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Increasingly, the statistical and epidemiologic literature is focusing beyond issues of internal validity and turning
its attention to questions of external validity. Here, we discuss some of the challenges of transporting a causal
effect from a randomized trial to a specific target population. We present an inverse odds weighting approach that
can easily operationalize transportability. We derive these weights in closed form and illustrate their use with a sim-
ple numerical example. We discuss how the conditions required for the identification of internally valid causal ef-
fects are translated to apply to the identification of externally valid causal effects. Estimating effects in target
populations is an important goal, especially for policy or clinical decisions. Researchers and policy-makers should
therefore consider use of statistical techniques such as inverse odds of sampling weights, which under careful as-
sumptions can transport effect estimates from study samples to target populations.
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Abbreviation: HIV, human immunodeficiency virus.

Large randomized trials with complete compliance and no
missing data provide internal validity in expectation as a matter of
design (1). However, external validity with respect to a specific,
investigator-defined target population is not similarly provided
(2-7). Unless the study sample (Ps) was sampled at random from
the target population (P7), there is no expectation of exchangeabil-
ity of the study sample and the (again, investigator-defined) target
population. Yet nearly all trials are conducted among study sam-
ples that are not sampled at random from the target population, for
reasons of either design (e.g., to maximize statistical power, a trial
is conducted among those at highest risk of an outcome) or hap-
penstance (e.g., if persons who exhibit health-seeking behaviors
participate in the trial at higher frequencies than others). In these
cases, despite having an internally unbiased sample average treat-
ment effect, that sample average treatment effect may differ from
the average treatment effect in the target population.

Given that we have internally valid trial results, we often wish
to ask the question: What would happen had this trial been con-
ducted in another, external population—the target? Above we
suggested that we might want to ask about the causal effect of
the treatment in the population from which the study population
was sampled (albeit perhaps nonrandomly); we also might wish
to address the causal effect of the treatment in a target population

distinct from the study sample, that is, one which is partially or
completely nonoverlapping with the study sample. In this latter
case—such as when we have a randomized trial and wish to
infer a causal effect in a target population—the question can be
framed as one of direct standardization to the external target pop-
ulation. As a distinction of language, and to be consistent with
the evolving literature on this topic, we refer to the former case
(where the study sample is a subset of the target population) as a
problem of “generalizability,” and to the latter case (where the
study sample is not a subset of the target population) as a prob-
lem of “transportability.”

In either case, when externally valid estimates of effect are
desired but not guaranteed by design, quantitative approaches
are needed. In general, these approaches rely on assumptions
which parallel the identification conditions necessary for inter-
nally valid causal effect estimation, particularly conditional
exchangeability (8) with positivity (9), treatment variation irrele-
vance (10), no measurement error, and no misspecification of
relevant parametric or semiparametric models. The last point is
not necessary if nonparametric inference is possible, but in most
cases the relevant space of covariates is high-dimensional, and
thus a robust approach to quantitative generalizability or trans-
portability requires some degree of modeling.
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Previously, Cole and Stuart (4) introduced inverse probability
weights for quantitative generalization of trial results, but they
did not explain how to operationalize this approach or whether
their approach was applicable to problems of both generalizabil-
ity and transportability. More recently, Bareinboim and Pearl (3)
highlighted several key distinctions between generalizability and
transportability and introduced a method for deriving a transport
formula, which relies on a detailed understanding of the causal
relationships among all relevant variables. Here we integrate
these 2 methods to introduce an approach to quantitative trans-
portability which may be simpler to implement than the trans-
port formula.

A brief additional note on terminology: Where Cole and
Stuart refer to inverse probability of selection weights (4), we
refer to inverse probability of sampling weights. We note, how-
ever, that in many (perhaps most) cases the study subjects were
probably not formally sampled, and we do not wish to imply so
with the use of that term; rather, we simply obtain a study sample
through some (perhaps unclear) mechanism. For simplicity, we
assume that once a study sample has been enumerated, treatment
is randomized and follow-up is complete, so that there is no con-
founding bias in expectation and no additional missing data or
selection into the analytical sample (and therefore no selection
bias as a problem of internal validity).

METHODS
Preliminary issues and notation

Sampling (S) might relate to covariates (Z) in several ways,
including S causing Z (or S indicating differences in distributions
of Z), Z causing S, and both S and Z being caused by some addi-
tional variable U; here we restrict our attention to the first of these
cases, which is closely related to Bareinboim and Pearl’s term
“transportability” (3). We assume that the epidemiologist has
conducted a study and wishes to transport the effect estimate
from that study sample to an external target population. For con-
venience, we assume that information on the same set of covari-
ates has been collected in the study sample and target data, and
that the epidemiologist has concatenated the 2 data sets.

In the following, i indicates a participant index i =1,
2,...n,n+1,...Nsuch that the study sample comprises n
participants and the target population N — n participants;
study participants are designated S; = 1, while individuals in
the target population are designated S; = 0; and Z; is a vector
of pretreatment covariates for participant i (see the Discus-
sion section for comments on components of Z). Y; indicates

the potential outcome under some specific treatment A = a
for participant i.

Method

Our goal is estimation of P (Y = 11§; = 0), the risk of the
outcome under a particular treatment (a) in the target population.
In the Appendix, we use the transport formula to derive a set of
weights, which when applied to estimates of observed quantities
in the study sample yield an estimate of this estimand. Specifi-
cally, we derive the following expression for inverse odds of
sampling weights:

P(S;=01Z) P(S;i=1) _
Wi=aPSi=11Z) PS=0 '
0, Si=0,

where S, Z;, and i are as described above. The weight for individ-
ual i is 0 if they did not participate in the study. Otherwise, the first
term of the weight is the inverse of the ratio of an individual’s
probability of being in the study sample as opposed to the target
population (hereafter “being sampled”), conditional on Z; divided
by their Z;-conditional probability of not being sampled—that is,
the inverse of their Z;-conditional sampling odds. The second part
of the weight is the ratio of the unconditional sampling probability
to the unconditional nonsampling probability—that is, the uncon-
ditional sampling odds.

We note that this approach differs from the inverse probabil-
ity (rather than odds) of selection weights; the latter method,
described by Cole and Stuart (4), is appropriate when the study
sample is a subset of the target population (i.e., for generaliz-
ability rather than transportability). Inverse odds weights are
appropriate when the study sample and target population are
nonoverlapping; if we consider “being in the study sample” to
be a kind of treatment, this method is analogous to weighting
for the average treatment effect in the untreated in nonexperi-
mental studies (11, 12).

NUMERICAL EXAMPLE

To aid intuition around this method, consider a hypothetical
trial of assignment to a new antiretroviral therapy regimen for
human immunodeficiency virus (HIV) compared with assign-
ment to a reference regimen, for the outcome of virological fail-
ure at 1 year, conducted in HIV-positive people living in the
United States. Suppose the study sample for the trial comprises
2,000 participants, 1,000 with single covariate Z = 1 and 1,000
with Z = 0. Among participants with Z = 1, the risk difference
is —0.2 (novel treatment is protective against failure); among
participants with Z = 0, the risk difference is 0.0 (no effect of
intervention). The crude sample average causal risk difference is
therefore —0.1, a simple average of the 2 strata.

Our target population (alternately, a random sample from our
target population) comprises 2,000 persons living with HIV in
the United States, of whom 80% have Z = 1 and 20% have Z =
0. In this very simple case, we can hand-calculate the (target)
population average causal effect in our external setting as 0.8 x
(—=0.20) + 0.2 x (0.00) = —0.16. In real data, we would need to
use model-based approaches to account for the joint distribution
of multiple continuous and categorical variables.

We concatenate the trial data (n = 2,000; 50% with Z=1)
with the target population (n = 2,000; 80% with Z = 1),
obtaining a combined population of size 4,000, including 2,600
(65%) with Z =1 and 1,400 (35%) with Z = 0. We proceed by
estimating O(S=112)=P(S =112)/(1 — P(S = 11Z)), which
in this case is (1,000/2,600)/(1 — 1,000/2,600) = 1,000/1,600
where Z =1 and (1,000/1,400)/(1 — 1,000/1,400) = 400/1,000
where Z = 0. We would use these odds to calculate a weighted
pseudopopulation of 1,600 persons ((1,000 x 1,600/1,000) =
1,600) for Z=1 and 400 persons ((1,000 x 400/1,000) = 400)



for Z = 0; we would then calculate the weighted risk difference
as (1,600 x —0.2 + 400 x 0.0)/(1,600 + 400) = —0.16.

This estimate coincides with the common-sense simple
weighted average we derived immediately above. In addition,
these inverse odds weights coincide with the intuitive explana-
tion of how individuals from the study sample ought to be
weighted so as to represent individuals in the target popula-
tion, as shown in Figure 1. Notably, increasing or decreasing
the size of the target population has no impact on the final esti-
mate, which is not necessarily the case in the method proposed
by Cole and Stuart (4).

DISCUSSION

Typical epidemiologic and biostatistical analyses emphasize
internal validity of causal effects, but (as others have noted (13,
14)) a causal effect without a specified target population is poorly
defined. In practice, study samples for randomized trials are
rarely sampled at random directly from the target population;
indeed, because consent is an ethical necessity for enrollment in a
clinical trial, trial participants are effectively never a random sam-
ple of the target population. Yet this is the premise that underlies
the assumption of unconditional generalizability or transportabil-
ity between the study sample and the target population—a fre-
quent (if informal) claim in randomized trials. In contrast, the
methods discussed and presented here allow us to relax this ques-
tionable premise: We no longer assume that the results from the
study population are unconditionally transportable from the study

Z=0
Weights allow 1,000 (n = 400)
to represent 400;
therefore,
Z=0 weights = 400/1,000
(n=1,000)
Z=1
Weights allow 1,000 (n = 1,600)
to represent 1,600;
therefore,
weights = 1,600/1,000
Z=1
(n=1,000)

Figure 1. Concepts of weights to map from a study sample with
oversampled Z = 0 (on left) to a target population (on right).

sample to an arbitrary target population; rather, we assume that
they are transportable conditional on variables in our model.

Some people may be uncomfortable with our assumption
of conditional transportability, perhaps because herein we
are explicit about assumptions that are typically hidden within
vague statements about how “representative” the study sample
is without addressing the questions 1) representative of what tar-
get population? and 2) representative according to which charac-
teristics Z? There is a useful conceptual parallel here with the
assumption of exchangeability between treated and untreated
subjects for internal validity in an observational setting. The as-
sumption of unconditional transportability is similar (but not
identical) to the assumption of unconditional exchangeability
(e.g., the causal effect is unconfounded), while the assumption
of transportability conditional on variables in the model is similar
(but again not identical) to the notion of conditional exchange-
ability (e.g., the causal effect is unconfounded conditional on a
set of confounders).

These parallels are useful in considering the contents of Z. In
earlier work, investigators have variously described Z as com-
prising all effect-measure modifiers (5) or as having components
identifiable from causal diagrams (3, 7, 15). The clearest guide-
line is that Z should be S-admissible (16)—that is, that Z should
include pretreatment covariates sufficient to d-separate sampling
and the outcome variable (3). This guideline is analogous to that
of selecting variables for d-separation of the exposure and out-
come variables for internal validity.

As with conditional exchangeability for internal validity, condi-
tional transportability of external validity carries with it additional
assumptions: namely, positivity (9) and correct model specifi-
cation. For transport-positivity to hold, the probability of being
included in the sample must be greater than O for participants in
all strata defined by Z in the target population. This assumption is
necessary so that the Z-specific probability of the outcome esti-
mated in the study can “stand in” for the Z-specific probability of
the outcome in the target population (see Appendix). Of course,
as with positivity for internal validity, transport-positivity may
be replaced by making additional assumptions (e.g., smoothing
under a parametric model). As noted elsewhere, additional condi-
tions are necessary for transportability—specifically, similar pat-
terns of interference and similar versions of treatment between the
study sample and the target population (5).

The concems about external validity discussed here are highly
relevant to observational studies as well as to trials. The results of
a trial are frequently, naively assumed to be transportable to a tar-
get population. Just as often, however, an epidemiologist assumes
that observational cohorts are more representative of the target
population and thus that there is less need to evaluate transport-
ability directly (much less to identify the target population explic-
itly). In fact, the transportability of observational studies to a
particular target population of interest is not guaranteed and must
be evaluated carefully.

In many clinical trials, external validity is considered only
an afterthought; however, consideration of both internal valid-
ity in the study sample and external validity in a target popula-
tion is crucial to providing evidence which will best improve
medicine and public health (13, 17). Quantitative approaches
to transportability, such as the one described here, are straight-
forward and should be applied more widely.
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APPENDIX

Inverse Odds of Sampling Weights

Weights with which to estimate the expected value of a
binary potential outcome in a target population, P (Y% =
11§ = 0) , using data from a study sample (S = 1) and with
covariates Z, can be derived from the g-formula.

By the law of total probability,

P(Y“=11S = 0)
=Y P(r*=118=0,Z=2)P(Z=2z15=0)

Assuming exchangeability between treatment arms condi-
tional on Z (i.e., the independence of exposure A and the
potential outcome Y%), we can substitute P(Y* =115 =0,
Z=7z,A=a) for P(Y¢=1I§ =0, Z=7) in the above
expression, such that

P(Ye=11S =0)
=Z}%W=IM=QZ=LA=MP@=NS=m

Z

Note that we must also assume exposure positivity, or
PA=aZ=2)>0Vz.

By counterfactual consistency, we can replace the poten-
tial outcome Y4 with Y, where A = a,

P(Ye=11S=0)
=) P(Y=115=0,Z=z,A=a)P(Z=zIS = 0).

Z

Assuming exchangeability (see note at end of Appendix)
between the study sample S = 1 and the target population
S = 0, conditional on Z (i.e., independence of the outcome
and sampling), we allow the conditional outcome distribu-
tion in the sample, P(Y = 11S =1, Z =z, A = a), to stand
in for the conditional outcome distribution in the target,
P(Y=118§5=0,Z=7z A = a),suchthat

P(Y“=11S=0)
=z:HY=HS=LZ=LA=MP@=zm=O)

Note that we must also assume transport positivity, or
P(S =11Z=2z) >0V z. The above equation is analogous
to the transport formula described by Bareinboim and Pearl (3).

Next, we rewrite the conditional probability of the out-
come P(Y=11S=1,Z =1z A =a) in terms of the joint
distribution of Y, Z, and A among sampled individuals,
PY=1,A=a,Z=zIS=1):

P(Y¢ =115 =0)

-y PY=1,A=a,Z=z1S=1)
~ P(A=alZ=z,S=1)P(Z=2zIS=1)

X P(Z=zIS = 0).

Then we rearrange the formula so that
PY=1,A=a,Z=2zIS=1)
PA=alZ=z,S=1)

y P(Z=2z1S=0)
PZ=zIS=1)

P(Y*=11S=0)= )

As written, the last term may be difficult to estimate when
Z is high-dimensional. To ease implementation, we rearrange
the last term using Bayes’ theorem:

P(S=01Z=7)P(Z=72)

P(Z=z1S5=0) _ P(S =0)
PZ=z1S=1) PGS=11Z=2)P(Z=2)
PS=1)
_PE=01z=9 PE=1
P(S=11Z=27)  P(S=0)

Thus, the final expression reads

PY=1,A=a,Z=z1S=1)
PA=alZ=27S=1)

PY*=115=0)= )

z

P(S=01Z=2 PES=1
PS=11Z=z) PSS =0
where the last 2 terms,
szmzzmxpmzn
PS=11Z=2 PE=0))

constitute the stabilized inverse odds of sampling weights.

Note that the 2 exchangeability assumptions above may
require different sets of covariates; thus, for convenience, Z
can be thought of as the union of the sets of covariates required
for both exchangeability assumptions.
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