
RESOLVING AN APPARENT PARADOX IN DOUBLY ROBUST ESTIMATORS

Doubly robust estimators are an approach used for estimating
causal effects, usually based on fitting 2 statistical models (1).
As the initial motivating example, Scharfstein et al. defined a
robust estimator of the causal effect of some exposure X on
outcomeY using models for both X andY ; they demonstrated
that such an estimator is consistent if “at least one of the [fit-
ted] models… is correct” (2, p. 1142). Such estimators were later
termed “doubly robust” (3, p. 6). Here, we demonstrate that using
common (but incorrect) intuition about what makes amodel “cor-
rect” or “incorrect” can turn doubly robust estimators into estima-
tors that are inconsistent if at least one of the fitted models is
wrong. We introduce and resolve this double-robust paradox,
demonstrating what must be meant by “correct model.”

We illustrate this double-robust paradox using 2 scenarios for
binary, random variables X, Y, and Zmeasured in a target popu-
lation. We wish to estimate the average causal effect of X onY ,
given by ( ( ) − ( ))E Y Y1 0 , where the potential outcome ( )Y x
is the value of Y we would have observed had X been set to x.
Doubly robust estimation proceeds with a statistical model for
Y , given by ( β)| Cf x, ,CY X, , and a statistical model for X , given
by ( α)| ′ Cf ,X C , where covariate sets C and C are both either
empty (∅) or contain Z , and where C may (or may not) equal
C ; α and β are the parameters that index those models. If Z or∅
is sufficient to control confounding between X and Y , a doubly
robust approach fitted in this way can consistently estimate the
average causal risk difference.

Given uncertainty about whether Z or∅ is sufficient to con-
trol confounding, the doubly robust property seems advanta-
geous. In such cases, we may be tempted to use Z in one
model and∅ in the other. For example, we could fit regression
models ( β)|f x z xz, , ,Y X Z, and (α)fX . Our regression model
forY contains X , Z, and their product as regressors, while the
“model” for X contains a single parameter α for ( )E X .

First, suppose Z is a confounder. The modelY is “correct”
because 1) it adjusts for Z and 2) it is saturated. The model
for X is “incorrect” because it omits the confounder Z . (We
emphasize that “correct” and “incorrect” have common-use
definitions rather than technical definitions, a key distinction
explained below.) Due to the doubly robust property, we
might anticipate that our estimator would consistently esti-
mate the average causal effect of X onY .

Now suppose Z is instead a mediator. In this case, the model
for X is “correct” because, to identify the average causal effect
of X onY , we should not generally adjust for variables affected
by exposure (4). The model for Y is “incorrect” for this same
reason. Under the common-use definition of correct model spec-
ification, our doubly robust estimator will (again) appear to be
consistent for the average causal effect. Therein lies the problem;
for a doubly robust estimator to give us a correct answer, regard-
less of whether Z is a mediator or a confounder, the statistical
model would necessarily yield causal information about X and Z .

If the common-use definition were correct, we could, in principle,
compare doubly robust estimators with other estimators to test
whether Z was a mediator or a confounder.

Seen another way, if Z is a mediator and is not a modifier on
the additive scale, onemodel is “correct” for the controlled, direct
risk difference ( ( ) − ( ))E Y z Y z1, 0, , the effect we would
observe if we could manipulate X while also setting the media-
tor to =Z z. The doubly robust estimator in the fully saturated
case estimates the quantity μ = ∑ [{ ( | = = ) −E Y X Z z1,z

( | = = )} ( = )]E Y X Z z Z z0, Pr ; this holds regardless of
whether Z is a confounder or a mediator. Under the common-
use definition of correct model specification, our doubly robust
estimator would be consistent for both ( ( ) − ( ))E Y z Y z1, 0,
and ( ( ) − ( ))E Y Y1 0 under the same model specification. If Z
is truly a mediator, these estimands cannot, in general, be equal,
meaning that the doubly robust property has failed.We term this
contradiction the “double-robust paradox.”

This apparent paradox is resolved by observing that the
common-use definition of correct model specification is, itself,
incorrect. The error results from bestowing a causal interpreta-
tion on the doubly robust estimate without considering causal
identification conditions. Through the lens of causal directed
acyclic graphs, we cannot infer the direction of the edges that
go between X and Z without external information (5). That is,
numerical values in a single data set do not tell us how variables
affect each other (6). Onlywith external information, such as tem-
poral ordering or biological plausibility, can we make accu-
rate causal inference.

Under appropriate causal identification conditions, this identi-
fies an effect of X under the observed distribution of Z . Thus,μ
can be a marginal effect if Z is a confounder; a controlled, direct
effect if Z is a mediator and is not a modifier on the additive
scale; or something else that may not have a causal interpretation
(7). For our scenario, a doubly robust method will estimate μ if
Z is in either the model forY or the model for X, meaning that
we can make incorrect causal inferences by misspecifying
(common usage) either model. Thus, if we mistake a mediator
for a confounder, what was a doubly robust estimator becomes
a “double-jeopardy” estimator: Estimators are inconsistent if at
least one of the fitted models is wrong.

The paradox is resolved by noting that a “correctly specified”
model refers to a statistical model that contains the true density
of the data; to estimate causal effects, we also must understand
identification conditions for the potential outcome of interest, be
it ( )Y x or ( )Y x z, . We propose that definitions of “model speci-
fication” should avoid conflation of statistical and causal con-
cepts by clearly separating the two sets of concepts. Pearl notes
that causal assumptions reflect concepts “that cannot be realized
by imposing statistical assumptions” (8, p. 39). Further clarifica-
tion of what distinguishes causal concepts from statistical con-
cepts is needed: We are not aware of a general set of rules that
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distinguish between causal mistakes that are amenable to
double-robustness and causal mistakes that result in double
jeopardy.
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