 (0.003) 1.00 (0.001)

Table 4.2: Averages of RMSE and standard erros out of 100 replications (The standard errors are given
in the parentheses).

The results for the simulated examples 1 and 2 are displayed in Tables 4.1 and 4.2. One

can see that our WSVS method has better performance than all the other competitors in most

settings. In particular, in Example 2 with p = 20, all methods have similar performance. This is

possibly due to the fact that the inverse covariance matrix is close to diagonal in this example.

Moreover, as expected, when the sample size n increases, all methods have smaller RSPEs.
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4.5 Discussion

In this chapter, we propose a new penalized variable selection approach for multiple-response

regression. Our proposed method takes advantage of the extreme value theory of the maximal

absolute correlation between the covariates and the response vector. We further construct a

weighted penalty based on the p-values. Numerical studies demonstrate that our proposed

method performs well in practice.
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Peter Bühlmann, Markus Kalisch, and Lukas Meier. High-dimensional statistics with a view
toward applications in biology. Annual Review of Statistics and Its Application, 1:255–278,
2014.

Tony Cai and Tiefeng Jiang. Limiting laws of coherence of random matrices with applications
to testing covariance structure and construction of compressed sensing matrices. The Annals
of Statistics, 39(3):1496–1525, 2011.

Tony Cai and Tiefeng Jiang. Phase transition in limiting distributions of coherence of high-
dimensional random matrices. Journal of Multivariate Analysis, 107:24–39, 2012.

Emmanuel Candes and Terence Tao. The dantzig selector: Statistical estimation when p is
much larger than n. The Annals of Statistics, pages 2313–2351, 2007.

Lisha Chen and Jianhua Z Huang. Sparse reduced-rank regression for simultaneous dimension
reduction and variable selection. Journal of the American Statistical Association, 107(500):
1533–1545, 2012.

Shelley Derksen and HJ Keselman. Backward, forward and stepwise automated subset selec-
tion algorithms: Frequency of obtaining authentic and noise variables. British Journal of
Mathematical and Statistical Psychology, 45(2):265–282, 1992.

90



Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least angle regression.
The Annals of statistics, 32(2):407–499, 2004.

Jianqing Fan and Runze Li. Variable selection via nonconcave penalized likelihood and its
oracle properties. Journal of the American statistical Association, 96(456):1348–1360, 2001.

Jianqing Fan and Jinchi Lv. Sure independence screening for ultrahigh dimensional feature
space. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(5):
849–911, 2008.

Jianqing Fan and Jinchi Lv. A selective overview of variable selection in high dimensional
feature space. Statistica Sinica, 20(1):101, 2010.

Jianqing Fan, Fang Han, and Han Liu. Challenges of big data analysis. National science review,
1(2):293–314, 2014.

Jianqing Fan, Qi-Man Shao, and Wen-Xin Zhou. Are discoveries spurious? distributions of
maximum spurious correlations and their applications. arXiv preprint arXiv:1502.04237,
2015.

William Fithian, Jonathan Taylor, Robert Tibshirani, and Ryan Tibshirani. Selective sequential
model selection. arXiv preprint arXiv:1512.02565, 2015.

Dean P Foster and Robert A Stine. α-investing: a procedure for sequential control of expected
false discoveries. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
70(2):429–444, 2008.

Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths for generalized
linear models via coordinate descent. Journal of statistical software, 33(1):1, 2010.

George M Furnival and Robert W Wilson. Regressions by leaps and bounds. Technometrics,
42(1):69–79, 2000.

János Galambos. The asymptotic theory of extreme order statistics. Wiley, New York, 1978.

Jelle J Goeman, Sara A Van De Geer, and Hans C Van Houwelingen. Testing against a
high dimensional alternative. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 68(3):477–493, 2006.

Eitan Greenshtein et al. Best subset selection, persistence in high-dimensional statistical learn-
ing and optimization under l1 constraint. The Annals of Statistics, 34(5):2367–2386, 2006.

Max Grazier G’Sell, Stefan Wager, Alexandra Chouldechova, and Robert Tibshirani. Sequential
selection procedures and false discovery rate control. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 78(2):423–444, 2016.

Peter Hall and Hugh Miller. Using generalized correlation to effect variable selection in very
high dimensional problems. Journal of Computational and Graphical Statistics, 2012.

Fang Han and Han Liu. Distribution-free tests of independence with applications to testing
more structures. arXiv preprint arXiv:1410.4179, 2014.

Ronald R Hocking. A biometrics invited paper. the analysis and selection of variables in linear
regression. Biometrics, 32(1):1–49, 1976.

91



Barry James, Kang James, and Yongcheng Qi. Limit distribution of the sum and maximum
from multivariate gaussian sequences. Journal of multivariate analysis, 98(3):517–532, 2007.

Keith Knight and Wenjiang Fu. Asymptotics for lasso-type estimators. Annals of statistics,
pages 1356–1378, 2000.

Caiyan Li and Hongzhe Li. Network-constrained regularization and variable selection for anal-
ysis of genomic data. Bioinformatics, 24(9):1175–1182, 2008.

Runze Li, Wei Zhong, and Liping Zhu. Feature screening via distance correlation learning.
Journal of the American Statistical Association, 107(499):1129–1139, 2012.

Richard Lockhart, Jonathan Taylor, Ryan J Tibshirani, and Robert Tibshirani. A significance
test for the lasso. Annals of statistics, 42(2):413, 2014.
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