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Abstract

Plasmodium falciparum malaria (Pf-malaria) and Epstein Barr Virus (EBV) infections coexist in children at risk for endemic
Burkitt’s lymphoma (eBL); yet studies have only glimpsed the cumulative effect of Pf-malaria on EBV-specific immunity.
Using pooled EBV lytic and latent CD8+ T-cell epitope-peptides, IFN-c ELISPOT responses were surveyed three times among
children (10 months to 15 years) in Kenya from 2002–2004. Prevalence ratios (PR) and 95% confidence intervals (CI) were
estimated in association with Pf-malaria exposure, defined at the district-level (Kisumu: holoendemic; Nandi: hypoendemic)
and the individual-level. We observed a 46% decrease in positive EBV lytic antigen IFN-c responses among 5–9 year olds
residing in Kisumu compared to Nandi (PR: 0.54; 95% CI: 0.30–0.99). Individual-level analysis in Kisumu revealed further
impairment of EBV lytic antigen responses among 5–9 year olds consistently infected with Pf-malaria compared to those
never infected. There were no observed district- or individual-level differences between Pf-malaria exposure and EBV latent
antigen IFN-c response. The gradual decrease of EBV lytic antigen but not latent antigen IFN-c responses after primary
infection suggests a specific loss in immunological control over the lytic cycle in children residing in malaria holoendemic
areas, further refining our understanding of eBL etiology.
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Introduction

Plasmodium falciparum (Pf) malaria and Epstein Barr Virus (EBV)

have been identified as co-factors in the pathogenesis of endemic

Burkitt’s lymphoma (eBL) [1] which is estimated to account for

70% of cancers among children in equatorial Africa [2,3]. In areas

with intense perennial malaria transmission (holoendemic), the

highest incidence of eBL is in children aged 4–8 years

[4,5,6,7,8,9], in contrast to areas with low malaria transmission

(hypoendemic) where eBL is rarely reported [7,10,11].

It has been hypothesized that Pf-malaria infections promote eBL

in two mutually-compatible ways. In developing countries, most

children experience primary EBV infection by 3 years of age,

followed by life-long infection in memory B-lymphocytes [12,13].

P. falciparum induces polyclonal B-cell expansion and lytic EBV

reactivation [14], thus increasing the number of latently-infected

B-cells. In otherwise healthy individuals, interferon-gamma (IFN-

c) secreting cytotoxic CD8+ T-cells mediate immunosurveillance

of EBV [5,12,15,16,17,18]. Repeated Pf-malaria infections could

hence lead to exhaustion or hypo-responsiveness of EBV latent or

lytic antigen CD8+ T-cells, thus increasing the chance for this

EBV-associated malignancy to arise.

Limited evidence supports an impaired EBV-specific T-cell

response in association with Pf-malaria. Using an in vitro

regression assay as a measure of cytotoxicity, children with acute

Pf-malaria demonstrated a transient loss of control over B-cell

outgrowth [19,20,21]. Furthermore, case-control studies compar-

ing acutely Pf-malaria infected individuals with healthy adults

came to the same conclusion [22,23]. However, the cumulative

effect of repeated often asymptomatic Pf-malaria infections on

EBV persistence has not been thoroughly studied [1,6,24,25]. Two

ecological studies provide the minimum understanding we have on

the relationship. A study among adults found a loss of EBV-

specific T-cell control among those exposed to holoendemic

compared to hypoendemic malaria [26]. A second study only

found significantly lower EBV latent and lytic antigen IFN-c
responses in children 5–9 years old residing in the holoendemic

area compared to other age groups and children from a

hypoendemic area [16].

The objective of this study was to examine the influence

of cumulative Pf-malaria on EBV latent and lytic antigen

CD8+ T-cell IFN-c ELISPOT responses in children over a two-

year period.



Results

Participant summary
Of the 236 children enrolled, 230 (97.5%) were seropositive for

EBV [27]. Our weighted analysis included 149 children who

participated in all surveys and had interpretable EBV-specific T-

cell responses (Table 1). The age and sex distribution between the

districts were not significantly different (P = .11 and P = .30,

respectively). Children in Kisumu experienced more Pf-malaria

infections than children in Nandi (P,.001); only 3% of Kisumu

children were never infected compared to 78% in Nandi. This was

despite a classically defined malaria outbreak in Nandi during the

survey periods (Figure 1).

The magnitude of EBV-specific IFN-c responses did not

differ significantly by malaria endemicity. The proportion

of positive IFN-c responses to PHA (positive control) demonstrates

that children from both districts were equally able to elicit an IFN-

c response indicating no global signs of immune dysfunction

(Table 2). There were no significant differences in median values

of EBV lytic or latent CD8+ T-cell IFN-c responses between

children of similar age groups across districts. Therefore, Pf-

malaria exposure does not appear to influence the magnitude of

EBV-specific IFN-c responses.

Pf-malaria exposure (district-level) and EBV-specific T-cell
IFN-c responses

EBV lytic antigen CD8+ T-cell IFN-c responses. We

observed a few intriguing patterns in the prevalence of positive

EBV lytic antigen CD8+ T-cell IFN-c response when children

were stratified into age groups by their baseline age (age group

cohorts) (Figure 2A,C). In Kisumu, the prevalence of positive

Figure 1. Malaria incidence in the highland area of Kipsamoite, 2001–2004.
doi:10.1371/journal.pone.0031753.g001

Table 1. Summary of participants in the Kisumu/Nandi
cohort, Kenya 2002–2004a.

Site Total

Kisumu
(holoendemic)

Nandi
(hypoendemic)

n % n %

Sex

Male 39 59.1 38 45.8 77

Female 27 40.9 45 54.2 72

Age (in years)

0–4 16 24.2 30 36.1 46

5–9 33 50.0 35 42.2 68

$10 17 25.8 18 21.7 35

Malaria infections

All surveys 38 57.6 0 0 38

Two surveys 20 30.3 4 4.8 24

One survey 6 9.1 14 16.9 20

Never 2 3.0 65 78.3 67

Total 66 83 149

n, number; %, percentage.
aData in the table are weighted according to the 149 children who participated
in all surveys and had interpretable Epstein-Barr virus (EBV) specific CD8+ T-cell
IFN-c response.
doi:10.1371/journal.pone.0031753.t001



responses in the 0–4 year and 5–9 year cohorts decreased from

baseline to first follow-up, but remained unchanged in the $10

year cohort. By the second follow-up, responses increased among

the 0–4 and 5–9 year cohorts while responses decreased in $10

year cohort. However, children in the 5–9 year cohort had the

lowest prevalence at each survey period. In Nandi, responses

declined in all age group cohorts from baseline to first follow-up

and remained almost unchanged in the 5–9 year and $10 year

cohorts by the second follow-up. In the 0–4 year cohort, however,

responses increased. The patterns and prevalence of responses

among the age group cohorts were similar at all survey periods,

varying ,10%.

Using the district-level definition of Pf-malaria and the weighted

model, we estimated the prevalence of positive responses in

Kisumu was 0.70 (95% CI: 0.45–1.08) times the prevalence in

Nandi although this 30% difference was not significant. In

Kisumu, there were no significant differences in positive responses

in children 0–4 years (PR: 1.39, 95% CI: 0.60–3.20) and 5–9 years

(PR: 0.74, 95% CI: 0.37–1.48) when compared to children $10

years (Figure 3A). Likewise in Nandi, the prevalence of positive

responses in children 0–4 years (PR: 1.10, 95% CI: 0.60–2.02) and

5–9 years (PR: 1.04, 95% CI: 0.61–1.76) did not differ significantly

from children $10 years. When similar age groups were

compared between districts, we detected a significant difference

in children 5–9 years where the prevalence of positive responses in

Kisumu was 0.54 (95% CI: 0.30–0.99) that of children in Nandi

(Figure 3A). No other differences by age group were found.

EBV latent antigen CD8+ T-cell IFN-c responses. Examining

the patterns in the prevalence of positive EBV latent antigen CD8+ T-

cell IFN-c response by age group cohorts, there was variation within

and between districts (Figure 2B,D). In Kisumu, the prevalence at

baseline was highest among the 0–4 year cohort but then decreased to

nearly the same prevalence as the other age group cohorts. In Nandi,

there was a decreasing trend from baseline to second follow-up for the

Table 2. EBV-specific CD8+ T-cell IFN-c Response by Residence and Age Groupa.

EBV lytic antigens EBV latent antigens PHAb

n % Medianc n % Medianc n %

(range) (range)

Baseline (July–August 2002)

Kisumu

0–4 years 7/16 43.8 96 (14–166) 8/16 50.0 43 (20–98) 13/16 81.3

5–9 years 8/33 24.2 67 (18–170) 6/33 18.2 47 (16–448) 31/33 93.9

$10 years 5/17 29.4 150 (20–350) 5/17 29.4 46 (16–404) 15/17 88.2

Nandi

0–4 years 12/30 34.3 98 (28–836) 8/30 26.7 70 (18–146) 28/30 93.3

5–9 years 15/35 42.9 50 (22–792) 11/35 31.4 84 (42–668) 33/35 94.3

$10 years 8/18 22.9 53 (36–304) 8/18 44.4 88 (26–1322) 18/18 100

First follow-up (February–March 2003)

Kisumu

0–4 years 4/16 25.0 46 (40–128) 2/16 12.5 55 (32–78) 16/16 100

5–9 years 1/33 3.0 20 (20) 6/33 18.2 15 (14–132) 31/33 93.9

$10 years 5/17 29.4 30 (18–162) 2/17 11.8 23 (18–28) 16/17 94.1

Nandi

0–4 years 6/30 20.0 98 (24–744) 4/30 13.3 77 (32–128) 26/30 86.7

5–9 years 8/35 22.9 82 (16–1742) 8/35 22.9 58 (20–248) 34/35 97.1

$10 years 5/18 27.8 54 (32–382) 3/18 16.7 54 (14–354) 18/18 100

Second follow-up (July–August 2004)

Kisumu

0–4 years 5/16 31.3 76 (30–84) 2/16 12.5 106 (64–148) 15/16 93.8

5–9 years 3/33 9.1 60 (56–150) 3/33 9.1 42 (24–74) 33/33 100

$10 years 3/17 17.7 250 (40–288) 1/17 5.9 16 (16) 17/17 100

Nandi

0–4 years 8/30 26.7 50 (14–384) 2/30 6.7 69 (58–80) 25/30 83.3

5–9 years 7/35 20.0 76 (14–278) 6/35 17.1 59 (14–214) 31/35 88.6

$10 years 5/18 27.8 26 (14–130) 5/18 27.8 56 (22–122) 18/18 100

n, number; %, percentage; EBV, Epstein-Barr Virus; PHA, Phytohemagglutinin.
aData in the table are weighted according to the 149 children who participated in all surveys and had interpretable Epstein-Barr Virus (EBV) specific CD8+ T-cell IFN-c
response.
bPhytohemagglutinin (PHA) was used as a positive control.
cMedian EBV-specific CD8+ T-cell IFN-c responses were calculated among children with positive responses and is expressed as spot forming units (SFU) per 16106

peripheral blood mononuclear cells (PBMC).
doi:10.1371/journal.pone.0031753.t002



0–4 year and 5–9 year cohorts. However, the $10 years cohort had the

highest prevalence of response at baseline that decreased by the first

follow-up but rebounded by the second follow-up.

From our weighted model, we observed the prevalence of

positive responses in Kisumu was 0.80 (95% CI: 0.51–1.25) times

the prevalence in Nandi, although not significant. In Kisumu, the

prevalence of positive responses in children 0–4 years (PR: 1.93,

95% CI: 0.91–4.13) and 5–9 years (PR: 1.22, 95% CI: 0.61–2.45)

was not significantly different from children $10 years, although

there was a decrease in prevalence with increasing age group

(Figure 3B). Similarly in Nandi, responses among children 0–4

years (PR: 0.72, 95% CI: 0.35–1.48) and 5–9 years (PR: 0.84, 95%

CI: 0.47–1.49) did not differ significantly from children $10 years

old, although there was a slight increase in response with

increasing age. Despite these interesting trends, there were no

significant differences in the prevalence of positive responses when

similar age groups were compared between districts.

Pf-malaria infection (individual-level) and EBV-specific T-
cell IFN-c responses

EBV lytic antigen CD8+ T-cell IFN-c responses. Using the

individual-level definition of Pf-malaria in our weighted model, we

found the association between recurrent Pf-malaria infections and

EBV lytic antigen CD8+ T-cell IFN-c response varied by age

group and survey period. We therefore used two weighted models.

In the first model, we stratified results by age group, while

adjusting for sex and survey period. Similarly in the second model,

we stratified by survey period while adjusting for sex and age

group.

We noted three observations from our analysis. First, the PR of

recurrent Pf-malaria infections and positive IFN-c responses

among Kisumu children were consistently lower than Nandi

children for all age groups and survey periods (Table 3). In

general, there is a two-fold difference in the PR between Kisumu

and Nandi although not significant (P = .32). Secondly, the

association between recurrent Pf-malaria infections and IFN-c
responses varied by age group. In both Kisumu and Nandi, the

prevalence of positive responses among children 0–4 years with

recurrent Pf-malaria infections was higher than that of similarly

aged children never infected. In Nandi, the difference was

statistically significant. Finally, the PR of recurrent Pf-malaria

infections and IFN-c responses to EBV lytic antigens varied by

survey period in both districts. At baseline, for both districts, the

PR of positive responses among children with recurrent Pf-malaria

Figure 2. Change in prevalence of EBV-specific CD8+ T-cell IFNc responses with age. Changes in prevalence of positive EBV lytic (A and C)
and latent (B and D) antigen CD8+ T-cell IFNc response from 2002–2004. Age group at each survey period is based on age at baseline. In Kisumu: 16
(0–4 years), 33 (5–9 years) and 17 ($10 years). In Nandi: 30 (0–4 years), 35 (5–9 years) and 18 ($10 years). Solid black line: 0–4 year olds; hash-mark
green line: 5–9 year olds; and dotted blue line: $10 year old children.
doi:10.1371/journal.pone.0031753.g002



infections was greater compared to children never infected; this

result was statistically significant in Nandi, but not Kisumu.

However, the PR decreased at subsequent study periods; the

prevalence of positive responses among children with recurrent

Pf-malaria infection diminished over time compared to children

never infected. This could reflect functional diminishment of

responsive EBV lytic antigen T-cells under continuous pressure

from Pf-malaria.

Figure 3. Prevalence of EBV-specific CD8+ T-cell IFNc response by age group and residence. Prevalence of positive EBV lytic (A) and latent
(B) antigen CD8+ T-cell IFNc response by age group and site of residence, Kenya 2002–2004. Age group was classified as a time-varying factor. For
both graphs, the number of observations for children in each age group in Kisumu was: 33 (0–4 years), 87 (5–9 years) and 78 ($10 years). The number
of observations for children in each age group in Nandi was: 54 (0–4 years), 125 (5–9 years) and 70 ($10 years). P values for differences between areas
of residence by age group are indicated.
doi:10.1371/journal.pone.0031753.g003

Table 3. Prevalence Ratios for EBV Lytic Antigen CD8+ T-cell IFN-c Response.

Kisumu Nandi

Constant Pf-malaria infection versus no infection Constant Pf-malaria infection versus no infection

PR 95% CI PR 95% CI

Unadjusted 0.64 0.23–1.77 1.43 0.73–2.81

Age groupsa

0–4 years 1.31 0.28–6.18 3.00 1.72–5.23

5–9 years 0.53 0.15–1.88 1.16 0.39–3.45

$10 years 0.78 0.16–3.53 0.98 0.33–2.95

Survey periodsb

Baseline 1.24 0.49–3.11 1.76 1.07–2.91

Six months 0.29 0.05–1.62 0.73 0.17–3.22

Two years 0.21 0.05–0.92 0.22 0.02–3.23

Pf-malaria, Plasmodium falciparum malaria; EBV, Epstein-Barr virus; PR, prevalence ratio; CI, confidence interval; Ref, referent group.
aAdjusted for sex and survey period. Unstratified estimates for constant Pf-malaria infections compared to never infected in Kisumu (P = 0.72) and Nandi (P = 0.97) were
not significant. Specific details on the number and prevalence of positive responses for each age group are included in Table 2.
bAdjusted for sex and age group. Unstratified estimates for constant Pf-malaria infections compared to never infected was not significant in Kisumu (P = 0.65) but
significant in Nandi (P = 0.03). The number of children in Kisumu for each survey period was 66 and the number of children in Nandi was 83.
doi:10.1371/journal.pone.0031753.t003



EBV latent antigen CD8+ T-cell IFN-c responses. Using

our weighted model, we did not observe any variation by age

group (Table 4) or survey period (data not shown). In Kisumu, for

all age groups, the adjusted prevalence of positive EBV latent

antigen CD8+ T-cell IFN-c response was higher among children

with recurrent Pf-malaria infections compared to those never

infected (Table 4). There was a two-fold difference in the PR for

children 0–4 years and .10 years with recurrent Pf-malaria

infections than children 5–9 years. In Nandi, children 0–4 years

with recurrent Pf-malaria infections had fewer positive responses

than children never infected, and a PR that was three-fold lower

than older children. However, children in older age groups with

recurrent Pf-malaria infections had higher positive responses than

similarly aged children never infected. Despite estimates for

Kisumu and Nandi being imprecise and not statistically significant,

the observations suggest that children 5–9 years in Kisumu are

unable to mount the type of T-cell response as younger and older

children. Meanwhile, in Nandi, the increasing PR with age may

reflect how a maturing immune system, not continuously exposed

to Pf-malaria, is able to induce a T-cell response to latent antigens

even when co-infected with Pf-malaria.

Discussion

Our study demonstrates that the prevalence of positive EBV lytic-

but not latent-antigen CD8+ T-cell IFN-c responses decreases in a

malaria holoendemic area and not a hypoendemic area. This

suggests that children repeatedly infected with Pf-malaria eventually

lose functional IFN-c producing CD8+ T-cells in response to EBV

lytic antigens. In an effort to control viral replication induced by

recurrent Pf-malaria infections [14], we hypothesize that EBV lytic

antigen CD8+ T-cells have become exhausted and unable to

produce IFN-c or alternatively these cells were culled through

apoptosis. As a result of the loss of responsive EBV lytic antigen

CD8+ T-cells, more B-lymphocytes could become latently infected

by EBV, and thus gradually increasing the risk of eBL. These

findings are consistent with previous studies of this cohort, which

detected significantly higher median EBV viral load and EBV-

specific IgG antibodies to EBV lytic and latent antigens in the

holoendemic compared to hypoendemic area [27,28].

Furthermore, the association between Pf-malaria infections and

positive EBV lytic antigen CD8+ T-cell IFN-c responses varied by

age group. The EBV lytic antigen deficiency was most pronounced

among children 5–9 years old in the malaria holoendemic area

and was further potentiated in those recurrently infected with

Pf-malaria. In our individual-level analysis, these children had the

lowest PR of positive responses while this same age group in the

hypoendemic area appeared to be affected little. Additionally, the

patterns observed in the age group cohorts clearly showed that the

5–9 year cohort in Kisumu had the lowest prevalence of positive

responses among all age group cohorts, in both districts, at each

survey period. The sustained inability to produce an effective EBV

lytic antigen CD8+ T-cell IFN-c response among 5–9 year olds

may be an etiologically relevant event in eBL development since

eBL is most often diagnosed in this age group. Finally, the

inconsistency of patterns between age group cohorts within a

district suggests there is an age-dependent interaction between Pf-

malaria and EBV-specific T-cell response. Studies of immune

mechanisms that induce exhaustion or deletion are needed to

understand maintenance of EBV-specific T-cell immunity,

especially in children. In support of this premise is the observation

that the ELISPOT responses in both groups of children were

lower than those described for healthy adults [29] and our Kenyan

adult controls (data not shown). To our knowledge there have

been no studies of EBV-specific T-cell immunity in healthy

children from non-malaria endemic countries. However our

studies of malaria-specific immunity also demonstrate an age-

associated instability in cytokine recall responses more pronounced

in children compared to adults [30,31].

This study is an important early step to understanding the

cumulative effect of Pf-malaria infections on EBV-specific T-cell

immunity over time. Availability of data over two-years permitted

identification of potentially important biological and environmen-

tal mechanisms that only became apparent over time. For

example, the association between Pf-malaria infection and positive

EBV lytic antigen CD8+ T-cell IFN-c responses varied by age

group and survey period. The variation noted with age group is

expected because there is an age-dependent increase in T-cell

immunity as children develop protection against Pf-malaria after

repeated infections [32]. Children in malaria holoendemic areas

acquire immunity to Pf-malaria and EBV during the first years of

life, and ongoing studies will compare the development of Pf-

malaria to EBV-specific T-cell memory. An impairment of EBV-

specific T-cell control with progressive EBV reactivation has been

described in HIV-infected individuals [33], lending support to a

sequential series of events in the etiology of eBL.

Using data, collected during a two-year period, also allowed us

to use an individual-level definition for Pf-malaria infections.

Unlike other studies, our definition accounted for the cumulative

effect of Pf-malaria infection which has been hypothesized to be

critical in the pathogenesis of eBL, rather than the transient effect

Table 4. Prevalence Ratio for EBV Latent Antigen CD8+ T-cell IFN-c Response.

Kisumu Nandi

Constant Pf-malaria infection versus no infection Constant Pf-malaria infection versus no infection

PR 95% CI PR 95% CI

Unadjusted 1.60 0.37–6.92 1.54 0.71–3.35

Age groupsa

0–4 years 2.10 0.22–19.65 0.51 0.08–3.37

5–9 years 1.14 0.26–4.99 1.47 0.58–3.63

$10 years 2.68 0.38–18.73 1.82 0.83–3.99

Pf-malaria, Plasmodium falciparum malaria; EBV, Epstein - Barr virus; PR, prevalence ratio; CI, confidence interval.
aAdjusted for sex and survey period. Unstratified estimates for constant Pf-malaria infections compared to never infected in Kisumu (P = 0.32) and Nandi (P = 0.13) were
not significant. Specific details on the number and prevalence of positive responses for each age group are included in Table 2.
doi:10.1371/journal.pone.0031753.t004



typically observed with acute Pf-malaria infection [1]. However,

our definition was vulnerable to misclassification because Pf-

malaria infection was assessed only twice during the two-year

follow-up. Therefore, we may not have captured participants’

malaria histories accurately. This misclassification was likely to be

differential because children in the holoendemic area were

exposed to Pf-malaria parasites at a higher frequency, averaging

two malaria infections per year, than children in the hypoendemic

area [34]. Therefore, we may have underestimated or overesti-

mated the PR for Pf-malaria infections and EBV-specific T-cell

responses in the holoendemic area.

A strength of our study was the use of two definitions for Pf-

malaria: 1) district-level according to malaria transmission intensity,

and 2) individual-level based on measured Pf-malaria infection.

Although our findings of EBV lytic antigen CD8+ T-cell IFN-c
responses were consistent with both definitions, our findings of EBV

latent antigen CD8+ T-cell IFN-c responses were inconsistent. This

may have been due to the limited power or an underestimation of

the influence of Pf-malaria infections in hypoendemic areas.

However, it also highlights the potential pitfall in attributing

district-level results to the individual, also known as the ecological

fallacy. The inconsistency may have been due to other factors that

differed between the districts and unrelated to malaria transmission

intensities. Therefore, we conclude that the use of malaria

transmission intensity as a surrogate for malaria infection has been

informative yet future studies should endeavor to prospectively

collect Pf-malaria and EBV co-infections information from

individuals to more accurately describe this complex relationship.

There were several potential confounders that were not captured

in our study, specifically HIV status, nutritional status, schistoso-

miasis infection, and socioeconomic status. However, we do not

believe the absence of these confounders materially affected our

findings. When data were collected in western Kenya from 2002–

2004, HIV testing in infants was conducted only when medically

warranted. All children enrolled in this study were examined by a

clinician and had no obvious signs of illness or malnourishment, and

no deaths were reported as of 2009. Therefore, even though it was

possible that an underlying HIV infection might influence the rate

of malaria parasitaemia [35] the likelihood that a significant number

of undiagnosed children remained in this study was low.

Schistosomiasis infection was unmeasured yet an examination of

the Pf-malaria and EBV response relationship indicated adjusting

for schistosomiasis infection would have biased our analysis. Finally,

is socioeconomic status had been measures, participants and their

families would likely have been classified as low socioeconomic

status because the main occupation was fishing (Kisumu) and

farming (Nandi) in both rural study areas with homes constructed of

locally available materials.

Our findings on EBV lytic antigen CD8+ T-cell IFN-c
responses were consistent with the studies that have used residence

area (malaria transmission intensity) to explore the cumulative

effect of Pf-malaria infections on EBV-specific T-cell response. We

observed fewer positive EBV lytic antigen CD8+ T-cell IFN-c
responses among 5–9 year old than older children [16]. We also

identified a reduction in EBV-specific T-cell response among

children living in a holoendemic compared a hypoendemic area

[26]. The consistency of our findings with previous studies is

important given our limited sample size and precision. Meanwhile,

our analysis of EBV lytic antigen CD8+ T-cell IFN-c response at

the individual-level supports findings from previous studies that

used residence area as a surrogate for Pf-malaria infection.

However, we did not detect the same statistically significant

district-level difference in positive EBV latent antigen CD8+ T-cell

IFN-c responses among 5–9 year olds as a previous study [16].

This discrepancy may be due to the limited power of our study.

Furthermore, the difference between our individual-level analysis

and the previous study may also be due to the use of a surrogate

definition of Pf-malaria.

This study design marks a step toward examining the individual-

level association of Pf-malaria infections and EBV-specific T-cell

IFN-c responses and identifies a potential difference between

children recurrently infected with Pf-malaria compared to children

never infected. To adequately quantify this effect, a longitudinal

study should be considered which could accurately measure Pf-

malaria infection and changes in Pf-malaria and EBV-specific T-cell

immunity over time. The temporal aspects of future studies will be

vital to elucidating the precise mechanism by which repeated Pf-

malaria infections affect EBV persistence and immunity.

Materials and Methods

The Kisumu/Nandi cohort has been previously described [27]. In

brief, the cohort consists of 236 children, randomly selected and

between 10 months and 15 years at enrollment, from two districts in

western Kenya with disparate Pf-malaria transmission intensities:

Kisumu is characterized as holoendemic and Nandi as hypoendemic.

Due to the age-related incidence of eBL, an equal distribution of

children by age and sex were enrolled from each area: children 0–4

years have an elevated risk of eBL whereas 5–9 year olds are at highest

risk and $10 years old have the lowest risk. Data were collected from

2002–2004 using a standardized survey. Three face-to-face interviews

were conducted at baseline (July–August 2002), six month follow-up

(February–March 2003), and two-year follow-up (July–August 2004).

Blood was also collected for malaria and EBV testing.

Pf-malaria infection was confirmed on thick and thin blood

smears by microscopy. Testing of EBV-specific T-cell response by

IFN-c ELISPOT has been previously described [16]. Lytic (BRLF1,

BZLF1, and BMLF1) and latent (Epstein-Barr nuclear antigen

[EBNA] 3A, EBNA 3B, and EBNA3C) antigens were selected and

pooled for testing. One positive control (mitogen phytohemmag-

glutinin [PHA]) was used to stimulate wells and a negative control

(phosphate buffer saline [PBS]) was used to measure background

IFN-c response in unstimulated wells. Assays were condensed into a

three-week period using the same reagents and personnel to

minimize inter-assay variability. Cytotoxic T-lymphocyte (CTL)

ImmunoSpot scanning and imaging software (version 4; Cellular

Technology Ltd, Shaker Heights, OH) was used to count the

number of spot-forming units (SFU) per well; results were expressed

as SFU per million peripheral blood mononuclear cells (PBMC).

Using a two-sided Fisher’s exact test (P,.05), EBV lytic and latent

epitope-peptide CD8+ T-cell IFN-c responses were categorized as

positive or negative. A positive response was recorded if the

proportion of SFUs in the stimulated well was significantly different

from the proportion of SFU in the unstimulated well. The

magnitude of response was calculated by subtracting the SFU in

PBS wells (negative control) from the SFU in the stimulated wells.

The median value for the negative control wells was 4 SFU per

million PBMCs (range 0 to 772 SFU/million PBMC). Median

values were calculated among positive responders only.

Analyses were restricted to EBV seropositive children at

baseline [27]. We used two definitions of cumulative Pf-malaria.

First, Pf-malaria exposure was defined according to the malaria

transmission intensity of the district (district-level definition):

Kisumu (holoendemic) or Nandi (hypoendemic). Next, Pf-malaria

infection was defined as the cumulative average of P. falciparum

infection (parasitemia) in a participant over the three survey

periods (individual-level definition). The value ranged from 0

(never infected) to 1 (always infected); results and discussion focus



on children who were always infected (referred to as recurrent) and

never infected. With the individual-level definition, we also

included the covariates age group, district, sex, and when the

survey was conducted (referred to as survey period) in the analysis.

We first examined covariates as potential effect measure modifiers

using an a priori cutoff of P = .20. In the absence of evidence of

effect measure modification, we included covariates in the model

as potential confounders.

For descriptive analyses, we used the Chi-square statistic to

measure associations between categorical exposures and outcomes.

We used the two-sided Wilcoxon rank sum (Mann-Whitney U)/

Kruskal Wallis test for continuous outcomes. For multivariable

analyses, we used weighted log-binomial regression with robust

variances to estimate the prevalence ratios (PR) and corresponding

95% confidence intervals (CI). We used generalized estimating

equations (GEE) with robust variance estimators to account for

correlation due to repeated measurements. A weighted model with

inverse probability weights (IPWs) was used to address missing

observations due to children not participating in all surveys. When

using IPW, observations are assumed to be missing at random;

missing data are dependent on observed data but independent of

unobserved data [36]. To calculate IPWs, the probability of

participation was modeled using available predictor variables. The

inverse of the predicted probabilities were calculated and assigned

to each individual with complete data. Individuals with complete

data were weighted to represent individuals with similar

characteristics who have missing data.

To calculate the predicted probabilities for our study, we used

logistic regression with first order interaction terms using the

following equation:

Log
pi

1{pi

� �
~b0zb1(sex)zb2(age group 0{4 years)

zb3(age group 5{9 years)

zb4(site of residence)

zb5(sex|age group 0{4 years)

zb6(sex|age group 5{9 years)

zb7(sex|site of residence)

zb8(age group 0{4 years|site of residence)

zb9(age group 5{9 years|site of residence)

Where pi was the probability of child i (i = 1,2,3…n) participating

in all surveys. Taking the inverse of the predicted probabilities, the

mean IPW was 1.44 and ranged from 1.14–1.92. Children who

participated in all three surveys were assigned the mean IPW value

whereas children with missing observations were assigned an IPW

of 0. We also conducted complete case analyses and found no

differences in the PR or 95% CI; therefore we report results from

the weighted analyses. Data were analyzed in SAS 9.1.3 (Cary,

NC).

Written informed consent was obtained from a parent or

guardian of the participant. This study was approved by the

Institutional Review Boards at the University Hospitals of

Cleveland, Case Western Reserve University where Dr. Moor-

mann was affiliated at the time this study was done and also

obtained from the Ethical Review Committee for the Kenya

Medical Research Institute. It was deemed exempt by the

Institutional Review Board at the University of North Carolina

at Chapel Hill.
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